SARS-CoVN蛋白和S蛋白的HLA-A~*0201限制性保守CTL表位的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重急性呼吸综合症(Severe Acute Respiratory Syndrome,SARS)具有传染性强、死亡率高的特点,曾经严重影响了世界各国的公共健康的安全和政治经济的发展。一种以前未知的冠状病毒,命名为严重急性呼吸综合症相关冠状病毒(SARS-associated Coronavirus,SARS-CoV),是导致SARS流行的病原体。尽管第一次全球SARS爆发已经被控制,但是SARS还可能再次流行,因为在除人之外的其它动物还可能存在SARS-CoV的“病毒库”,SARS-CoV似的病毒可能会再次跨过物种的屏障而感染人类。而且SARS-CoV的动物溯源,突破宿主屏障和重组突变等机制尚不清楚,这不利于人类采取相应的有效的控制SARS流行的措施。同时,由于实验室安全漏洞和风险,以及恐怖主义分子利用生物武器的威胁,SARS还可能再次出现。
     目前人们对SARS的致病机制了解甚少,不利于研发SARS的预防和治疗措施。SARS冠状病毒和其它冠状病毒感染后,宿主的免疫应答对机体的造成效应很复杂。在一些冠状病毒感染中(例如:MHV、BoCV、PEDV、TCoV和IBV),T细胞在免疫应答的保护反应中发挥重要的作用。但是,也有报道说,在一些冠状病毒中,细胞免疫和体液免疫与病情恶化有关。例如,对于FIPV来说,死疫苗、重组疫苗或减毒疫苗免疫宿主后可以诱导抗S的抗体;在随后的病毒攻击试验中,发生抗体依赖性的病毒感染增强而使宿主病情恶化,甚至会造成宿主死亡。MHV S蛋白的一个CD8~+T细胞表位可以引起免疫病理反应,导致病情恶化。在影响冠状病毒中,除了S蛋白,其它病毒蛋白也可能会诱导某些促进病理损伤的体液或细胞免疫应答。在SARS冠状病毒的研究中发现,CTL应答参与了恢复期SARS病人体内清除病毒的过程,但是CTL应答也与在疾病早期阶段免疫致病机制有关。SARS冠状病毒的一些蛋白可能会诱导有害的免疫反应和/或炎症性的反应,导致病理损伤。
     所以研究SARS冠状病毒主要结构蛋白的免疫学特征,对研发有效的SARS治疗措施有重要意义。表位,包括B细胞表位和T细胞表位,是病毒结构蛋白的重要抗原
Severe acute respiratory syndrome (SARS) is a serious threat to public health and the economy on a global scale because of its communicability, associated mortality, and the potential for pandemic spread. The SARS-associated coronavirus (SARS-CoV) has been identified as the etiological agent for SARS. Although the SARS outbreak is now under control, the likelihood of possible human and animal reservoirs suggest that this virus will continue to pose a worldwide public health threat.Little information about the pathogenesis of SARS is available at present. This has significantly impeded the progress for designing more effective strategies for the prevention and treatment of SARS. Due to the complexity of immune response to SARS-CoV and that to the other coronaviruses in hosts, the structural and immunogenic properties of the structural protein of SARS-CoV must be ascertained experimentally.In coronavirus infections, such as MHV, BoCV, PEDV, TCoV and IBV, T cells are critical to protection against illness. Both CD4 and CD8 T cells (T helper and cytotoxic T cells or CTL, respectively) are involved. But, both cell-mediated and humoral immune responses have been associated with exacerbations of disease in some coronavirus infections. The S protein of feline infectious peritonitis virus (FIPV), a coronavirus, induces antibodies in the immunized animals that do not neutralize, but rather enhance infection after virus challenge. The CD8+ T-cell epitope existing in the surface glycoprotein of murine hepatitis virus caused an immunopathological reactione. In addition to the S protein, coronaviruses also contain other proteins, which may induce humoral or cellular immune responses that exacerbate the pathology in some coronavirus infections.CD8 CTL has been implicated as playing a role in recovery or clearance of virus during animal coronavirus and SARS-CoV infection. But, immune responses against
    SARS-CoV do cause pathological damage to the tissues of the host. Some proteins in SARS-CoV may induce harmful immune and/or inflammatory responses, a potential cause of SARS pathogenesis.Epitopes are the important antigenic elements of virus structural proteins, which are functional in inducing antibody production and cell-mediated immunity against viruses. Identification of epitopes from structural proteins of SARS-CoV could provide the basis for the development of immunity-based treatment for SARS and understanding of the mechanisms underlying SARS-CoV immunopathogenesis.Previous studies of SARS coronavirus showed that, the N protein and S protein of SARS-CoV are important immunogens for T lymphocytes and may play a concernful role in immunity-mediated virus elimination. In this study, we focused on the N protein and S protein of the SARS-CoV as the target antigens for our reseach of mapping epitopes, and identified virus-specific cytotoxic T lymphocyte epitopes from conserved regions of two proteins.Since HLA-A*0201 is expressed in all major ethnicities in