食管鳞癌发生过程中基因表达谱变化初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.应用Agilent寡核苷酸芯片技术初步分析食管鳞癌发生过程中基因表达谱变化。
     2.探讨CTHRC1在人食管鳞癌组织、细胞中的表达及临床意义。
     3.观察抑制CTHRC1表达对人食管鳞癌Eca-109细胞增殖、侵袭及迁移的影响。
     方法:
     1.寡核苷酸芯片扫描食管鳞癌患者癌、癌旁及正常组织,挑选明显差异基因进行实时荧光定量RT-PCR验证。
     2.免疫组化法检测CTHRC1在食管鳞癌组织中的表达,并探讨其与临床病理特征之间的关系。
     3.免疫荧光、Western-blot观察CTHRC1在食管癌细胞株Eca-109及TE-13中的表达。
     4.靶向CTHRC1的3对siRNA转染Eca-109细胞,RT-PCR及Western-blot检测CTHRC1受抑程度,挑选干扰效率最佳的siRNA。
     5. siRNA转染Eca-109细胞,MTT检测细胞增殖;Transwell侵袭及迁移实验观察转染前后细胞侵袭迁移能力;Western-blot法检测MMP2和MMP9表达变化。
     结果:
     1.寡核苷酸芯片:配对组织总RNA质量高,反转录cRNA及荧光标记质量好;食管癌共同上调基因38个,下调基因61个。
     2.实时荧光定量RT-PCR:芯片检测结果准确,CTHRC1差异最为显著。
     3.免疫组织化学:CTHRC1在食管癌胞膜及胞浆中均见表达,阳性表达率为56.5%。淋巴结转移组高于未转移组(P﹤0.05),与年龄、性别、肿瘤大小、肿瘤分化程度等无明显相关性(P﹥0.05)。
     4.细胞免疫荧光、Western-blot:在食管癌细胞株Eca-109及TE13中均见CTHRC1表达。
     5. siRNA显著抑制Eca-109细胞CTHRC1表达,siRNA1干扰效率最佳。
     6. CTHRC1基因沉默明显抑制细胞增殖及侵袭转移。
     结论:
     1.应用寡核苷酸芯片高通量、高效率分析食管鳞癌发生发展过程中基因表达差异,可以筛选新的治疗靶点。
     2.食管鳞癌的发生发展是一个涉及多基因、多阶段的复杂过程。
     3. CTHRC1在人食管鳞癌组织及细胞株Eca-109和TE-13中表达上调,且与淋巴结转移相关。
     4. RNAi可有效沉默人食管鳞癌Eca-109细胞中CTHRC1表达。
     5.沉默CTHRC1能够抑制Eca-109细胞增殖及侵袭转移,MMP2和MMP9表达下降。
Objectives:
     1. To explore the differential expression genes preliminarily in ESCC by Oligomicroarray.
     2. To investigate the expression of CTHRC1 in human ESCC tissue and cell lines, and to discuss its clinicopathological features in development of ESCC.
     3. To observe the effects resulted from inhibition of CTHRC1 by RNAi on proliferation,invasion and migration of Eca-109 cells.
     Methods:
     1. The obviously differential expression genes among ESCC,PCT and NET were selected by Oligomicroarray,and was checked by Real-time Fluorescent Qantitation RT-PCR.
     2. Expression of CTHRC1 was observed in ESCC tissure by Immunohistochemistry and their relationship with clinicopathological features was evaluated.
     3. Expression of CTHRC1 in esophageal carcinoma cell lines Eca-109 and TE-13 was detected by Immunofluorescence and Western-blot.
     4. Eca-109 cells were transfected with siRNAs targeting CTHRC1.Then expression of CTHRC1 was detected by RT-PCR and Western-blot in order to assess the interference efficiency,accordingly the optimal siRNA was choosed.
     5. With RNA silencing of CTHRC1 in cell line Eca-109,the cellular proliferation was analyzed by MTT,the changes of invision and migration were assessed by Transwell and expression of MMP2 and MMP9 was detected by Western-blot.
     Results:
     1. Oligomicroarray:The total RNA,everse transcription product and fluorescence labeled cRNA were all of high quality;38 genes were up-regulated and 61 were down-regulated.
     2. Real-time Fluorescent Qantitation RT-PCR:The most differential gene was CTHRC1.
     3. Immunohistochemistry:The positive expression of CTHRC1 was existing in cellular membrane and cytoplasm of ESCC.The expression rate was 56.5%. There was significantly higher expression in the cases with metastasis than these with non-metastasis(P<0.05),and the expression of CTHRC1 was not related with age,sex,size of tumer and pathological type(P>0.05).
