OFDM/OQAM系统中的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用/偏移正交幅度调制(orthogonal frequency divisionmultiplexing/offset quadrature amplitude modulation, OFDM/OQAM)属于广义频分复用(generalized frequency division multiplexing, GFDM)的范畴。与传统OFDM相比,OFDM/OQAM具有抗符号间干扰和子载波间干扰能力强、无需循环前缀、带外辐射低等优点,并已成为IEEE802.22无线城域网、电力线通信和第三代陆地蜂窝移动通信系统长期演进技术的候选技术标准,具有很强的发展潜力。然而,OFDM/OQAM优势的取得是以放宽正交条件并引入具有优良时频聚焦特性的成形滤波器为代价的,从而导致系统运算复杂度的提高,并使传统OFDM系统的一些关键技术无法直接移植至OFDM/OQAM系统中。针对上述问题,本文在分析OFDM/OQAM系统特点的基础上重点研究了系统设计、信道估计、信道均衡和峰-平功率比抑制等关键技术,并提出了相应的解决途径和改进方法。
     首先,本文研究了OFDM/OQAM系统的实现方法和性能。通过对发送信号的直接离散化,推导得到了一种基于滤波器与离散傅里叶变换相结合的系统实现方法。同时,本文对OFDM/OQAM系统中几种常用的滤波器进行了研究,分析了它们的时频聚焦特性和抗干扰能力。此外,本文结合典型应用环境对OFDM/OQAM系统与OFDM系统的性能进行了分析比较,证明了OFDM/OQAM系统具有比较明显的优势。
     其次,本文研究了OFDM/OQAM系统的信道估计问题。分析了将传统多载波系统信道估计方法直接应用于OFDM/OQAM系统时存在的问题。在现有方法的基础上提出了一种基于迭代抵消的信道估计方法,使其能够利用更低的导频消耗获得更高的信道估计精度。同时,利用块状导频估计出的信道值之间存在较强相关性这一特点,提出了信道估计值加权处理的方法,有效克服了高斯白噪声的影响,具有很高的处理增益。同时本文还研究了信道与频率偏移的联合估计问题,并提出了一种有效的导频结构和相应的联合估计算法,该算法具有较高的频偏估计精度和信道估计精度,且对时间偏移具有较强的鲁棒性。
     第三,本文研究了OFDM/OQAM系统的信道均衡问题。针对迫零均衡存在性能平台的问题,提出了基于迭代抵消的干扰消除方法,并在单输入单输出和多输入多输出这两种系统中分别进行了研究。结果表明,通过迭代干扰抵消方法可以有效提高系统性能。另外,本文在证明了残余干扰服从高斯分布的基础上,提出将干扰看做背景噪声的一部分,然后利用最小均方误差准则进行信道均衡的方法。仿真结果表明,该方法可进一步提高系统性能。
     最后,本文研究了OFDM/OQAM系统的峰-平功率比抑制问题,主要研究了选择映射和限幅方法这两种常用方法。分析了将OFDM系统中的选择映射方法直接应用于OFDM/OQAM系统时存在的问题,并根据滤波器的特点提出了一种有效的选择映射改进方法,该方法既降低了计算复杂度又提高了峰-平功率比抑制性能。同时,本文研究了限幅噪声的消除问题,提出了一种有效的限幅噪声抑制方法。首先在接收端重现限幅噪声,然后将其从接收信号中去除,从而降低限幅噪声对系统性能的影响。
     以上研究成果从多个角度对OFDM/OQAM系统存在的主要问题给出了可行的解决途径和性能提升方法,可为在无线城域网、现代国际移动通信和未来移动通信等无线通信系统或标准中采用OFDM/OQAM技术提供支撑。
Orthogonal frequency division multiplexing/offset quadrature amplitudemodulation (OFDM/OQAM) is a kind of generalized frequency division multiplexing(GFDM) technique. Compared to the traditional OFDM, OFDM/OQAM has someadvantages such as stronger immunity to inter-symbol interference (ISI) andinter-carrier interference (ICI), avoiding of cyclic prefix (CP) and lower out-of-bandradiation. OFDM/OQAM is a promising transmission technique and has been adoptedas an appropriate alternative for IEEE802.22wireless regional area network (WRAN),power line communication (PLC) and3rdgeneration partnership project long termevolution (3GPP LTE) technical standards. However, the advantages of OFDM/OQAMare acquired by relaxing of the orthogonality conditions from complex value to realvalue field. And pulse shapes with good time frequency localization (TFL)characteristics are introduced, leading to higher computational complexity and somekey techniques of traditional OFDM system can not be applied to OFDM/OQAMsystem directly. To solve these problems, based on the basic properties ofOFDM/OQAM system, this dissertation focuses on the key problems of systemrealization, channel estimation, channel equalization and peak to average power ratio(PAPR) reduction. And some novel solutions and improved methods are proposed forOFDM/OQAM system.