the 39-46% range. Furthermore, coronaviruses are especially prone to mutation and recombination. In the study, the epitopes identified are HLA-A*0201 -restricted CTL epitopes and selected from conserved regions of N protein and S protein, respectivly. Thus the epitopes may be "broad spectrum" over a large number of strains of SARS-CoV and have great population coverage. We propose that this epitope may be of practical significance for the development of immunotherapy for SARS and characterization of the mechanisms underlying SARS-CoV immunopathogenesis.In the study, four candidate peptides from conserved regions of N protein were designed, based on a HLA-A*0201 binding peptide prediction system and a proteosomal cleavage site prediction system, and tested for their binding affinity to HLA-A*0201 molecules using T2 cells. The binding affinities were expressed as fluorescence index (FI) defined as (MFI sample-MFI background) / (MFI background). The MFI background represented the value without peptide. The four candidate peptides and their FI are: 1.9 for N(223-23i)LLLDRLNQL> 1.1 for Na6O-i68)LQLPQGTTL> 1.6forN(332-340)LTYHGAIKLand 0.8 for N(304-3i2)QIAQFAPSA, respectively. Candidate peptides were then assessed for their capacity to elicit in vitro specific immune responses mediated by cytotoxic T lymphocytes
    (CTLs) from peripheral blood lymphocytes sourced from healthy HLA-A2+ donors. In this study, SARS-CoV N protein-derived peptides, N(223-23i) and N(332-340), induced specific CTLs specifically released interferon-gamma and lysed target cells (T2 cells loaded with corresponding peptides) upon stimulation with peptides-pulsed autologous dendritic cells, respectively. These results show the existence of functional anti-N protein CTL precursors within the peripheral T cell repertoire of healthy donors, and indicate N protein-derived peptides, N(223-23i) and N032-340), as potential epitopes for the development of vaccination strategies. To further address whether the immunogenic candidate peptide is naturally processed and presented, HLA-A*0201 molecules transgenic mice immunized with pCI-neo(N) plasmid containing a full-length cDNA encoding the SARS-CoV N protein. To examine CTL level in DNA-immunized mice, splenocytes were collected from immunized mice and restimulated in vitro for an additional 6 days. The cytokine determination and cytotoxicity assays were performed to examine the CTL level. J(A2/kb) cells loaded with the corresponding peptides were used as targets in cytotoxicity assays. CTLs from immunized mice were able to lyse peptide N(223-23i> and/or N(332-34o>-pulsed J(A2/kb) cells. Furthermore, Bulk CTLs from immunized mice responding to peptide N(223-23i) and/or N(332-34o> showed different IFN-y production. But the CTL responses induced by N(223-23i) were more efficiently than by N(332-340)- HLA-A*0201-N223-23i tetramer staining revealed the presence of significant populations of N223.23i-specific CTLs in N223-23i~induced CD8+ T cells. According to the experimental results, N(223-23i) was a HLA-A*0201-resteicted CTL epitopes of N proteinIn the study, eight candidate peptides from conserved regions of S protein were designed, based on a HLA-A*0201 binding peptide prediction and a proteosomal cleavage site prediction system, and tested for their binding affinity to HLA-A*0201 molecules using T2 cells. The eight candidate peptides and their FI are: 0.5 for S(2-io)FIFLLFLTL, 0.8 for S(85i-859)MIAAYTAAL, 0.4 for S(404-4i2)VIADYNYKL, 0.3 for S(2o8.2i6)DLPSGFNTL, 1.1 for S(94o-948)ALNTLVKQL, 1.1 for Sai74-n82)NLNESLIDL, 1.2 for S(673.68i)SIVAYTMSL and 1.5 for S(958-966)VLNDILSRL, respectively. Candidate peptides were then assessed for their capacity to elicit in vitro specific immune responses mediated by cytotoxic T lymphocytes (CTLs) from peripheral blood lymphocytes sourced from healthy HLA-A2+ donors. In this study, SARS-CoV S protein-derived peptides, S(in4.ii82), S(673-68i) and