     4. Immunofluorescence and Western-blot:The expression of CTHRC1 was observed in esophageal carcinoma cell lines Eca-109 and TE-13.
     5. siRNA inhibited expression of CTHRC1 in Eca-109 cells dramatically:siRNA1 was selected for its excellent interference efficiency of CTHRC1 which was used in subsequent experiment.
     6. RNA silencing of CTHRC1 obviously inhibited proliferation and apoptosis of Eca-109 cells.
     Conclusions:
     1. The high throughput and effective Agilent oligomicroarray can screen novel therapy targeted genes by analyzing the differential expression genes in development and progression of ESCC.
     2. The development and progression of ESCC is a complicated process involving multigenes and multiprocedures.
     3. The expression of CTHRC1 was up-regulated in ESCC tissue and cell lines Eca-109,TE-13 and was associated with lymph-node metastasis.
     4. RNA interference can effectively silence CTHRC1 in cell line Eca-109.
     5. RNA silencing of CTHRC1 in cell line Eca-109 may lead to inhibition of cellular proliferation,migration and invision.It also leads to inhibition of MMP2 and MMP9 expression.
引文
[1] Zhang H,Chen SH,Li YM,et al.Epidemiological investigation of esophageal carcinoma[J].World J Gastroenterol,2004,10(12):1834-1835.
    [2] Kwong KF.Molecular biology of esophageal cancer in the genomics era[J].Surg Clin North Am,2005,85(3):539-553.
    [3] Chattopadhyay I,Kapur S,Purkayastha J,et al.Gene expression profile of esophageal cancer in North East India by cDNA microarray analysis[J].World J Gastroenterol 2007,13(9):1438-1444.
    [4] Peter Pyagay, Mélanie Heroult, Qiaozeng Wang,et al.Collagen Triple Helix Repeat Containing 1, a Novel Secreted Protein in Injured and Diseased Arteries, Inhibits Collagen Expression and Promotes Cell Migration[J].Circ Res 2005,96:261-268.
    [5] Wang Y,Xu A,Knight C,et al. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity[J].J Biol Chem,2002,277:19521-19529.
    [6] Liren Tang,Derek L Dai,Mingwan,et al.Aberrant Expression of Collagen Triple Helix Repeat Containing1in Human Solid Cancers[J].Clin Cancer Res 2006,12:3716–3722.
    [7] Knupfer H,Preiss R.Significance of interleukin-6 (IL-6) in breast cancer[J].Brest Cancer Res Treat,2007,102(2):129-135
    [8] Ziqler M,Villares GJ,Lev DC,et al.Tumor immunotherapy in melanoma: strategies for overcoming mechanisms of resistance and escape[J].Am J Clin Dermatol, 2008,9(5):307-311
    [9] Knupfer H,Preiss R.Significance of interleukin-6 (IL-6) in breast cancer. Breast Cancer Res Treat.2007,102(2):129-135.
    [10] Rosenkilde MM,Schwartz TW.The chemokine system-a major regulator of angiogenesis in health and disease. 2004,112(7-8):481-495.
    [11] Rosenkilde MM,Schwartz TW.The chemokine system-a major regulator of angiogenesis in health and disease[J]. APMIS,2004,112(7-8):481-495
    [12] SahebJamee M,Eslami M,AtarbashiMoqhadam F.Salivary concentration of TNFalpha, IL1 alpha, IL6, and IL8 in oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal,2008,1;13(5):E292-5
    [13] Nagashima F,Boku N,Ohtsu A,et al.Biological markers as a predictor for response and prognosis of unresectable gastric cancer patients treated with irinotecan and cisplatin[J]. Japanese Journal of Clinical Oncology 2005,35(12):7 14-719
    [14] Teraishi F,Kagawa S,Watanabe T,et al.ZD1839(Gefitinib,‘Iressa’),an epidermal growth factor receptor-tyrosine kinase inhibitor, enhances the anti-cancer effects of TRAIL in human esophageal squamous cell carcinoma[J].Febs Lett,2005, 579(19):4069-4075
    [15] Paschos KA,Canovas D,Bird NC.The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis[J].Cell Signal, 2009,21(5):665-674
    [16] Huang SC,Sheu BC,Chang WC,et al.Extracellular matrix proteases - cytokine regulation role in cancer and pregnancy [J].Front Biosci,2009,11(14):1571-1588
    [17] Ono M.Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy[J].Cancer Sci. 2008,99(8):1501-1506
    [18] Lipka D,Boratynski J.Metalloproteinases. Structure and function[J].Postepy Hig Med Dosw(Online),2008,3(62):328-336
    [19] Wong GW,Wang J,Hug C,et al. A family of Acrp30/adiponectin structural andfunctional paralogs[J].Proc Natl Acad Sci USA 2004,101:10302–10307.