     Firstly, this dissertation researches on the system realization and performanceevaluation of OFDM/OQAM system. Through directly discretizing the transmittingsignal, a system realization method based on filters and discrete Fourier transform (DFT)is deduced. And then the popular filters used in OFDM/OQAM system are introducedand their time-frequency localization (TFL) characteristics are analyzed. Furthermore,this dissertation compares the performance between OFDM/OQAM system andtraditional OFDM system under the condition of typical application circumstances. Thesimulation results show that OFDM/OQAM system has some apparent advantages.
     Secondly, channel estimation of OFDM/OQAM system is addressed in thisdissertation. The problems of applicating the traditional channel estimation methoddirectly to the OFDM/OQAM system are presented. Based on the existing literatures, anovel channel estimation method based on iterative interference cancellation is proposed that it can acquire higher channel estimation precision while with lower pilotconsumption. At same time, since the estimated channel values among adjacentsubcarriers are correlative, a combining method is proposed to overcome the effect ofadditional white Gaussian noise (AWGN) channel and the channel estimation accuracyis improved. Besides, the joint estimation of carrier frequency offset (CFO) and channelis analysed. Furthermore, an effective preamble structure and a corresponding algorithmare proposed. The simulation results show that it can achieve high estimation accuracyand has strong robustness to time offset.
     Thirdly, this dissertation researches on the channel equalization of OFDM/OQAMsystem. Because of the performance floor when applicating simple zero forcing (ZF)equalization method for OFDM/OQAM system, an iterative interference cancellationmethod is proposed for both single-input single-output (SISO) and multi-inputmulti-output (MIMO) systems. Simulation results show that this method can improvethe system performance effectively. Furthermore, because the residual interference ofthe demodulated signal follows the Gaussian distribution, it can be treated as a part ofbackground noise for minimum mean square error (MMSE) equalization.
     Finally, this dissertation researches on the reduction of the peak-to-average powerratio (PAPR) in OFDM/OQAM system. According to the particularity ofOFDM/OQAM transmitting signal, an effective selective mapping (SLM) method isproposed with lower complexity. This dissertation also researches on the suppression ofclipping noise. The clipping noise is rebuilded in the receiver and then it is removedfrom the receiving signal to overcome its influence on system performance. Besides, theout-of-band radiation and the relation between clipping threshold and out-of-bandradiation are also addressed in this dissertation.
     The research achievements in this dissertation provide effective solutions andperformance improvements with respect to the primary problem of OFDM/OQAMsystem in different aspects. And these achievements can provide support for applicationof the OFDM/OQAM technique in popular system such as WRAN, advancedinternational mobile telecommunications (IMT-advanced) and future mobilecommunication systems.
