Wnt/β-catenin信号通路调控猪骨骼肌纤维类型变化的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨骼肌纤维类型及数量影响家畜肉品质。根据其代谢和收缩功能,猪生后骨骼肌纤维分为慢速氧化型、快速氧化型、快速酵解型和中间型四种,分别由不同的肌球蛋白重链(myosin heavy chain,MyHC)异构体MyHC-I、MyHC-II2a、MyHC-II2b和MyHC-II2x确定。猪骨骼肌纤维数目在出生前已确定,在生后的生长发育过程中,主要是骨骼肌卫星细胞的分化及肌纤维类型的转变。研究如何有效控制猪骨骼肌卫星细胞定向分化,调控肌纤维类型组成,改善肉品质具有重要的实践意义。Wnt/β-catenin信号通路在肌肉生长、发育过程中起着重要调节作用。目前,Wnt/β-catenin信号通路调控出生后猪骨骼肌纤维类型组成作用还未见报道。因此,本研究利用冰冻切片HE染色、油红O染色、mATPase及免疫组化等组织学方法及Real time PCR、Western Blotting分子生物学技术,在明确猪骨骼肌发育的组织形态学特征和组织学规律的基础上,研究Wnt/β-catenin信号通路相关基因在猪骨骼肌发育过程中的表达规律;再利用15 mMol/L LiCl处理单根肌纤维分离培养的骨骼肌卫星细胞,采用Western Blotting、免疫荧光等细胞生物学及分子生物学技术,探讨其在猪骨骼肌卫星细胞分化过程中的调控作用。主要研究结果如下:
     1.随着猪日龄增长,骨骼肌纤维横切面积逐渐增大,慢肌向快肌转化,慢肌纤维横切面积明显小于快肌纤维横切面积;比目鱼肌相对于背最长肌和趾长伸肌,其聚脂能力强,慢肌含量高。
     2.猪背最长肌发育过程MyHC-I、GSK-3β、β-catenin和Fz3 mRNA随着个体日龄增长表达量下降;MyHC-IIb mRNA表达逐渐升高;MyHC-IIa mRNA表达在1日龄~2周龄阶段升高后又降低;MyHC-IIx mRNA表达变化不显著。慢肌、β-catenin和p-GSK-3β蛋白与mRNA表达一致,而p-β-catenin、GSK-3β蛋白及快肌蛋白表达上调。β-catenin和慢肌蛋白表达量在6月龄猪比目鱼肌中表达最高,趾长伸肌中表达最低;快肌蛋白的表达量则相反;
     3. 15 mMol/L LiCl诱导骨骼肌卫星细胞向慢肌分化,p-GSK-3β、β-catenin、myosin及慢肌蛋白增加,p-β-catenin、GSK-3β及快肌蛋白减少,并且核内源性β-catenin增多。
     综上所述,随着年龄增长,骨骼肌纤维横切面积逐渐增大,且快肌纤维显著大于慢肌;比目鱼肌相对于背最长肌和趾长伸肌,其聚脂能力强,慢肌含量高。发现Wnt/β-catenin信号通路促进猪骨骼肌慢肌纤维生长。利用LiCl激活经典Wnt信号通路,在猪骨骼肌卫星细胞分化中发挥正调节作用,促进成肌分化;并诱导猪骨骼肌卫星细胞向慢肌分化。
The number of skeletal muscle fiber and types have influence on the meat quality of livestock. There were divided into slow oxidative, fast oxidative, fast glycolytic and intermediate type according to the metabolism and contractile function of postnatal porcine, respectively, by different myosin heavy chain(MyHC) isormers of MyHC-I, MyHC-IIa, MyHC-IIb and MyHC-IIx determined. The number of skeletal muscle fiber were determined porcine prenatal, it be will depend on skeletal muscle satellite cells differentiation and muscle fiber type transformation in the future development. Study how to effectively control the satellite cells directional differentiation and regulate of fiber type composition to improve the meat quality has important practical significance. Wnt/β-catenin signaling pathway which plays an important role to regulate muscle growth and development. Currently, it has not been reported that the role of Wnt/β-catenin signaling pathway regulated composition of postnatal porcine skeletal muscle fiber type. Therefore, this study used histological methods, such as frozen sections of HE staining, Oil red O staining, mATPase staining, immunohistochemical staining, and molecular biology techniques of Real time PCR and Western Blotting to identify morphology and histology development regularity of porcine skeletal muscle. Studying of relate genes expression pattern in Wnt/β-catenin signaling pathway during porcine skeletal muscle development. Using 15 mMol/L LiCl treatment of satellite cells with single isolated muscle fiber. To utilize cell biology and molecular biology techniques ,such as Western Blotting and immunofluorescence staining, to investigate of Wnt/β-catenin signaling pathway in porcine satellite cells differentiation in vitro. The main results are as follows:
     1. The cross sectional area of skeletal muscle fiber increased during porcine development. The slow muscle transformed into fast muscle and slow muscle fiber significantly smaller than fast muscle fiber. The capacity of polyester in SOL was better than LD and EDL, and have more slow muscle fiber.