    [20] Ashhab Y, Alian A, Polliack A, et al.Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern[J].FEBS Lett 2001,495(1-2):56-60
    [21] Beachy PA,Karhadkar SS,Berman DM,et al.Tissue repair and stem cell renewed in carcinogenesis[J].Nature,2004,432(7015):324-331
    [22] West RB,Nuyten DS,Subramanian S,et al.Determination of stromal signatures in brest carcinoma[J].PLoS Biol,2005,3(6):e187
    [23] Micke P,Ostman A.Tumer-stroma interaction:cancer-associated fibroblasts as noval targets in anti-cancer therapy[J]?Lung Cancer,2004,45(Suppl 2):S163-175
    [24] Allinen M, Beroukhim R, Cai L, et al.Molecular characterization of the tumor microenvironment in breast cancer[J]. Cancer Cell 2004,6:17-32.
    [25] Renée LeClair,Volkhard Lindner,et al.The Role of Collagen Triple Helix Repeat Containing 1 in Injured Arteries, Collagen Expression, and Transforming Growth FactorβSignaling[J].Trends CardiovascMed,2007,17:202-205.
    [26] LeClair RJ,Durmus T,Wang Q,et al.Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation[J].Circ Res 2007,100:826-833.
    [27] Janssens K,Ten Dijke P,Janssens S,et al.Transforming growth factor-beta 1 to the bone[J].Endocr Rev 2005,26:743-774.
    [28] Pannu J, Nakerakanti S, Smith E, et al.Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways[J].J Biol Chem 2007,282:10405-10413.
    [29] Micke P,Ostman A.Tumour-stroma interaction:cancer-associated fibroblasts as novel targets in anticancer therapy?[J].Lung Cancer 2004,45 Suppl 2:S163-S175.
    [30] Bhowmick NA,Neilson EG,Moses HL.Stromal fibroblasts in cancer initiationand progression[J].Nature 2004,432:332-337.
    
    [1]Peter Pyagay,Mélanie Heroult,Qiaozeng Wang,et al.Collagen Triple Helix Repeat Containing 1,a Novel Secreted Protein in Injured and Diseased Arteries, Inhibits Collagen Expression and Promotes Cell Migration[J].Circ Res 2005;96:261-268.
    [2]Wang Y,Xu A,Knight C,et al.Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role inthe modulation of its insulin-sensitizing activity[J].J Biol Chem2002;277:19521– 19529.
    [3]Liren Tang,Derek L Dai,Mingwan,et al. Aberrant Expression of Collagen Triple Helix Repeat Containing1in Human Solid Cancers[J].Clin Cancer Res 2006;12:3716–3722.
    [4]Durmus T,LeClair RJ,Park KS,et al. Expression analysis of the novel gene collagen triple helix repeat containing 1(Cthrc1)[J].Gene Expr Patterns 2006;6:935–940.
    [5]Helder MN,Ozkaynak E,Sampath KT,et al.Expression pattern of osteogenic protein-1 (bone morphogenetic protein-7) in human and mouseDevelopment[J]. Histochem Cytochem 1995;43:1035-1044.
    [6]Dudley AT,Robertson E J.Overlapping expression domains of bone morphogenetic protein family members potentially account for Limited tissue defects in BMP7 deficient embryos[J].Dev Dyn 1997;208:349–362.
    [7]Takuma N,Sheng HZ,Furuta Y,et al.Formation of Rathke’s pouch requires dual induction from the diencephalon[J].Development 1998;125:4835–4840
    [8]Weaver M,Yingling JM, DunnNR,et al.Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development[J]. Development 1999;126: 4005-4015.
    [9]Kulessa H,Turk G,Hogan BL,et al.Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle[J].EMBO J 2000;19: 6664–6674.
    [10]Faure S,de Santa Barbara P,Roberts DJ,et al.Endogenous patterns of BMP signaling during early chick development[J].Dev Biol 2002;244:44-65.
