CrKin13在衣藻鞭毛组装与解聚中功能和机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核生物的纤毛(或鞭毛)是一种由“9+2”微管结构组成的细胞表面突出的保守的细胞结构。纤毛在哺乳动物发育、细胞运动、细胞周期调控和信号转导等方面起着重要的作用。纤毛的结构或者功能上的缺失,与多种人类疾病相关,因此近年来关于纤毛的研究一直是个热点。而纤毛的组装与解聚对纤毛的结构与功能是关键的,但是具体机制还了解的不多。纤毛轴丝的微管结构成分来源于胞质中的前体物质库(precursor pool),但是该前体物质库是如何调控的却了解很少。
     本文利用单细胞衣藻作为模式生物来进行研究鞭毛组装与解聚的分子机理。在之前的研究中发现了一种在鞭毛再生过程中发生磷酸化的蛋白质CrKinesin13/CrKin13,是细胞微管解聚马达蛋白家族中的一员,CrKin13可以解聚细胞质微管骨架以提供鞭毛再生之所需的游离微管蛋白,对于衣藻鞭毛的再生至关重要。
     本文继续探究了CrKin13在衣藻鞭毛组装与解聚过程中所起的功能和具体机制。本文进一步验证了在细胞鞭毛再生初期确实存在细胞质微管骨架的解聚现象。利用突变体及药物处理研究发现细胞质微管骨架解聚发生在掉鞭毛之前,只要CrKin13发生磷酸化,细胞质微管就发生解聚,与鞭毛脱落与否无关。在CrKin13磷酸化调控机制研究中,磷酸化和非磷酸化形式的CrKin13均可在体外依赖ATP解聚微管,但是磷酸化形式的CrKin13解聚微管的活性降低。通过质谱分析,鉴定出CrKin13的主要磷酸化位点为S100,次要磷酸化位点为S522和T469,并且S100磷酸化位点的磷酸化对于CrKin13定位于胞质微管骨架结构上是至关重要的。而在鞭毛再生过程中,鞭毛中的CrKin13有一个富集的过程,也可能参与到鞭毛内微管的动态学变化过程。本文还初步探究了CrKin13的磷酸化激酶和相互作用蛋白,通过酵母双杂交的方法初步筛选到了相互作用蛋白TOG1。而在鞭毛缩短时CrKin13鞭毛运输的机制方面,发现了N端对于CrKin13进入鞭毛是必须的,而M端、C端可能共同调节CrKin13进入鞭毛的信号。
     因此,磷酸化CrKin13解聚胞内微管以调节前体物质库,提供衣藻细胞再生鞭毛所用的游离微管蛋白,在鞭毛组装过程中发挥重要的作用。
Cilia (or flagella) in eukaryotes are highly conserved organelles and "9+2" microtubule based structures, protruding from the cell body. Cilia play animportant role in mammalian development, cell motility, cell cycle regulationand signal transduction. In mammalian cells, defects in cilia structure orfunction lead to varieties of human diseases, so recently many researchers focuson this area. Assembly and disassembly of cilla play a key role in cilia structureand function, but little is known about the mechanism of cilla assembly anddisassembly. Microtubule based cilia come from the cytoplasmic “precursorpool”, but little is understood about the regulation of cytoplasmic pool.
     Here, we use unicellular algae chlamydomonas as model organism forresearch on the molecular mechanism of flagellar assembly and disassembly.Studies have shown that a protein is phosphorylated during flagellarregeneration, named CrKinesin13/CrKin13, which belongs to microtubuledepolymerizing kinesin family. It is crucial for flagellar regeneration, becausethat it depolymerizes cytoplasmic microtubules to provide free tubulins forflagellar regeneration.