     2. The mRNA expression levels of MyHC-I, GSK-3β,β-catenin and Fz3 decreased with the development of LD, MyHC-IIb increased, MyHC-IIa increased from 1-day old to 2weeks then decreased, MyHC-IIx did not change significantly. The protein expression levels of slow muscle,β-catenin and p-GSK-3βas same as the mRNA, while p-β-catenin, GSK-3βand fast muscle increasd. The protein expression levels ofβ-catenin and slow muscle in SOL were the highest, there were the lowest in EDL at 6-month old, in contrast of fast muscle protein.
     3. 15 mMol/L LiCl induced skeletal muscle satellite cells differentiation into slow muscle fiber. The protein expression levels of p-GSK-3β,β-catenin, myosin and slow muscle increased, p-β-catenin, GSK-3βand fast muscle decreased, and the endogenousβ-catenin in nuclear increased.
     In summary, the skeletal muscle fiber cross sectional area gradually increased during development, and the area of fast muscle fiber was significantly larger than slow. The capacity of polyester in SOL was better than LD and EDL, and have more slow muscle fiber. The result found that Wnt/β-catenin signaling pathway promotes the porcine slow muscle fiber to growth. Wnt signaling pathway promoted satellite cells to myogenic differentiation when it was activitied by LiCl, and induced satellite cells differentiation to slow muscle fiber.
引文
杨晓静,赵茹茜,陈杰.2005.猪背最长肌肌纤维类型的发育性变化及其品种和性别特点.中国兽医学报,25(1):89-94.
    Alan G. Ridgeway, Helen Petropoulos, Sharon Wilton, Ilona S. Skerjans.2000.Wnt Signaling regulates the function of MyoD and Myogenin. The Jounal of Biology Chemistry. 42:32398-32405
    Aline Regina Ruiz Lima, Paula Felippe Martinez, Katashi Okoshi 2010.,Myostatin and follistatin expression in skeletal muscles of rats with chronic heart failure. International Journal of Experimental Pathology. 54-62.
    Amonlirdviman K, Khare N. A, Tree D. R.2005. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 307, 423–426.
    Anakwe K, Robson L, Hadley J. 2003, Wnt signalling regulates myogenic differentiation in the developing avian wing. Development. 130:3503–3514
    Andrew S. Brack, Irina M. Conboy, Michael J. Conboy. 2008.A Temporal Switch from Notch to Wnt Signaling in Muscle Stem Cells Is Necessary for Normal Adult Myogenesis. Cell Stem Cell. 2:50-59.
    Anthony Otto, Corina Schmidt, Graham Luke. 2008, Canonical Wnt signaling induces satellite-cell proliferation during adult skeletal muscle regeneration. Journal of Cell Science. 121-2939-2950.
    Axelrod J.D, Matsuno K., Artavanis-Tsakonas, S.1996. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 271, 1826–1832.
    Bajard L, Relaix F, Lagha M .2006. A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev 20.
    Bastock R, Strutt H. and Strutt D. 2003 Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development 130, 3007–3014.
    Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A. 2000. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151(6):1221–34.
    Beck C. W, Christen B, Barker D.2006. Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles. Mech. Dev. 123, 674-688.
    Beresford B.1983. Brachial muscles in the chick embryo: the fate of individual somites. Journal of Embryology and Experimental Morphology. 77 99–116.
    Bhanot P ,Brink M Sarnos CH. 1996. A new member of the frizzled family from drosophila functions as a Wingless receptor. Nature , ,382 (6588) :225-230.