    S(958-966), induced specific CTLs specifically released interferon-gamma and lysed target cells (T2 cells loaded with corresponding peptides) upon stimulation with peptides-pulsed autologous dendritic cells, respectively. These results show the existence of functional anti-S protein CTL precursors within the peripheral T cell repertoire of healthy donors, and indicate S protein-derived peptides, S(H74-n82). S(673-68i) and S(95g_966)> as potential epitopes for the development of vaccination strategies. To further address whether the immunogenic candidate peptide is naturally processed and presented, HLA-A*0201 molecules transgenic mice immunized with S/pVAXl plasmid containing a full-length cDNA encoding the SARS-CoV S protein. To examine CTL level in DNA-immunized mice, splenocytes were collected from immunized mice and restimulated in vitro for an additional 6 days. The cytokine determination and cytotoxicity assays were performed to examine the CTL level. J(A2/kb) cells loaded with the corresponding peptides were used as targets in cytotoxicity assays. CTLs from immunized mice were able to lyse peptide S(95g.966)-pulsed J(A2/kb) cells. Furthermore, Bulk CTLs from immunized mice responding to peptide S(95g_966) showed great IFN-y production. According to the experimental results, S(95g_966) was a novel HLA-A*0201-resteicted CTL epitopes of S protein.In conclusion, our study has identified two HLA-A*0201 -restricted epitope from conserved regions of N protein and S protein of SARS-CoV, respectively. We propose that the newly identified epitopes could be used for evaluation of SARS-CoV-specific CD8+ T-cell responses during the course of SARS infection and treatment. Furthermore, the epitopes should help in the characterization of mechanisms of virus control and immunopathology in SARS-CoV infection, and may be relevant to the development of ethnically unbiased, widely applicable immunotherapeutic approaches for this disease.
引文
1. Ksiazek, T. G., D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. A. Comer, W. Lim, P. E. Rollin, S. F. Dowell, A. E. Ling, C. D. Humphrey, W. J. Shieh, J. Guamer, C. D. Paddock, P. Rota, B. Fields, J. DeRisi, J. Y. Yang, N. Cox, J. M. Hughes, J. W. LeDuc, W. J. Bellini, and L. J. Anderson. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N.Engl.J.Med. 348: 1953-1966.
    2. Drosten, C., S. Gunther, W. Preiser, W. S. van der, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz, and H. W. Doerr. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N.Engl.J.Med. 348: 1967-1976.
    3. Rota, P. A., M. S. Oberste, S. S. Monroe, W. A. Nix, R. Campagnoli, J. P. Icenogle, S. Penaranda, B. Bankamp, K. Maher, M. H. Chen, S. Tong, A. Tamin, L. Lowe, M. Frace, J. L. DeRisi, Q. Chen, D. Wang, D. D. Erdman, T. C. Peret, C. Burns, T. G. Ksiazek, P. E. Rollin, . A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland, M. Olsen-Rasmussen, R. Fouchier, S. Gunther, A. D. Osterhaus, C. Drosten, M. A. Pallansch, L. J. Anderson, and W. J. Bellini. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 1394-1399.
    4. Fouchier, R. A., T. Kuiken, M. Schutten, G. van Amerongen, G. J. van Doomum, B. G. van den Hoogen, M. Peiris, W. Lim, K. Stohr, and A. D. Osterhaus. 2003. Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423: 240.
    5. Ruan, Y. J., C. L. Wei, A. L. Ee, V. B. Vega, H. Thoreau, S. T. Su, J. M. Chia, P. Ng, K. P. Chiu, L. Lim, T. Zhang, C. K. Peng, E. O. Lin, N. M. Lee, S. L. Yee, L. F. Ng, R. E. Chee, L. W. Stanton, P. M. Long, and E. T. Liu. 2003. Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 361: 1779-1785.
    6. Ying, W., Y. Hao, Y. Zhang, W. Peng, E. Qin, Y. Cai, K. Wei, J. Wang, G Chang, W. Sun, S. Dai, X. Li, Y. Zhu, J. Li, S. Wu, L. Guo, J. Dai, J. Wang, P. Wan, T. Chen, C. Du, D. Li, J. Wan, X. Kuai, W. Li, R. Shi, H. Wei, C. Cao, M. Yu, H. Liu, F. Dong, D. Wang, X. Zhang, X. Qian, Q. Zhu, and F. He. 2004. Proteomic analysis on structural proteins of Severe Acute Respiratory Syndrome coronavirus. Proteomics. 4:492-504.