     In this paper, we further explore the mechanism of CrKin13on flagellarregeneration and shortening. Based on the previous studies, we further verifythat cytoplasmic microtubules are depolymerized at the early stage of flagellarregeneration. Using mutants and drug treatments, it is also found thatcytoplasmic microtubule depolymerization occurs before the flagellar loss, andcytoplasmic microtubules are depolymerized as long as CrKin13isphosphorylated, which is not related with flagella loss per se. Moreover, in vitroassay shows that both of phosphorylated and non-phosphorylated forms ofCrKin13possess ATP-dependent microtubule depolymerizing activity, but theactivity of phosphorylated form of CrKin13is lower. The phosphorylation ofCrKin13occurs at residues S100as primary site and S522, T469as secondarysites by mass spectrometry. Mutation of CrKin13phosphorylation site at S100but not at other residues prevents CrKin13targeting to cytoplasmicmicrotubules, which explains the phosphorylation of CrKin13at the early stage of flagellar regeneration. While the enrichment of CrKin13in the regeneratingflagella might be involved in the flagellar microtubule dynamics.
     Additionally, the kinase responsible for CrKin13’s phosphorylation and itspartner are also examined. TOG1screened as candidate by yeast two hybridmethod need to be further analyzed. To reveal the mechanism of targeting toshortening flagella, our results find that N-domain is necessary for flagellartargeting and M-, C-domain may be co-regulate the CrKin13targeting signals.
     Thus, we propose that CrKin13is regulated by its phosphorylation todepolymerize cytoplasmic microtubules to provide tubulin precursors duringflagellar regeneration, so it plays a key role in flagellar regeneration.
引文
Absalon S, Blisnick T, Kohl L, et al.2008. Intraflagellar transport and functional analysisof genes required for flagellum formation in trypanosomes. Mol Biol Cell [J],19:929-944.
    Ahmed N T, Gao C, Lucker B F, et al.2008. ODA16aids axonemal outer row dyneinassembly through an interaction with the intraflagellar transport machinery. J CellBiol [J],183:313-322.
    Aist J R2002. Mitosis and motor proteins in the filamentous ascomycete, Nectriahaematococca, and some related fungi. Int Rev Cytol [J],212:239-263.
    Al-Bassam J, Larsen N A, Hyman A A, et al.2007. Crystal structure of a TOG domain:conserved features of XMAP215/Dis1-family TOG domains and implications fortubulin binding. Structure [J],15:355-362.
    Al-Bassam J, van Breugel M, Harrison S C, et al.2006. Stu2p binds tubulin and undergoesan open-to-closed conformational change. J Cell Biol [J],172:1009-1022.
    Andrews P D, Ovechkina Y, Morrice N, et al.2004. Aurora B regulates MCAK at themitotic centromere. Dev Cell [J],6:253-268.
    Avidor-Reiss T, Maer A M, Koundakjian E, et al.2004. Decoding cilia function: definingspecialized genes required for compartmentalized cilia biogenesis. Cell [J],117:527-539.
    Axelrod J D2008. Basal bodies, kinocilia and planar cell polarity. Nat Genet [J],40:10-11.
    Ayaz P, Ye X, Huddleston P, et al.2012. A TOG:alphabeta-tubulin complex structurereveals conformation-based mechanisms for a microtubule polymerase. Science [J],337:857-860.
    Barnes B G1961. Ciliated secretory cells in the pars distalis of the mouse hypophysis. JUltrastruct Res [J],5:453-467.
    Barrett J G, Manning B D, Snyder M2000. The Kar3p kinesin-related protein forms anovel heterodimeric structure with its associated protein Cik1p. Mol Biol Cell [J],11:2373-2385.
    Becker B E, Gard D L2000. Multiple isoforms of the high molecular weight microtubuleassociated protein XMAP215are expressed during development in Xenopus. CellMotil Cytoskeleton [J],47:282-295.
    Benmerah A2013. The ciliary pocket. Curr Opin Cell Biol [J],25:78-84.
    Berbari N F, Johnson A D, Lewis J S, et al.2008a. Identification of ciliary localizationsequences within the third intracellular loop of G protein-coupled receptors. Mol BiolCell [J],19:1540-1547.
    Berbari N F, Lewis J S, Bishop G A, et al.2008b. Bardet-Biedl syndrome proteins arerequired for the localization of G protein-coupled receptors to primary cilia. ProcNatl Acad Sci U S A [J],105:4242-4246.