    Bilic, J. 2007. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316,1619–1622
    Billiard J. 2005. The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells. Mol. Endocrinol. 19, 90–101
    Blackshaw S. E. and Warner A. E.1976. Low resistance junctions between mesoderm cells during development of trunk muscles. J. Physiol. 255, 209-230.
    Bladt F, Riethmacher D, Isenmann S.1995.Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376 768–771.
    Borello U, Berarducci B, Murphy P, 2006. The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133: 3723–3732.
    Borycki A.G. and Emerson C.P. 1997. Muscle determination: Another key player inmyogenesis? Curr. Biol. 7: R620–R623.
    Boutros M, Paricio N, Strutt D. I.1998. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94, 109–118.
    Brack A.S, Conboy I.M, Conboy M.J. 2008. Temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell stem cell .,2, 50-59.
    Brooks SV. 2003,Current topics for teaching skeletal muscle physiology. Adv Physiol Educ. 27:171–182.
    Bryson-Richardson R. J. and Currie, P. D. 2008. The genetics of vertebrate myogenesis. Nat. Rev. Genet. 9, 632-646.
    Buckingham M, Bajard L, Chang T. 2003.The formation of skeletal muscle: from somite to limb. J Anat 202:59–68
    Burke A. 2000. Hox genes and the global patterning of the somitic mesoderm. Curr. Top. Dev. Biol. 47, 155–181.
    C.Hartmann. 2002. Wnt-signaling and skeletogenesis.;2(3):274-276.
    Canepari M, Cappelli V, Pellegrino MA.1998. Thyroid hormone regulation of MHC isoform composition and myofibrillar ATPase activity in rat skeletal muscles. Arch Physiol Biochem 106:308–315.
    Capdevila J, Vogan K., Tabin C.2000. Mechanisms of left–right determination in vertebrates. Cell 101, 9–21.
    Capurro, M.I. 2005. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res. 65, 6245–6254
    Cavodeassi F, Carreira-Barbosa F, Young R. M. 2005 Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/betacatenin pathway. Neuron 47, 43–56.
    Chanoine, C, Hardy S.2003. Xenopus muscle development: from primary to secondary myogenesis. Dev. Dyn. 226, 12–23.
    Charge S B ,Rudnicki M A. 2004 .Cellular and molecular regulation of muscle regeneration. Physiol Rev , 84 :209~238.
    Chen, W. 2003. Dishevelled 2 recruits b-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301,1391–1394
    Cheney, Richard E, Riley, Margaret A.1993 "Phylogenetic analysis of the myosin superfamily". Cell motility and the cytoskeleton 24 (4): 215–23
    Cheng L, Alvares LE, Ahmed MU. 2004 The epaxial–hypaxial subdivision of the avian somite. Developmental Biology 274 348–369.
    Cinnamon Y, Kahane N, Bachelet I 2001. The sub-lip domain—a distinct pathway for myotome precursors that demonstrate rostral–caudal migration. Development 128, 341–351.
    Clevers H. 2006. Wnt/b-catenin signaling in development and disease. Cell 127: 469–480.
    Collins C A ,Olsen I ,Zammit P S . 2005 .Stem cell function ,self2re2 newal ,and behavioral heterogeneity of cells f rom t he adult muscle satellite cell niche. Cell , 122 (2) :289~301.
    Collins C A, Olsen I, Zammit P S. 2005,Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122(2): 289~301
    Conboy I.M, and Rando T.A. 2002. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3, 397–409.
    Conboy I.M, Conboy M.J., Smythe, G.M. 2003. Notchmediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577.
    Cornelison DD, Wold BJ. 1997. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191(2):270–83.
    Cossu G. and Borello U. 1999. Wnt signaling and the activation of myogenesis in mammals. EMBO J. 18: 6867–6872.
    Cousins J C, Woodward K J, Gross J G. 2004,Regeneration of skeletal muscle from transplanted immortalised myoblasts is oligoclonal. Cell Sci, 117: 3259~3269
    Dann CE, Hsieh JC, Rattner A. 2001. Insights into Wnt binding and signaling from the structures of two Frizzled cysteine2rich domains[J]. Nature.412 (6842): 86-90.
    Dashwood W. M, Orner G. A. and Dashwood, R. H. 2002. Inhibition of beta/catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate(EGCG):minor contribution of H(2)O(2)at physiologically relevant EGCG concentrations. Biochem Biophys Res Commun.296(3):584-8.