    7. Krokhin, O., Y. Li, A. Andonov, H. Feldmann, R. Flick, S. Jones, U. Stroeher, N. Bastien, K. V. Dasuri, K. Cheng, J. N. Simonsen, H. Perreault, J. Wilkins, W. Ens, F. Plummer, and K. G Standing. 2003. Mass Spectrometric Characterization of Proteins from the SARS Virus: A Preliminary Report. Mol.Cell Proteomics. 2:346-356.
    8. Kuo, L. and P. S. Masters. 2002. Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. J.Virol. 76:4987-4999.
    9. Rowland, R. R., R. Kervin, C. Kuckleburg, A. Sperlich, and D. A. Benfield. 1999. The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Res. 64:1-12.
    10. Narayanan, K., C. J. Chen, J. Maeda, and S. Makino. 2003. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. J.Virol. 77:2922-2927.
    11. Castro, R. F. and S. Perlman. 1996. Differential antigen recognition by T cells from the spleen and central nervous system of coronavirus-infected mice. Virology 222:247-251.
    12. Glass, W. G and T. E. Lane. 2003. Functional analysis of the CC chemokine receptor 5 (CCR5) on virus-specific CD8+ T cells following coronavirus infection of the central nervous system. Virology 312:407-414.
    13. Wang, Y. D. and W. F. Chen. 2004. Detecting specific cytotoxic T lymphocytes against SARS-coronavirus with DimerX HLA-A2:Ig fusion protein. Clin.Immunol. 113:151-154.
    14. Zhu, M. S., Y. Pan, H. Q. Chen, Y. Shen, X. C. Wang, Y. J. Sun, and K. H. Tao. 2004. Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol.Lett. 92:237-243.
    15. Kim, T. W., J. H. Lee, C. F. Hung, S. Peng, R. Roden, M. C. Wang, R. Viscidi, Y. C. Tsai, L. He, P. J. Chen, D. A. Boyd, and T. C. Wu. 2004. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J.Virol. 78:4638-4645.
    16. Zhao, P., J. Cao, L. J. Zhao, Z. L. Qin, J. S. Ke, W. Pan, H. Ren, J. G. Yu, and Z. T. Qi. 2005. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology 331:128-135.
    17. Gagneten, S., O. Gout, M. Dubois-Dalcq, P. Rottier, J. Rossen, and K. V. Holmes. 1995. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J.Virol. 69:889-895.
    18. Popova, R. and X. Zhang. 2002. The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection. Virology 294:222-236.
    19. Sanchez, C. M., A. Izeta, J. M. Sanchez-Morgado, S. Alonso, I. Sola, M. Balasch, J. Plana-Duran, and L. Enjuanes. 1999. Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J.Virol. 73:7607-7618.
    20. Taguchi, F. and Y. K. Shimazaki. 2000. Functional analysis of an epitope in the S2 subunit of the murine coronavirus spike protein: involvement in fusion activity. J.Gen.Virol. 81:2867-2871.
    21. Gao, W., A. Tamin, A. Soloff, L. D'Aiuto, E. Nwanegbo, P. D. Robbins, W. J. Bellini, S. Barratt-Boyes, and A. Gambotto. 2003. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 362:1895-1896.
    22. Yang, Z. Y., W. P. Kong, Y. Huang, A. Roberts, B. R. Murphy, K. Subbarao, and G J. Nabel. 2004. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428:561-564.
    23. Han, D. P., H. G Kim, Y. B. Kim, L. L. Poon, and M. W. Cho. 2004. Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein. Virology 326:140-149.
    24. Zeng, F., K. Y. Chow, C. C. Hon, K. M. Law, C. W. Yip, K. H. Chan, J. S. Peiris, and F.
     C. Leung. 2004. Characterization of humoral responses in mice immunized with plasmid DNAs encoding SARS-CoV spike gene fragments. Biochem. Biophys. Res. Commun. 315:1134-1139.
    25. Bisht, H., A. Roberts, L. Vogel, A. Bukreyev, P. L. Collins, B. R. Murphy, K. Subbarao, and B. Moss. 2004. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc. Natl. Acad. Sci.U.S.A 101:6641-6646.
    26. Bukreyev, A., E. W. Lamirande, U. J. Buchholz, L. N. Vogel, W. R. Elkins, M. St Claire, B. R. Murphy, K. Subbarao, and P. L. Collins. 2004. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363:2122-2127.
    27. Hofmann, H., K. Hattermann, A. Marzi, T. Gramberg, M. Geier, M. Krumbiegel, S. Kuate, K. Uberla, M. Niedrig, and S. Pohlmann. 2004. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J.Virol. 78:6134-6142.