引文
[1] S. Ahmadi. An overview of next-generation mobile WiMAX technology[J]. IEEECommunications Magazine,2009,47(6):84-98
    [2] D. Mcqueen. The momentum behind LTE adoption3GPP LTE[J]. IEEE CommunicationsMagazine,2009,47(2):44-45
    [3]尤肖虎.未来移动通信技术发展趋势与展望[J].电信技术,2003,1(6):14-17
    [4] C. Berrou, A. Glavieux. Near optimum error correcting coding and decoding: turbo-codes[J].IEEE Transactions on Communications,1996,44(10):1261-1271
    [5] S. Benedetto, G. Montorsi. Unveiling turbo codes: some results on parallel concatenated codingschemes[J]. IEEE Transactions on Information Theory,1996,42(2):409–428
    [6] R. M. Pyndiah. Near-optimum decoding of product codes: block turbo codes[J]. IEEETransactions on Communications,1998,46(8):1003-1010
    [7] S. L. Goff, A. Glavieux, C. Berrou. Turbo-codes and high spectral efficiency modulation[C].IEEE International Conference on Communications (ICC), New Orleans, USA,1994,645–649
    [8] M. Fossorier, M. Mihaljevic, H. Imai. Reduced complexity iterative decoding of low densityparity check codes based on belief propagation[J]. IEEE Transactions on Communications,1999,47(5):673-680
    [9] S. Y. Chung, T. J. Richardson, R. Urbanke. On the design of low density parity check codeswithin0.0045dB of the Shannon limit[J]. IEEE Communication Letter,2001,5(2):58-60
    [10] T. J. Richardson, M. Shokrollahi, R. L. Urbanke. Design of capacity-approaching irregularlow-density parity-check codes[J]. IEEE Transactions on Information Theory,2001,47(2):619-637
    [11] T. J. Richardson, R. L. Urbanke. The capacity of low-density parity-check codes undermessage-passing decoding[J]. IEEE Transactions on Information Theory,2001,47(2):599-618
    [12] J. H. Winters. Smart antennas for wireless systems[J]. IEEE Personal Communication,1998,5(1):23-27
    [13] J. H. Winters. Smart antenna techniques and their application to wireless ad hoc networks[J].IEEE Wireless Communication,2006,13(4):77-83
    [14] A. U. Bhobe, P. L. Perini. An overview of smart antenna technology for wirelesscommunications[C]. IEEE Aerospace Conference, Big Sky, USA,2001,10-17
    [15] A. Alexiou, M. Haardt. Smart antenna technologies for future wireless systems: trends andchallenges[J]. IEEE Communication Magazine,2004,42(9):90-97
    [16] D. Gesbert, M. Shafi, S. Dashan. From theory to practice: an overview of MIMO space-timecoded wireless systems[J]. IEEE Journal Selected Areas Communication,2003,21(3):281–302
    [17] G. J. Foschini, M. J. Gans. On limits of wireless communications in a fading environment whenusing multiple antennas[J]. Wireless Personal Communication,1998,6(3):311–335
    [18] S. M. Alamouti. A simple transmitter diversity scheme for wireless communications[J]. IEEEJournal Selected Areas Communication,1998,16(8):1451–1458
    [19] G. J. Foschini. Layered space-time architecture for wireless communication in a fadingenvironment when using multielement antennas[J]. Bell Laboratories Technical Journal,1996,1(2):41–59
    [20] G. D. Golden, G. J. Foschini, R. A. Valenzuela. Detection algorithm and initial laboratory resultsusing the V-BLAST space-time communication architecture[J]. Electronics Letter,1999,35(1):14-16
    [21] A. J. Grant. Performance analysis of transmit beamforming[J]. IEEE Transactions onCommunications,2005,53(4):738–744
    [22] H. Sampath, P. Stoica, A. Paulraj. Generalized linear precoder and decoder design for MIMOchannels using the weighted MMSE criterion[J]. IEEE Transactions on Communications,2001,49(12):2198–2206
    [23] M. Z. Win, J. H. Winters. Virtual branch analysis of symbol error probability for hybridselection/maximal-ratio combining in Rayleigh fading[J]. IEEE Transactions onCommunications,2001,49(11):1926–1934