    Daston G, Lamar E, Olivier M. 1996. Pax-3 is necessary formigration but not differentiation of limbmuscle precursors in the mouse. Development 122: 1017–1027.
    David A, Hutcheson, Jia Zhao. 2009,Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements forβ-catenin. Gene Dev., 23:997-1013.
    Day K, Shefer G, Richardson J B. 2007, Nest in GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol., 304(1) : 246-259.
    Dejmek J, Safholm A, Kamp Nielsen C. 2006. Wnt-5a/Ca2C-induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1a signaling in human mammary epithelial cells. Mol. Cell Biol. 26, 6024–6036.
    Delfini MC, Hirsinger E, Pourquie O.2000. Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 127 5213–5224.
    Denetclaw W, Ordahl C.2000. The growth of the dermomyotome and formation of early myotome lineages in thoracolumbar somites of chicken embryos. Development 127, 893–905.
    Denetclaw WF, Berdougo E, Venters SJ.2001. Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome. Development 128 1745–1755.
    Dietrich S, Abou-Rebyeh F, Brohmann H.1999. The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126, 1621–1629.
    Dunglison G, Scotting P, Wigmore P.1999. Rat embryonic myoblasts are restricted to forming primary fibres while later myogenic populations are pluripotent. Mech. Dev. 87, 11–19.
    Duxson M, Usson Y, Harris A.1989. The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies. Development 107,743–750.
    Epstein J.A, Lam P, Jepeal L.1995. Pax3 inhibits myogenic differentiation of cultured Myoblast Cells. JBC.270:11719-11722.
    Fabien Le Grand, Michael A Rudnicki. 2007.Skeletal muscle satellite cells and adult myogenesis. CurrentOpinion in Cell Biology,19:628-633
    Fei Liu, Sean Kohlmeier, Cun-Yu Wang. 2008,Wnt signaling and skeletal development. Cellular Signaling. 999-1009.
    Fonseca S, Wilson I.J, Horgan G.W. 2003. Slow fiber cluser pattern in pig longissimus thoracis muscle: Implications for myogensis. J.Anim.Sci.81973-983
    Garriock R. J and Krieg P. A. 2007.Wnt11-R signaling regulates a calcium sensitive EMT event essential for dorsal fin development of Xenopus. Dev. Biol. 304, 127–140.
    Gavard J, M arthiens V, Monn et C. 2004,N-cadherin activation substitutes f or the cell contact control in cell cycle arrest and Myogenic differentiation: involvement of p120 andβ-catenin[J]. Biol. Chem., 279: 36795-36802
    Gentry J G,Mcg J J, Miller M F.2004,Environmental effects on pig perfommnee,meal qnaiity,and muscle characteristics. J Anita Sci, 82(1):209-217.
    Gottardi C. J and Gumbiner, B. M. 2004. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol,167 (2):339-49.
    Grimaldi A, Tettamanti G, Matrin BL.2004. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis. Development, 131(14):3249-62.
    Gros J, Manceau M, Thome V.2005. A common somatic origin for embryonic muscle progenitors and satellite cells. Nature 435, 954-958
    Gros J, Scaal M, Marcelle C.2004. A two-step mechanism for myotome formation in chick. Dev. Cell 6, 875–882.
    Halevy O, Piestun Y, Allouh M Z. 2004,Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn, 231: 489-502.
    Hammond C, Hinits Y, Osborn D.2007. Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Dev. Biol. 302, 504-511.
    Hans-Henning Arnold, Barbara Winter. 1998. Muscle differentiation: more complexity to the network of myogenic regulators. Genetics and Development,8:539-544
    Hasty P, Bradley, A Morris J H, Edmondson D G.. 1993.Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene (comments). Nature. 364: 501–506.
    He X, Saint-Jeannet J. P,Wang, Y.1997. A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science 275, 1652–1654.
    Hollway G. E, Bryson-Richardson R. J, Berger S.2007. Whole-somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo. Dev. Cell 12, 207-219.
    Horst D, Ustanina S, Sergi C, Mikuz G.2006. Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis. Int. J. Dev. Biol. 50, 47-54.
    Huelsken J, Behrens J. 2002, The Wnt signalling pathway. J Cell Sci 15: 3977?3978.