    28. Wang, Y. D., W. Y. Sin, G B. Xu, H. H. Yang, T. Y. Wong, X. W. Pang, X. Y. He, H. G Zhang, J. N. Ng, C. S. Cheng, J. Yu, L. Meng, R. F. Yang, S. T. Lai, Z. H. Guo, Y. Xie, and W. F. Chen. 2004. T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. J.Virol. 78:5612-5618.
    29. Nicholls, J. M., L. L. Poon, K. C. Lee, W. F. Ng, S. T. Lai, C. Y. Leung, C. M. Chu, P. K. Hui, K. L. Mak, W. Lim, K. W. Yan, K. H. Chan, N. C. Tsang, Y. Guan, K. Y. Yuen, and J. S. Peiris. 2003. Lung pathology of fatal severe acute respiratory syndrome. Lancet 361:1773-1778.
    30. Franks, T. J., P. Y. Chong, P. Chui, J. R. Galvin, R. M. Lourens, A. H. Reid, E. Selbs, C. P. McEvoy, C. D. Hayden, J. Fukuoka, J. K. Taubenberger, and W. D. Travis. 2003. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum.Pathol. 34:743-748.
    31. Oba, Y. 2003. The use of corticosteroids in SARS. N.Engl.J.Med. 348:2034-2035.
    32. Wang, H., Y. Ding, X. Li, L. Yang, W. Zhang, and W. Kang. 2003. Fatal aspergillosis in a patient with SARS who was treated with corticosteroids. N.Engl.J.Med. 349:507-508.
    33. Sidney, J., H. M. Grey, R. T. Kubo, and A. Sette. 1996. Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunol. Today 17:261-266.
    34. Hall TA. 1999. BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98.
    35. Thompson, J. D., D. G Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
    36. Tsui, S. K., S. S. China, and Y. M. Lo. 2003. Coronavirus genomic-sequence variations and the epidemiology of the severe acute respiratory syndrome. N.Engl.J.Med. 349:187-188.
    37. Thiel, V., K. A. Ivanov, A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weissbrich, E. J. Snijder, H. Rabenau, H. W. Doerr, A. E. Gorbalenya, and J. Ziebuhr. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J.Gen.Virol. 84:2305-2315.
    38. Zeng, F. Y., C. W. Chan, M. N. Chan, J. D. Chen, K. Y. Chow, C. C. Hon, K. H. Hui, J. Li, V. Y. Li, C. Y. Wang, P. Y. Wang, Y. Guan, B. Zheng, L. L. Poon, K. H. Chan, K. Y. Yuen, J. S. Peiris, and F. C. Leung. 2003. The complete genome sequence of severe acute respiratory syndrome coronavirus strain HKU-39849 (HK-39). Exp.Biol.Med.(Maywood.) 228:866-873.
    39. Vicenzi, E., F. Canducci, D. Pinna, N. Mancini, S. Carletti, A. Lazzarin, C. Bordignon, G Poli, and M. Clementi. 2004. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerg.Mect.Dis. 10:413-418.
    40. He, R., F. Dobie, M. Ballantine, A. Leeson, Y. Li, N. Bastien, T. Cutts, A. Andonov, J. Cao, T. F. Booth, F. A. Plummer, S. Tyler, L. Baker, and X. Li. 2004. Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 316:476-483.
    41. Yeh, S. H., H. Y. Wang, C. Y. Tsai, C. L. Kao, J. Y. Yang, H. W. Liu, I. J. Su, S. F. Tsai,
     D. S. Chen, and P. J. Chen. 2004. Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: molecular epidemiology and genome evolution. Proc.Natl.Acad.Sci.U.S.A 101:2542-2547.
    42. Rammensee, H. G, T. Friede, and S. Stevanoviic. 1995. MHC ligands and peptide motifs: first listing. Immunogenetics 41:178-228.
    43. Rock, K. L. and A. L. Goldberg. 1999. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu.Rev.Immunol. 17:739-779.
    44. Stoltze, L., A. K. Nussbaum, A. Sijts, N. P. Emmerich, P. M. Kloetzel, and H. Schild. 2000. The function of the proteasome system in MHC class I antigen processing. Immunol. Today 21:317-319.
    45. Kuttler, C., A. K. Nussbaum, T. P. Dick, H. G Rammensee, H. Schild, and K. P. Hadeler. 2000. An algorithm for the prediction of proteasomal cleavages. J.Mol.Biol. 298:417-429.
    46. Ruppert, J., J. Sidney, E. Celis, R. T. Kubo, H. M. Grey, and A. Sette. 1993. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 74:929-937.