    [24] P. Dayal, M. K. Varanasi. An optimal two transmit antenna space-time code and its stackedextensions[J]. IEEE Transactions on Information Theory,2005,51(12):4348–4355
    [25] J. A. C. Bingham. ADSL, VDSL, and multicarrier modulation[EB]. John Wiley&Sons, Inc,2000,1-25
    [26] W. Hoeg, T. Lauterbach. Digital audio broadcasting: principles and applications of digitalradio[EB]. John Wiley&Sons,2003,1-10
    [27] U. Reimers. DVB: the family of international standards for digital video broadcasting[DB].Springer,2005,1-40
    [28] P. Dayal. IEEE LAN/MAN Standards Committee[S]. IEEE Standard802.16e-2005and IEEEStandard802.16-2004/Cor1-2005. IEEE press,2006,1-51
    [29] H. Holma, A. Toskala. WCDMA for UMTS: HSPA evolution and LTE[EB]. John Wiley&Sons,2007,1-16
    [30]王文博,郑侃.宽带无线通信OFDM技术[M].北京:人民邮电出版社,2007,1-50
    [31] R. W. Chang. High-speed multichannel data transmission with bandlimited orthogonalsignals[J]. Bell Laboratories Technical Journal,1966,45:1775-1796
    [32] B. R. Saltzberg. Performance of an efficient parallel data transmission system[J]. IEEETransactions Communication,1967,15(6):805-811
    [33] S. B. Weinstein, P. M. Ebert. Data transmission by frequency-division multiplexing using thediscrete Fourier transform[J]. IEEE Transactions on Communications,1971,19(5):628-634
    [34]佟学俭,罗涛. OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2003,23-116
    [35] TIA Committee TR-8.5. Wideband Air Interface Isotropic Orthogonal Transform Algorithm(IOTA) Public Safety Wideband Data Standards Project–Digital Radio Technical Standards[S],TIA-902.BBAB (Physical Layer Speciation, Mar.2003) and TIA-902.BBAD (Radio ChannelCoding (CHC) Speciation, Aug.2003) http://www.tiaonline.org/standards/
    [36] M. Bellec, P. Pirat. OQAM performances and complexity[R]. IEEE P802.22Wireless RegionalArea Network (WRAN), Jan.2006
    [37]张贤达.现代信号处理[M].北京:清华大学出版社,2002:349-443
    [38] A. Lothia, P. A. Goud, C. G. Englefield. Power amplifier linearization using cubic splineinterpolation[C]. IEEE Vehicular Technology Conference (VTC), Seracucus, USA,1993,676–679
    [39] N. Prasad, S. Q. Wang, X. D. Wang. Efficient receiver algorithms for DFT-spread OFDMsystem[J]. IEEE Transactions on Wireless Communications,2009,8(6):3216-3225
    [40] X. Q. Gao, X. H. You, B. Jiang. Generalized multi-carrier transmission technique for beyond3Gmobile communications[C]. IEEE International Symposium on Personal Indoor and MobileRadio Communications (PIMRC), Berlin, Germany,2005,972-976
    [41] H. Hua, X. Q. Gao, and X. H. You. The design of generalized modulated filter banks and it's fastimplementation in the B3G system[C]. IEEE Emerging Technologies: Frontiers of Mobile andWireless Communication, Shanghai, China,2004,61-64
    [42] S. Malla. A Wavelet Tour of Signal Processing[M], Second Edition, Academic Press,1999
    [43] F. M. Han, X. D. Zhang. Hexagonal multicarrier modulation: a robust transmission scheme fortime-frequency dispersive channels[J]. IEEE Transactions on Signal Processing,2007,55(5):1955-1961
    [44] F. M. Han, X. D. Zhang. Wireless multicarrier digital transmission via Weyl-Heisenberg framesover time-frequency dispersive channels[J]. IEEE Transactions on Communications,2009,57(6):1721-1733
    [45] P. Schniter. On the design of non-(bi)orthogonal pulse-shaped FDM for doubly dispersivechannels[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP), Quebec, Canada,2004,817-820
    [46] D. Schafhuber, G. Matz, F. Hlawatsch. Pulse-shaping OFDM/BFDM systems for time-varyingchannels: ISI/ICI analysis, optimal pulse design, and efficient implementation[C]. IEEEInternational Symposium on Personal Indoor and Mobile Radio Communications (PIMRC),Lisboa, Portugal,2002,15-18