    Hughes SM, Taylor JM, Tapscott SJ. 1993. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones[J]. Development, 118(4): 1137–1147.
    Hugo C. Olguin, Zhihong Yang. 2007, Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. Journal of Cell Biology. 769-779.
    Ishibashi J, Perry R.L, Asakura A.2005. MyoD induces myogenic differentiation through cooperation of itsNH2- and COOH-terminal regions. J. Cell Biol. 171:471–482.
    Jin-Ming Tee, Carina Van Rooijen, Rick Boonen. 2009,Regulation of Slow and Fast Muscle Myofibrillogenesis by Wnt\β-catenin and Myostatin Signaling. Plos One, 4(6) :e5880.
    Kablar B, Krastel K, Ying, C.1997.MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124, 4729–4738.
    Kahane N, Cinnamon Y, Bachelet I.2001. The third wave of myotome colonization by mitotically competent progenitors: regulating the balance between differentiation and proliferation during muscle development. Development 128, 2187–2198.
    Kahane N, Cinnamon Y, Kalcheim, C.1998. The cellular mechanism by which the dermomyotome contributes to the second wave of myotome development. Development 125, 4259–4271.
    Kassar-Duchossoy L, Gayraud-Morel B, Gomes D.2004. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431: 466–471.
    Kaul A, Koster M, Neuhaus H.2000. Myf-5 revisited: Loss of early myotome formation does not lead to arib phenotype in homozygous Myf-5 mutant mice. Cell 102:17–19.
    Kaushal S, Schneider J.W, Nadal-Ginard B.1994. Activation of the myogenic lineage by MEF2A, a factor that induces and cooperates with MyoD. Science 266:1236–1240.
    Ke Chen Ban, Harijit Singh, R. Krishnan. 2003.GSK-3βphosphorylation and alteration ofβ-catenin in hepatocellular carcinoma. Cancer letters. 199:201-208.
    Kelly Anakwe, Lesley Robson, Julia Hadley. 2003,Wnt signaling regulates myogenic differentiation in the developing avian wing. Dev, 130:3503-3514.
    Khan J, Bittner M.L, Saal L.H.1999. cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. PNAS.23:13264-13269.
    Kim C H, Neiswender H, Baik E J. 2008,β-catenin interacts with MyoD and regulates its transcription activity [J]. J Cell Biol, 28: 2941~ 2951.
    Kim, G.H. et al. 2008. Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J. Cell Biol. 182, 1073–1082
    Kinoshita N, Iioka H, Miyakoshi A.2003. PKC delta is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes. Dev. 17, 1663–1676.
    Kirkham, M. and Parton, R.G. 2005. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta 1746, 349–363
    Kitzmann M, Carnac G, Vandromme M.1998. The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J. Cell Biol. 142:1447–1459.
    Klein T. J, Jenny A, Djiane A.2006. CKIepsilon/discs overgrown promotes both Wnt-Fz/betacatenin and Fz/PCP signaling in Drosophila. Curr. Biol. 16,1337–1343.
    Ku¨hl, M. et al. 2000. The Wnt/Ca2+ pathway: a new vertebrate wnt signaling pathway takes shape. Trends Genet. 16, 279–283
    Kuang S, Charge S.B, Seale P.2006. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J. Cell Biol. 172: 103–113.
    Kucera J, Walro J.1995. Origin of intrafusal fibers from a subset of primary myotubes in the rat. Anat. Embryol.192, 149–158.
    Kuhl M, Sheldahl L. C, Malbon C. C.2000. Ca2C/calmodulin-dependent protein kinase II is stimulated byWnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275, 12 701–12 711.
    Kurayoshi M. 2007. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem. J. 402, 515–523
    Larsson L, Ansved T. 1995,Effects of ageing on the motor unit. Prog Neurobiol, 45:397-458
    Lee H. S, Bong Y. S, Moore K. B.2006 Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway. Nat. Cell Biol. 8, 55–63.
    Lefaucheur L, Gerrard D. 2000, Muscle fiber plasticity in farm animals . J. Anim. Sci., 77(1):1-19.
    Lefaucheur L, Milan D, Ecolan P, et al. 2004. Myosin heavy chain composition of different skeletal muscles in Large White and Meishan pigs. J.Anim .Sci., 82(7): 1931-1941.