    47. Kubo, R. T., A. Sette, H. M. Grey, E. Appella, K. Sakaguchi, N. Z. Zhu, D. Arnott, N. Sherman, J. Shabanowitz, H. Michel, and . 1994. Definition of specific peptide motifs for four major HLA-A alleles. J.Immunol. 152:3913-3924.
    48. Kast, W. M., R. M. Brandt, J. Sidney, J. W. Drijfhout, R. T. Kubo, H. M. Grey, C. J. Melief, and A. Sette. 1994. Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J.Immunol. 152:3904-3912.
    49. Singh, H. and G P. Raghava. 2003. ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics. 19:1009-1014.
    50. Rammensee, H., J. Bachmann, N. P. Emmerich, O. A. Bachor, and S. Stevanovic. 1999. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213-219.
    51. Passoni, L., A. Scardino, C. Bertazzoli, B. Gallo, A. M. Coluccia, F. A. Lemonnier, K. Kosmatopoulos, and C. Gambacorti-Passerini. 2002. ALK as a novel lymphoma-associated tumor antigen: identification of 2 HLA-A2.1-restricted CD8+
     T-cell epitopes. Blood 99:2100-2106.
    52. Cerundolo, V., J. Alexander, K. Anderson, C. Lamb, P. Cresswell, A. McMichael, F. Gotch, and A. Townsend. 1990. Presentation of viral antigen controlled by a gene in the major histocompatibility complex. Nature 345:449-452.
    53. Salter, R. D., D. N. Howell, and P. Cresswell. 1985. Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids. Immunogenetics 21:235-246.
    54. Parham, P. and F. M. Brodsky. 1981. Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum.Immunol. 3:277-299.
    55. Czerkinsky, C., G Andersson, H. P. Ekre, L. A. Nilsson, L. Klareskog, and O. Ouchterlony. 1988. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J.Immunol.Methods 110:29-36.
    56. Versteegen, J. M., T. Logtenberg, and R. E. Ballieux. 1988. Enumeration of IFN-gamma-producing human lymphocytes by spot-ELISA. A method to detect lymphokine-producing lymphocytes at the single-cell level. J.Immunol.Methods 111:25-29.
    57. McCutcheon, M., N. Wehner, A. Wensky, M. Kushner, S. Doan, L. Hsiao, P. Calabresi, T. Ha, T. V. Tran, K. M. Tate, J. Winkelhake, and E. G Spack. 1997. A sensitive ELISPOT assay to detect low-frequency human T lymphocytes. J.Immunol.Methods 210:149-166.
    58. Xiang, R., H. N. Lode, T. Dreier, S. D. Gillies, and R. A. Reisfeld. 1998. Induction of persistent tumor-protective immunity in mice cured of established colon carcinoma metastases. Cancer Res. 58:3918-3925.
    59. Irwin, M. J., W. R. Heath, and L. A. Sherman. 1989. Species-restricted interactions between CD8 and the alpha 3 domain of class I influence the magnitude of the xenogeneic response. J.Exp.Med. 170:1091-1101.
    60. Le, A. X., E. J. Bernhard, M. J. Holterman, S. Strub, P. Parham, E. Lacy, and V. H. Engelhard. 1989. Cytotoxic T cell responses in HLA-A2.1 transgenic mice. Recognition of HLA alloantigens and utilization of HLA-A2.1 as a restriction element. J.Immunol. 142:1366-1371.
    61. Cao, X., W. Zhang, L. He, Z. Xie, S. Ma, Q. Tao, Y. Yu, H. Hamada, and J. Wang.
     1998. Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity. J.Immunol. 161:6238-6244.
    62. Talmor, M., A. Mirza, S. Turley, I. Mellman, L. A. Hoffman, and R. M. Steinman. 1998. Generation or large numbers of immature and mature dendritic cells from rat bone marrow cultures. Eur.J.Immunol. 28:811-817.
    63. Belyakov, I. M., J. D. Ahlers, B. Y. Brandwein, P. Earl, B. L. Kelsall, B. Moss, W. Strober, and J. A. Berzofsky. 1998. The importance of local mucosal HIV-specific CD8(+) cytotoxic T lymphocytes for resistance to mucosal viral transmission in mice and enhancement of resistance by local administration of IL-12. J.Clin.Invest 102:2072-2081.
    64. La Rosa, C, Z. Wang, J. C. Brewer, S. F. Lacey, M. C. Villacres, R. Sharan, R. Krishnan, M. Crooks, S. Markel, R. Maas, and D. J. Diamond. 2002. Preclinical development of an adjuvant-free peptide vaccine with activity against CMV pp65 in HLA transgenic mice. Blood 100:3681-3689.