    [47] W. Kozek, A. Molisch. Nonorthogonal pulseshapes for multicarrier communications in doublydispersive channels[J]. IEEE Journal Selected Areas in Communications,1998,16(8):1579–1589
    [48] T. Strohmer, S. Beaver. Optimal OFDM design for time-frequency dispersive channels[J]. IEEETransactions on Communications,2003,51(7):1111-1122
    [49] B. L. Floch, M. Alard, C. Berrou. Coded orthogonal frequency division multiplex[C].Proceedings of IEEE,1995,83(6):982–996
    [50] H. B lcskei, P. Duhamel, R. Hleiss. Design of pulse shaping OFDM/OQAM systems for highdata-rate transmission over wireless channels[C]. IEEE International Conference onCommunications (ICC), Vancouver, Canada,1999,559-564
    [51] M. Alard, C. Roche, P. Siohan. A new family of function with a nearly optimal time-frequencylocalization[R]. Technical report of the RNRT project, Modyr,1999
    [52] P. Siohan, C. Roche. Cosine-modulated filterbanks based on extended Gaussian function[J].IEEE Transactions on Signal Processing,2000,48(11):3052-3061
    [53] A. Skrzypczak, P. Siohan, J. P. Javaudin. Power spectral density and cubic metric for theOFDM/OQAM modulation[C]. IEEE Symposium on Signal Processing and InformationTechnology (ISSPIT), Vancouver, Canada,2006,846-850
    [54] N. Dinur, D. Wulich. Peak to average power ratio in amplitude clipped high order OFDM[C].IEEE Military Communication Conference (MILCOM), Boston, USA,1998,684-687
    [55] D. Wulich. Peak factor in orthogonal multicarrier modulation with variable levels[J].Electronics Letter,1996,32(20):1859-1861
    [56] Y. Park, S. L. Miller. Peak-to-average power ratio suppression schemes in DFT basedOFDM[C]. IEEE Vehicular Technology Conference (VTC), Boston, USA,2000,292-297
    [57] D. J. G. Mestdagh, P. Spruyt, B. Biran. Analysis of clipping effect in DMT-based ADSLsystems[C]. IEEE International Conference of Communication (ICC), New Orleans, USA,1994,843-847
    [58] J. Armstrong. Peak-to-average power reduction for OFDM by repeated clipping and frequencydomain filtering[J]. Electronics Letter,2002,38(5):246-247
    [59] H. G. Ryu. PAPR reduction using soft clipping and ACI rejection in OFDM system[J]. IEEETransactions on Consumer Electronics,2002,48(1):17-22
    [60] H. Chen, A. M. Haimovich. Iterative estimation and cancellation of clipping noise for OFDMsignals[J]. IEEE Communication Letter,2003,7(7):305-307
    [61] H. Chen, G. J. Pottie. An orthogonal projection-based approach for PAR reduction in OFDM[J].IEEE Communication Letter,2002,6(5):169-171
    [62] S. G. Kang, J. G. Kim. A novel sub-block partition scheme for partial transmit sequenceOFDM[J]. IEEE Transactions on Broadcasting,1999,45(3):333-338
    [63] C. S. Hwang. Peak power reduction method for multicarrier transmission[J]. Electronics Letter,2001,37(17):1075-1077
    [64] G. R. Hill, M. Faulkner. Reducing the peak-to-average power ratio in OFDM by cyclicallyshifting partial transmit sequences[J]. Electronic Letter,2000,36(6):560-561
    [65] G. R. Hill, M. Faulkner. Cyclic shifting and time inversion of partial transmit sequences toreduce the peak-to-average power ratio in OFDM[C]. IEEE International Symposium onPersonal Indoor and Mobile Radio Communications (PIMRC), London, UK,2000,1256-1259
    [66] C. L. Wang, Y. Ouyang. A low-complexity peak-to-average power ratio reduction technique forOFDM systems[C]. IEEE Global Telecommunications Conference (Globecom), San Francisco,USA,2003,2375-2379
    [67] S. H. Han, J. H. Lee. Reduction of PAPR of an OFDM signal by partial transmit sequencetechnique with reduced complexity[C]. IEEE Global Telecommunications Conference(Globecom), San Francisco, USA,2003,1326-1329