    Lepper C, Conway S. J. and Fan, C. M. 2009. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460,627-631.
    Li, C. et al. 2008. Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2. BMC Mol. Biol. 9, 11
    Linker C, Lesbros C, Gros J. 2005. beta-catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development 132: 3895–3905.
    Linker C, Lesbros C, Stark MR. 2003, Intrinsic signals regulate the initial steps of myogenesis in vertebrates.Development. 130:4797–4807
    Lisa M, Andrew J W, Biswajit P. 2007, Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation . Dev, 134:3371-3382.
    LIuis Espinosa, Julia Ingles-Esteve, Cristina Aguilera. 2003.Phosphorylation by Glycogen Synthase Kinase-3βDown-regulates Notch Axtivity,a Link for Notch and Wnt Pathway. The Journal of Biological. 278,32227-32235.
    Logan CY, Nusse R. 2004,The Wnt signaling pathway in development and disease . Annu Rev Cell Dev Biol. 20:781-810
    Lu W. et al. 2004. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119, 97–108
    Lucia H.D, Kang, Agita Rughani. 2010.Expression of Masticatory-specific Isoforms of Myosin Heavy-chain, Myosin-binding Protein-C and Tropomyosin in Muscle Fibers and Satellite Cell Cultures of Cat Masticatory Muscle. 58:623.
    Maeda R., Kobayashi A, Sekine R.1997. Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo. Development 124,2553-2560.
    Mansouri A, Goudreau G, and Gruss P. 1999. Pax genes and their role in organogenesis. Cancer Res. 59: 1707s–1710s.
    Mao, B. 2002. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417, 664–667
    Maretto S, Cordenonsi M, Dupont S.2003. Mapping Wnt/b-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. 100: 3299–3304.
    Megeney, L.A. and Rudnicki, M.A. 1995. Determination versus differentiation and the MyoD family of transcription factors. Biochem Cell Biol. 73: 723–732.
    Mikels, A.J. and Nusse, R. 2006. Purified Wnt5a protein activates or inhibits b-catenin-TCF signalingdepending on receptor context. PLoS Biol. 4, e115
    Molkentin J.D, Black B.L, Martin J.F. 1995.Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83: 1125–1136.
    Montarras D, Morgan J, Collins C. 2005,Direct isolation of satellite cells for skeletal muscle regeneration. Science , 309(5743): 2064~2067
    Morgan J E, Beauchamp J R, Pagel C N. 1994, Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: a model system for the derivation of tissue-specific and mutation specific cell lines. Dev Biol, 162(2): 486~498
    Mousavi, S.A. 2004. Clathrin-dependent endocytosis. Biochem.J. 377, 1–16
    Naidu P.S, Ludolph D.C, To R.Q.1995. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Mol Cell Biol. 2707-2718.
    Nishita, M. 2006. The receptor tyrosine kinase Ror2 mediates Wnt-5a-induced cell migration via phosphorylation of dishevelled and regulation of filamin A-dependent filopodia formation. J. Cell Biol. 175, 555–562
    Olga Kazanskaya, Andrei Glinka, Ivan del Barco Barrantes. 2004,R-Spondin2 is a Secreted Axtivator of Wnt/β-catenin Signaling and is Required for Xenopus Myogenesis. Development Cell. 7,525-534.
    Outanina S, Hause G and Braun T.2004.Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J.23:3430-3439.
    Parise G, McKinnell I.W and Rudnicki M.A. 2008. Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle Nerve 37: 611–619.
    Penelope Hayward, Tibor Kalmar, Alfonso Martinez Arias. 2008 .Wnt/Notch signaling and information processing during development. Development.;411-424.
    Perez-Ruiz A , Ono Y, Gnocchi V F . 2008 ,β-catenin promotes self-renewal of skeletal muscle satellite cells. J Cell Sci , 121 :1373~1382.
    Perry, R.L and Rudnick, M.A. 2000.Molecular mechanisms regulating myogenic determination and differentiation. Front. Biosci, 5: D750–D767.
    Petropoulos, H.Skerjanc, I. S. Beta-catenin is essential and sufficient for skeletal myogenesis in P19 cells. J Biol Chem, 277(18): 15393-15399
    Pette D, Staron R S. 2000,. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech, 50:500-509.
    Pette D, Staron RS. 1997. Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170:143–223..