    65. Whelan, J. A., P. R. Dunbar, D. A. Price, M. A. Purbhoo, F. Lechner, G S. Ogg, G. Griffiths, R. E. Phillips, V. Cerundolo, and A. K. Sewell. 1999. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. J.Immunol. 163:4342-4348.
    66. Schmidt, E. V., G Christoph, R. Zeller, and P. Leder. 1990. The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol.Cell Biol. 10:4406-4411.
    67. Gluzman, Y. 1981. SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175-182.
    68. Li, G, X. Chen, and A. Xu. 2003. Profile of specific antibodies to the SARS-associated coronavirus. N.Engl.J.Med. 349:508-509.
    69. Altfeld, M., E. S. Rosenberg, R. Shankarappa, J. S. Mukherjee, F. M. Hecht, R. L. Eldridge, M. M. Addo, S. H. Poon, M. N. Phillips, G. K. Robbins, P. E. Sax, S. Boswell, J. O. Kahn, C. Brander, P. J. Goulder, J. A. Levy, J. I. Mullins, and B. D. Walker. 2001. Cellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection. J.Exp.Med. 193:169-180.
    70. Eckels, D. D., H. Wang, T. H. Bian, N. Tabatabai, and J. C. Gill. 2000. Immunobiology of hepatitis C virus (HCV) infection: the role of CD4 T cells in HCV infection. Immunol.Rev. 174:90-97.
    71. Liu, M. E, Q. Ning, M. Pope, T. Mosmann, J. Leibowitz, J. W. Ding, L. S. Fung, O. Rotstein, R. Gorczynski, and G A. Levy. 1998. Resistance of naive mice to murine hepatitis virus strain 3 requires development of a Thl, but not a Th2, response, whereas pre-existing antibody partially protects against primary infection. Adv.Exp.Med.Biol. 440:415-423.
    72. Xue, S. and S. Perlman. 1997. Antigen specificity of CD4 T cell response in the central nervous system of mice infected with mouse hepatitis virus. Virology 238:68-78.
    73. de Arriba, M. L., A. Carvajal, J. Pozo, and P. Rubio. 2002. Lymphoproliferative responses and protection in conventional piglets inoculated orally with virulent or attenuated porcine epidemic diarrhoea virus. J.Virol.Methods 105:37-47.
    74. Loa, C. C, T. L. Lin, C. C. Wu, T. Bryan, H. L. Thacker, T. Hooper, and D. Schrader.2001. Humoral and cellular immune responses in turkey poults infected with turkey coronavirus. Poult.Sci. 80:1416-1424.
    75. Seo, S. H. and E. W. Collisson. 1998. Cytotoxic T lymphocyte responses to infectious bronchitis virus infection. Adv.Exp.Med.Biol. 440:455-460.
    76. Pope, M., S. W. Chung, T. Mosmann, J. L. Leibowitz, R. M. Gorczynski, and G A. Levy. 1996. Resistance of naive mice to murine hepatitis virus strain 3 requires development of a Thl, but not a Th2, response, whereas pre-existing antibody partially protects against primary infection. J.Immunol. 156:3342-3349.
    77. Seo, S. H., L. Wang, R. Smith, and E. W. Collisson. 1997. The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J.Virol. 71:7889-7894.
    78. Collisson, E. W., J. Pei, J. Dzielawa, and S. H. Seo. 2000. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev.Comp Immunol. 24:187-200.
    79. Tang, X., C. Yin, F. Zhang, Y. Fu, W. Chen, Y. Chen, J. Wang, W. Jia, and A. Xu. 2003. Measurement of subgroups of peripheral blood T lymphocytes in patients with severe acute respiratory syndrome and its clinical significance. Chin Med.J.(Eng1.)
     116:827-830.
    80. Lai, M. M. 2003. SARS virus: the beginning of the unraveling of a new coronavirus. J.Biomed.Sci. 10:664-675.
    81. Liu, C, H. Y. Xu, and D. X. Liu. 2001. Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus. J.Virol. 75:6402-6409.
    82. Gosert, R., A. Kanjanahaluethai, D. Egger, K. Bienz, and S. C. Baker. 2002. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J.Virol. 76:3697-3708.
    83. Lavi, E., Q. Wang, S. R. Weiss, and N. K. Gonatas. 1996. Syncytia formation induced by coronavirus infection is associated with fragmentation and rearrangement of the Golgi apparatus. Virology 221:325-334.
    84. Ding, J. W., Q. Ning, M. F. Liu, A. Lai, J. Leibowitz, K. M. Peltekian, E. H. Cole, L. S. Fung, C. Holloway, P. A. Marsden, H. Yeger, M. J. Phillips, and G A. Levy. 1997. Fulminant hepatic failure in murine hepatitis virus strain 3 infection: tissue-specific expression of a novel fgl2 prothrombinase. J.Virol. 71:9223-9230.