    [68] A. D. S. Jayalath, C. Tellambura. Adaptive PTS approach for reduction of peak-to-averagepower ratio of OFDM signal[J]. Electronic Letter,2000,36(14):1226-1228
    [69] D. Dardari, V. Tralli, A. Vaccari. A novel low complexity technique to reduce non-lineardistortion effects in OFDM Systems[C]. IEEE International Symposium on Personal Indoor andMobile Radio Communications (PIMRC), Boston, USA,1998,795-800
    [70] H. Schmidt, K. Kammeyer. Reducing the peak to average power ratio of multicarrier signals byadaptive subcarrier selection[C]. IEEE ICUPC, Florence, Italy,1998,933-937
    [71] E. Lawrey, C. J. Kikker. Peak to average power ratio reduction of OFDM signals using peakreduction carriers[C]. IEEE5th International Symposium on Signal Processing and itsApplications (ISSPA), Brisbane, Australia,1999,737-740
    [72] J. Tellado, J. M. Cioffi. Efficient algorithms for reducing PAR in multicarrier systems[C]. IEEEInternational Symposium on Information Theory (ISIT), Cambridge, USA,1998,191-192
    [73] K. G. Paterson. Generalized reed-muller codes and power control in OFDM Modulation[J].IEEE Transactions on Information Theory,2000,46(1):104-120
    [74] A. E. Jones, T. A. Wilkinson, S. K. Barton. Block coding scheme for reduction of peak to meanenvelope power ratio of multicarrier transmission schemes[J]. Electronics Letter,1994,30(25):2098-2099
    [75] J. A. Davis, J. Jedwab. Peak-to-mean power control in OFDM, Golay complementary sequencesand Reed-Muller codes[J]. IEEE Transactions on Information Theory,1999,45(7):2397-2417
    [76] K. G. Paterson, V. Tarokh. On the existence and construction of good codes with lowpeak-to-average power ratios[J]. IEEE Transactions on Information Theory,2000,46(6):1974-1987
    [77] K. G. Paterson. Coding techniques for power controlled OFDM[C]. IEEE InternationalSymposium on Personal Indoor and Mobile Radio Communications (PIMRC), Boston, USA,1998,801-805
    [78] K. G. Paterson. Generalised Reed-Muller codes and power control in OFDM modulation[C].IEEE International Symposium on Information Theory (ISIT), Cambridge, USA,1998,194-196
    [79] H. J. Ahn, Y. Shin, S. Im. A block coding scheme for peak-to-average power ratio reduction inan orthogonal frequency division multiplexing system[C]. IEEE Vehicular TechnologyConference (VTC), Tokyo, Japan,2000,56-60
    [80] J. G. Alex, V. N. Richard. Efficient maximum likelihood decoding of peak power limiting codesfor OFDM[C]. IEEE Vehicular Technology Conference (VTC), Ottawa, Canada,1998,2081-2084
    [81] I. A. Tasadduq, R. K. Rao. Weighted OFDM with block codes for wireless communication[C].IEEE Pacific Rim Conference on Communications, Computers and Signal Processing(PACRIM), Victoria, Canada,2001,441-444
    [82] X. Huang, J. Lu, J. Zheng. Reduction of peak-to-average power ratio of OFDM signals withcompanding transform[J]. Electronics Letter,2001,37(8):506-507
    [83] X. Huang, J. Lu, J. Chuang. Companding transform for the reduction of peak-to-average powerratio of OFDM signals[C]. IEEE VTC, Rhodes, Greece,2001,835-839
    [84] X. Wang, T. T. Tjhung. Reduction of peak-to-average power ratio of OFDM system using acompanding technique[J]. IEEE Transactions on Broadcasting,1999,45(3):303-307
    [85] G. Ren, H. Zhang, Y. Chang. A complementary clipping transform technique for the reduction ofpeak-to-average power ratio of OFDM system[J]. IEEE Transactions on Consumer Electronics,2003,49(4):922-926
    [86] X. Huang, J. Lu, J. Zheng. Piecewise-scales transform for the reduction of PAPR of OFDMsignals[C]. IEEE Global Telecommunications Conference (Globecom), Taipei, China,2002,564-568