    Picard B, Lefaucheur L, Berri C, et al.2002.Muscle fibre ontogenesis in farm animal species. Reproduction Nutrition Development.,42:415-431.
    Polesskaya A, Seale P, Rudnicki MA. 2003.Wnt signaling induces the myogenic specification of resident CD45? adult stem cells during muscle regeneration. Cell.,113:841–852
    Polesskaya, A., Naguibneva, I., Duquet, A.. 2001.Interaction between acetylated MyoD and the bromodomain of CBP and/or p300. Mol. Cell. Biol. 21: 5312–5320.
    Polesskaya, A., Seale, P., and Rudnicki, M.A. 2003. Wnt signaling induces themyogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell , 113: 841–852.
    primary MyoD–/– myogenic cells derived from adult skeletal muscle. J. Cell Biol. 144: 631–643.
    Puri P.L, Sartorelli V, Yang X.J. 1997. Differential roles of p300 and PCAF acetyltransferases in muscledifferentiation. Mol. Cell 1: 35–45.
    Ridgeway,A.G., Petropoulos,H., Wilton,S. & Skerjanc,I.S. Wnt signaling regulates the function of MyoD and myogenin[J]. J. Biol. Chem. 2000,275, 32398-32405
    Rosen G.D, Sanes J.R, LaChance R..1992. Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 69:1107–1119.
    Rudnicki M.A, Schnegelsberg, P.N., Stead R.H.. 1993.Myo Dor Myf-5 is required for the formation of skeletal muscle. Cell. 75: 1351–1359.
    Ryu Y C, Kim B C. 2005. The relationship between mu∞le fiber charac—teristies,postmortem metabolic rate,and meat quality of pig Ion#ssimus dorsi mu∞le. Meat Scienee.71:351-357.
    S.B. Charge and M.A. Rudnicki, 2004. Cellular and molecular regulation of muscle regeneration, Physiol Rev 84 pp. 209–238.
    Sarah E.Ross, Nahid Hemati, Kenneth A. Longo. 2000,.Inhibition of Adipogenesis by Wnt Signaling.[J] Science. 950-953.
    Schafer, D.A. 2004 Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5, 463–469
    Schmidt M, Tanaka M and Munsterberg A. 2000. Expression of beta-catenin in the developing chick myotome is regulated by myogenic signals. Development 127: 4105–4113.
    Seale P, Ishibashi J, Scime A. 2004b. Pax7 is necessary and sufficient for the myogenic specification of CD45+:Sca1+ stem cells from injured muscle. PLoS Biol. 2: E130.
    Seale P, Sabourin LA, Girgis-Gabardo A. 2000; Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–86.
    Seale, P., Ishibashi, J., Scime, A.. 2004,Pax7 is necessary and sufficient for the myogenic specification of CD45+:Sca1+ stem cells from injured muscle. PLoS Biol. 2: E130.
    Seale, P., Sabourin, L.A., Girgis-Gabardo,et al, M.A. P 2000.ax7 is required for the specification of myogenic satellite cells. Cell, 102: 777–786.
    Sebastien Taurin, Nathan Sandbo, Yimin Qin. 2006.Phosphorylation ofβ-catenin by cyclic AMP-dependent Protein Kinase. JBC, 15:9971-9977.
    Seme¨nov, M.V. 2008. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J. Biol. Chem.283, 21427–21432
    Sheldahl L. C, Slusarski D. C, Pandur P.2003 Dishevelled activates Ca2C flux, PKC, and CamKII in vertebrate embryos. J. Cell Biol. 161, 769–777.
    Sherwood R I, Christensen J L, Conboy I M. 2004, Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle . Cell, 119 (4): 543-554.
    Shinichiro H, Masato M, Kouichi W. 2008, Myostatin preferentially down- regulates the expression of fast 2x myosin heavy chain in cattle. Proc. Jpn. Acad., 84:354-362
    Simone C, Forcales S.V, Hill D.A.2004. p38 pathway targets SWI-SNF chromatin-specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113,
    Simone C. 2006. SWI/SNF: The crossroads where extracellular signaling pathways meet chromatin. J. Cell. Physiol. 207:309–314.