    85. Marten, N. W, S. A. Stohlman, and C. C. Bergmann. 2001. MHV infection of the CNS: mechanisms of immune-mediated control. Viral Immunol. 14:1-18.
    86. Corapi, W. V., C. W. Olsen, and F. W. Scott. 1992. Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus. J.Virol. 66:6695-6705.
    87. Castro, R. F. and S. Perlman. 1995. CD8+ T-cell epitopes within the surface glycoprotein of a neurotropic coronavirus and correlation with pathogenicity. J.Virol. 69:8127-8131.
    88. Wu, G F., A. A. Dandekar, L. Pewe, and S. Perlman. 2000. CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J.Immunol. 165:2278-2286.
    89. Rottier, P. J. 1999. The molecular dynamics of feline coronaviruses. Vet.Microbiol. 69:117-125.
    90. Vennema, H., R. J. de Groot, D. A. Harbour, M. Dalderup, T. Gruffydd-Jones, M. C. Horzinek, and W. J. Spaan. 1990. Early death after feline infectious peritonitis virus
     challenge due to recombinant vaccinia virus immunization. J.Virol. 64:1407-1409.
    91. Weiss, R. C. and F. W. Scott. 1981. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp Immunol.Microbiol.Infect.Dis. 4:175-189.
    92. Wu, G E, A. A. Dandekar, L. Pewe, and S. Perlman. 2001. The role of CD4 and CD8 T cells in MHV-JHM-induced demyelination. Adv.Exp.Med.Biol. 494:341-347.
    93. Enserink, M. 2004. Infectious diseases. One year after outbreak, SARS virus yields some secrets. Science 304:1097.
    94. Wang, D. and J. Lu. 2004. Glycan arrays lead to the discovery of autoimmunogenic activity of SARS-CoV. Physiol Genomics 18:245-248.
    95. Bergmann, C, M. McMillan, and S. Stohlman. 1993. Characterization of the Ld-restricted cytotoxic T-lymphocyte epitope in the mouse hepatitis virus nucleocapsid protein. J.Virol. 67:7041-7049.
    96. Boots, A. M., J. G Kusters, J. M. van Noort, K. A. Zwaagstra, E. Rijke, B. A. van der Zeijst, and E. J. Hensen. 1991. Localization of a T-cell epitope within the nucleocapsid protein of avian coronavirus. Immunology 74:8-13.
    97. Stohlman, S. A., S. Kyuwa, M. Cohen, C. Bergmann, J. M. Polo, J. Yeh, R. Anthony, and J. G Keck. 1992. Mouse hepatitis virus nucleocapsid protein-specific cytotoxic T lymphocytes are Ld restricted and specific for the carboxy terminus. Virology 189:217-224.
    98. Stohlman, S. A., S. Kyuwa, J. M. Polo, D. Brady, M. M. Lai, and C. C. Bergmann. 1993. Characterization of mouse hepatitis virus-specific cytotoxic T cells derived from the central nervous system of mice infected with the JHM strain. J.Virol. 67:7050-7059.
    99. Marra, M. A., S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier, S. M. Coughlin, D. Freeman, N. Girn, O. L. Griffith, S. R. Leach, M. Mayo, H. McDonald, S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, A. G Robertson, J. E. Schein, A. Siddiqui, D. E. Smailus, J. M. Stott, G S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G. A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. C. Brunham, M. Krajden, M. Petric, D. M. Skowronski, C. Upton, and R. L. Roper. 2003. The Genome sequence of the SARS-associated coronavirus. Science 300:1399-1404.
    100. De Groot, A. S. 2003. How the SARS vaccine effort can learn from HIV-speeding towards the future, learning from the past. Vaccine 21:4095-4104.
    101. Liu, C., T. Kokuho, T. Kubota, S. Watanabe, S. Inumaru, Y. Yokomizo, and T. Onodera. 2001. DNA mediated immunization with encoding the nucleoprotein gene of porcine transmissible gastroenteritis virus. Virus Res. 80:75-82.
    102. Shi, Y., Y. Yi, P. Li, T. Kuang, L. Li, M. Dong, Q. Ma, and C. Cao. 2003. Diagnosis of severe acute respiratory syndrome (SARS) by detection of SARS coronavirus nucleocapsid antibodies in an antigen-capturing enzyme-linked immunosorbent assay. J.Clin.Microbiol. 41:5781-5782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700