    [87] P. Siohan, C. Siclet and N. Lacaille. Analysis and design of OFDM/OQAM systems based onfilterbank theory[J]. IEEE Transactions on Signal Processing,2002,50(5):1170-1183
    [88] J. F. Du, S. Signell. Classic OFDM systems and pulse shaping OFDM/OQAM systems[R].Technical Report,2007, Online available:http://www.wireless.kth.se/projects/NGFDM/publication_files/NGFDM_report070228.pdf
    [89] J.P. Javaudin, D. Lacroix, A. Rouxel. Pilot-aided channel estimation for OFDM/OQAM[C].VTC’03, USA,2003,1581–1585
    [90] S.W. Kang, K.H. Chang. A novel channel estimation scheme for OFDM/OQAM-IOTAsystem[J]. ETRI Journal,2007,1(29):430–436
    [91] D. Lacroix, J.P. Javaudin. A new channel estimation method for OFDM/OQAM[C],International OFDM-Workshop, Hamburg,2002,57-64
    [92] C. Lélé, J.P. Javaudin, R. Legouable. Channel estimation methods for preamble-basedOFDM/OQAM modulations[C]. European Wireless Conference, Paris, France,2007,59-64
    [93] S. Hu, G. Wu. Preamble design with ICI cancellation for channel estimation in OFDM/OQAMsystem[J]. IEICE transactions on Communications,2010, E93-B(1):211-214
    [94]胡苏,武刚,肖悦. OFDM/OQAM系统中联合迭代信道估计和信号检测[J].电子与信息学报,2009,31(10):2332-2337
    [95] H. Lin, P. Siohan. Robust channel estimation for OFDM/OQAM [J]. IEEE communicationletters,2009,13(10):724-726
    [96] H. Lin, P. Siohan. Capacity analysis for indoor PLC using different multi-carrier modulationschemes[J]. IEEE transactions on power delivery,2010,25(1):113-124
    [97] C. Lélé, P. Siohan. Legouable R. Preamble-based channel estimation techniques forOFDM/OQAM over the powerline[C]. IEEE International Symposium on Power LineCommunications and Its Applications, Pisa, Italy,2007:59-64
    [98] A. Assalini, M. Trivellato, S. Pupolin. Performance analysis of OFDM-OQAM systems[C].IEEE Wireless Personal Multimedia Communication, Aalborg, Denmark,2005,696-700
    [99] P. Jung. OQAM/IOTA downlink air interface for3G/4G[R]. Fraunhofer German-Sino Lab forMobile Communications Technical Report,2004, Online Avalible:ftp://ftp.hhi.de/jungp/publications/TechReports/iota techreport05.pdf
    [100] A. Skrzypczak, P. Siohan, J. P. Javaudin. Power spectral density and cubic metric for theOFDM/OQAM modulation[C]. IEEE Symposium on Signal Processing and InformationTechnology (ISSPIT), Vancouver, Canada,2006,846-850
    [101] A. Skrzypczak, P. Siohan, J. P. Javaudin. Analysis of the peak-to-average power ratio forOFDM/OQAM[C]. IEEE7th Workshop on Signal Processing Advances in WirelessCommunications,2006,21-25
    [102] D. M. Qu, S. X. Lu, T. Jiang. Multi-Block joint optimization for the peak-to-average powerratio reduction of FBMC-OQAM signals[J]. IEEE Trans. on Signal Processing,2013,61(7):1605–1613
    [103] A. Skrzypczak, P. Siohan, J. P. Javaudin. Reduction of thepeak-to-average power ratio forOFDM-OQAM modulation[C]. IEEE VTC,2006,2018–2022
    [104] Siohan P, Siclet C, Lacaille N. Analysis and design of OFDM/OQAM systems based onfilter-bank theory[J]. IEEE Transactions on Signal Processing2002,50(5):1170–1183
    [105] D. Pinchon, P. Siohan, C. Siclet. Design techniques for orthogonal modulated filterbanks basedon a compact representation[J]. IEEE Transactions on Signal Processing,2000,52(6):1682-1692
    [106] H. B lcskei, P. Duhamel, R. Hleiss. Orthogonalization of OFDM/OQAM pulse shaping filtersusing the discrete Zak transform[J]. Signal Processing,2003,83(7):1379-1391
    [107] J. Du, S. Signell. Time Frequency Localization of Pulse Shaping Filters in OFDM/OQAMSystems[C]. ICICS, Singapore,2007,1015-1018