    Song H.H.. 2005. The loss of glypican-3 induces alterations in Wnt signaling. J. Biol. Chem. 280, 2116–2125
    Stambolic V, Ruel L, Woodgett JR. 1996. Lithium inhibits glycogen synthase kinase-3 activity and mimicswingless signalling in intact cells. Curr Biol, 6 (12):1664-1668.
    Steelman C A, Recknor J C, Nettleton D. 2006, Transcriptional profiling of myostatin- knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy.FASEB J 20(3):580-582.
    Stellabotte F and Devoto S. H. 2007. The teleost dermomyotome. Dev. Dyn.236, 2432-2443.
    Stockdle F E. 1992,Myogenic cell lineages. Development Biology, 154:284-298.
    Tajbakhsh S, D Rocancourt and ME Buckingham.1996. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384:266–270.
    Tajbakhsh S, Rocancourt D, Cossu G.1997. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138.
    Tajbakhsh S. and Cossu G. 1997. Establishingmyogenic identity during somitogenesis. Curr. Opin. Genet. Dev. 7: 634–641.
    Takahashi M, Kubo T, Mizoguchi A. 2002.Spontaneous muscle action potentials fail to develop without fetal-type acetylcholine receptors. EMBO Rep. 3:674–681.
    Tanner CJ, Barakat HA, Dohm GL. 2002,Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab. 282: 1191-1196.
    Teruya Nakamura, Motoaki Sano, Zhou Songyang, Michael D. Schneider. 2003. A Wnt- and β-catenin-dependent pathway for mammalian cardiac myogenesis . PNAS,.10:5834-5839
    Thilo Hagen, Antonio Vidal-Puig. 2002..Characterisation of the phosphorylation ofβ-catenin at GSK-3 priming site Ser-45. BBRC. 294:324-328.
    Thilo Hagen, Elena Di Daniel, Ainsley. ,2002. Expression and Characterization of GSK-3 mutants and their effect onβ-catenin phosphorylation in intact cells. JBC,277:233 30-23335.
    Tremblay P, Dietrich S, Mericskay M.1998. A crucial role for Pax3 in the development to activate the MRF4 promoter during myogenesis. Mol. Cell. Biol. 15: 2707–2718.
    Uthoff SM, Eichenberger MR, McAuliffe TL 2001.. Wingless type frizzled protein receptor signaling and its putative role in human colon cancer. Mol Carcinog, 31(1) :56-62.
    Veeman M T, Axelrod J D, Moon RT. 2003.Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell, 5(3): 367-377.
    Venuti J.M., Morris, J.H., Vivian, J.L.. 1995.Myogenin is required for late but not early aspects of myogenesis during mouse development. J. Cell Biol. 128: 563–576.
    Vertino A.M, Taylor-Jones J.M, Longo K.A.. 2005. Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Molecular biology of the cell.,16, 2039-2048.
    Wackerhage H, Woods NM. 2002. Exercise-induced signal transduction and gene regulation in skeletal muscle. Journal of Sports Science and Medicine., 1: 103-114.
    Wigmore P M C, Stickland N C.1983.Muscle development in large and small pig fetuses.Journal of Anatomy,137:235-245.
    Williams B.A. and Ordahl C.P. 1994. Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120: 785–796.
    Woodgett JR.1994. "Regulation and functions of the glycogen synthase kinase-3 subfamily". Semin. Cancer Biol. 5 (4): 269–75
    Wright W.S, Longo K.A, Dolinsky V.W.. 2007. Wnt10b inhibits obesity in ob/ob and agouti mice.Diabetes.56, 295-303.
    Yablonka R.Z., 1995,Myogenesis in the chicken: the onset of differentiation of adult myoblasts is influenced by tissue factors, Basic Appl Myol, 5(1): 33–42
    Yablonka-Reuveni Z, Day K, Vin e A. 2008, Defining the transcriptional signature of skeletal muscle stem cells. Anim. Sci., 86(14) : 207-216.
    Yamamoto H. 2006. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of b-catenin. Dev. Cell 11,213–223
    Yamamoto H. 2008. Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of b-catenin signaling. Dev. Cell 15, 37–48
    Yamamoto S. 2008. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev. Cell 15, 23–36
    Yang Y. 2003.Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. Birth Defects Res Part C. Embryo Today, 69 (4): 305-317.
    Yoshikawa S. 2003. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588
    Zammit P. S, Golding J. P, Nagata Y.2004. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J. Cell Biol. 166, 347-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700