    [11]Jiao K,Kulessa H,Tompkins K,et al.An essential role of Bmp4 in the atrioventricular septation of the mouse heart[J].Genes Dev 2003;17:2362-2367
    [12]Nishikawa K,Nakanishi T,Aoki C,et al.Differential expression of homeobox-containing genes Msx-1 and Msx-2 and homeoprotein Msx-2 expression during chick craniofacial development. Biochem[J].Mol Biol Int.1994;32;763-771.
    [13]Carlson MR,Bryant SV,Gardiner DM,et al.Expression of Msx-2 during development,regeneration, and wound healing in axolotl limbs[J].Exp Zool 1998;282: 715-723.
    [14]Timmer JR,Wang C,Niswander L,et al.BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors[J].Development2002;129:2459-2472.
    [15]Furuta Y,Piston DW,Hogan BL,et al.Bone morphogenetic proteins(BMPs) as regulators of dorsal forebrain development[J].Development 1997;124:2203- 2212.
    [16]Hebert JM,Hayhurst M,Marks ME,et al.BMP ligands act redundantly to pattern the dorsal telencephalic midline[J].Genesis 2003;35:214-219.
    [17] Currle DS,Cheng X,Hsu CM,Monuki ES,et al.Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation[J]. Development 2005;132: 3549-3559.
    [18]Janssens K,Ten Dijke P,Janssens S,et al.Transforming growth factor-beta 1 to the bone[J].Endocr Rev 2005;26:743-774.
    [19] Bissell DM,et al.Chronic liver injury,TGFbeta,and cancer[J].Exp Mol Med,2001, 33:179-190.
    [20]Pannu J, Nakerakanti S, Smith E, et al.Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways[J].J Biol Chem 2007,282:10405-10413.
    [21]LeClair RJ,Durmus T,Wang Q,et al.Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation[J].Circ Res 2007;100: 826-833.
    [22]Renée LeClair,Volkhard Lindner,et al.The Role of Collagen Triple Helix Repeat Containing 1 in Injured Arteries, Collagen Expression, and Transforming Growth FactorβSignaling[J].Trends CardiovascMed,2007;17:202-205.
    [23]Ryan ST,Koteliansky VE,Gotwals PJ,et al. Transforming growth factor-beta dependent events in vascular remodeling following arterial injury[J].J Vasc Res 2003;40:37-46.
    [24]Kumar A, Lindner,et al. Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow[J].Arterioscler Thromb Vasc Biol 1997; 17:2238-2244.
    [25] Hiroaki Kimura, Kin Ming Kwan, Zhaoping Zhang,et al.Cthrc1 Is a Positive Regulator of Osteoblastic Bone Formation[J].PLoS ONE. 2008; 3(9): e3174.
    [26]Kronenberg HM.Developmental regulation of the growth plate[J].Nature 2003; 423:332-336.
    [27]Yoshida Y,Tanaka S,Umemori H, et al.Negative regulation of BMP/Smad signaling by Tob in osteoblasts[J]. Cell 2000;103:1085-1097.
    [28]Wozney JM, Rosen V,Celeste AJ,et al.Novelregulators of bone formation: molecular clones and activities[J].Science 1988;242:1528-1534.
    [29]Devlin RD,Du Z,Pereira RC,et al.Skeletal overexpression of noggin results in osteopenia and reduced bone formation[J]. Endocrinology 2003;144:1972-1978.
    [30]Wu XB, Li Y, Schneider A, et al.Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice[J].J Clin Invest 2003;112: 924–934.
    [31]Zhao M,Harris SE,Horn D,et al.Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation[J]. J Cell Biol. 2002 ;157: 1049–1060.
    [32]Mishina Y,Starbuck MW,Gentile MA, et al.Bone morphogenetic protein type IAreceptor signaling regulates postnatal osteoblast function and bone remodeling[J].J Biol Chem 2004;279:27560–27566.
    [33]Allinen M,Beroukhim R,Cai L,et al.Molecular characterization of the tumor microenvironment in breast cancer[J].Cancer Cell 2004;6:17-32.
    [34]Smith JD,Bryant SR,Couper LL,et al.Soluble transforming growth factor-beta type II receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth[J].Circ Res 1999;84:1212-1222.
    [35]Rodan GA,Martin TJ.Therapeutic approaches to bone diseases[J]. Science 2000; 289:1508-1514.
    [36]Canalis E,Giustina A,Bilezikian JP.Mechanisms of anabolic therapies for osteoporosis[J].N Engl J Med 2007;357:905-916.
    [37]Garrett IR.Anabolic agents and the bone morphogenetic proteinpathway[J].Curr Top Dev Biol 2007;78:127-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700