    [108] M. Alard, C. Roche, P. Siohan. A new family of function with nearly optimal time-frequencylocalization[R]. Technical Report of the RNRT Project Modyr,1999
    [109] P. Ciblat. A blind frequency offset estimator for OFDM/OQAM system[C].4th IEEEWorkshop on Signal Processing,2003,595-599
    [110] T. Fusco, A. Petrella, M. Tanda. Blind Carrier-Frequency Offset Estimation for Pulse ShapingOFDM/OQAM Systems[C]. ISCCSP2008, Malta,2008,942-947
    [111] B. F. Boroujeny. Filter Bank Spectrum Sensing for Cognitive Radios[J]. IEEE Transaction onsignal processing,2008,56(5):1801-1811
    [112] S. Mallat. A Wavelet Tour of Signal Processing[M], Academic Press,1999,1-220
    [113] H. Su, W. Gang, L. Teng. Preamble design with ICI cancellation for channel estimation inOFDM/OQAM system[J]. IEICE transactions on Communications,2010, E93-B(1):211-214
    [114]胡苏,武刚,肖悦. OFDM/OQAM系统中联合迭代信道估计和信号检测[J].电子与信息学报,2009,31(10):2332-2337
    [115] S. Kang, K. Chang. A novel channel estimation scheme for OFDM/OQAM-IOTA system[J].ETRI Journal,2007,29(4):430-436
    [116] C. Lélé, R. Legouable, Siohan P. Channel estimation with scattered pilots inOFDM/OQAM[C]. IEEE Workshop on Signal Processing Advances in WirelessCommunications, Recife, Brazil,2008:286–290
    [117] C. Lélé, J.P. Javaudin, R. Legouable. Channel estimation methods for preamble-basedOFDM/OQAM modulations[C]. European Wireless Conference, Paris, France,2007,741-750
    [118] C. Lélé, P. Siohan, R. Legouable.2dB better than CP-OFDM with OFDM/OQAM forpreamble-based channel estimation[C]. IEEE International Communication Conference (ICC),Beijing,2008,1302-1306
    [119] J. F. Du. Novel Preamble-Based Channel Estimation for OFDM/OQAM Systems[C]. IEEEICC,2009,1004-1009
    [120]陈宝林.最优化理论与算法[M].北京:清华大学出版社,2005:203-243
    [121]杨鸿文译.无线通信[M].北京:人民邮电出版社,2006,23-81
    [122]丁玉美.数字信号处理[M].西安:西安电子科技大学出版社,1997,100-197
    [123] T. Fusco, A. Petrella, M. Tanda. Data-aided symboltiming and CFO synchronization for filterbank multicarrier systems[J]. IEEE Trans. Wireless Communication,2009,8(5):2705-2715
    [124] B. Farhang, L. Lin. Analysis of Post-Combiner Equalizers in Cosine-Modulated FilterbankBased Transmultiplexers Systems[J]. IEEE Transactions on Signal Processing,2003,51(12):3249–3262
    [125] J. Alhava, M. Renfors. Adaptive sinemodulated/cosine-modulated filter bank equalizer fortransmultiplexers[C], ECCTD,2001,337–340
    [126] S. Nedic, N. Popovic. Per-bin DFE for Advanced OQAM-based Multicarrier Wireless DataTransmission Systems[C]. international Zurich Seminar on Broadband CommunicationsAccess-Transmission-Networking,2002,1–6
    [127] S. Dirk. NossekMMSE subcarrier equalization for filter bank based multicarrier systems[C].IEEE SPAWC2008,525-529
    [128]周概容.概率论与数理统计[M].北京:高等教育出版社,1984,101-120
    [129]陈良均.随机过程及应用[M].北京:高等教育出版社,2003,26-48
    [130] L. Hanzo, M. Miinster, B. J. Choi. OFDM and MC-CDMA for broadband Multi-Userscommunications[M]. WLANs and Broadcasting, IEEE press. Wiley Series,2003,120-204
    [131] A. Skrzypczak, P. Siohan, J. P. Javaudin. Analysis of the peak-to-average power ratio forODM/OQAM[C]. IEEE7th Workshop on Signal Processing Advances in WirelessCommunications,2006,15-19
    [132] Skrzypczak, P. Siohan, J. P. Javaudin. Reduction of thepeak-to-average power ratio forOFDM-OQAM modulation[C]. IEEE VTC,2006,2018-2022
    [133] D. M. Qu, S. X. Lu, T. Jiang. Multi-Block joint optimization for the peak-to-average powerratio reduction of FBMC-OQAM signals[J]. IEEE Trans. on Signal Processing,2013,61(7):1605-1613
    [134] H. E. Rowe. Memoryless nonlinearities with Gaussian input: Elementary results[J]. Bell Syst.Tech. Joural,61(1):1519-1525

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700