    Blacque O E, Perens E A, Boroevich K A, et al.2005. Functional genomics of the cilium, asensory organelle. Curr Biol [J],15:935-941.
    Blacque O E, Reardon M J, Li C, et al.2004. Loss of C. elegans BBS-7and BBS-8proteinfunction results in cilia defects and compromised intraflagellar transport. Genes Dev[J],18:1630-1642.
    Blaineau C, Tessier M, Dubessay P, et al.2007. A novel microtubule-depolymerizingkinesin involved in length control of a eukaryotic flagellum. Curr Biol [J],17:778-782.
    Brazelton W J, Amundsen C D, Silflow C D, et al.2001. The bld1mutation identifies theChlamydomonas osm-6homolog as a gene required for flagellar assembly. Curr Biol[J],11:1591-1594.
    Brouhard G J, Stear J H, Noetzel T L, et al.2008. XMAP215is a processive microtubulepolymerase. Cell [J],132:79-88.
    Brown J M, Dipetrillo C G, Smith E F, et al.2012. A FAP46mutant provides new insightsinto the function and assembly of the C1d complex of the ciliary central apparatus. JCell Sci [J],125:3904-3913.
    Cai S, Weaver L N, Ems-McClung S C, et al.2009. Kinesin-14family proteinsHSET/XCTK2control spindle length by cross-linking and sliding microtubules. MolBiol Cell [J],20:1348-1359.
    Cassimeris L, Morabito J2004. TOGp, the human homolog of XMAP215/Dis1, is requiredfor centrosome integrity, spindle pole organization, and bipolar spindle assembly.Mol Biol Cell [J],15:1580-1590.
    Charrasse S, Schroeder M, Gauthier-Rouviere C, et al.1998. The TOGp protein is a newhuman microtubule-associated protein homologous to the Xenopus XMAP215. J CellSci [J],111(Pt10):1371-1383.
    Chu H M, Yun M, Anderson D E, et al.2005. Kar3interaction with Cik1alters motorstructure and function. EMBO J [J],24:3214-3223.
    Cole D G2003. The intraflagellar transport machinery of Chlamydomonas reinhardtii.Traffic [J],4:435-442.
    Cole D G, Chinn S W, Wedaman K P, et al.1993. Novel heterotrimeric kinesin-relatedprotein purified from sea urchin eggs. Nature [J],366:268-270.
    Cole D G, Diener D R, Himelblau A L, et al.1998. Chlamydomonas kinesin-II-dependentintraflagellar transport (IFT): IFT particles contain proteins required for ciliaryassembly in Caenorhabditis elegans sensory neurons. J Cell Biol [J],141:993-1008.
    Cottingham F R, Gheber L, Miller D L, et al.1999. Novel roles for saccharomycescerevisiae mitotic spindle motors. J Cell Biol [J],147:335-350.
    Craige B, Tsao C C, Diener D R, et al.2010. CEP290tethers flagellar transition zonemicrotubules to the membrane and regulates flagellar protein content. J Cell Biol [J],190:927-940.
    Dagenbach E M, Endow S A2004. A new kinesin tree. J Cell Sci [J],117:3-7.
    Dave D, Wloga D, Sharma N, et al.2009. DYF-1Is required for assembly of the axonemein Tetrahymena thermophila. Eukaryot Cell [J],8:1397-1406.
    Dawe H R, Smith U M, Cullinane A R, et al.2007. The Meckel-Gruber Syndrome proteinsMKS1and meckelin interact and are required for primary cilium formation. Hum MolGenet [J],16:173-186.
    Dawson S C, Sagolla M S, Mancuso J J, et al.2007. Kinesin-13Regulates Flagellar,Interphase, and Mitotic Microtubule Dynamics in Giardia intestinalis. Eukaryot Cell[J],6:2354-2364.
    Deane J A, Cole D G, Seeley E S, et al.2001. Localization of intraflagellar transportprotein IFT52identifies basal body transitional fibers as the docking site for IFTparticles. Curr Biol [J],11:1586-1590.
    deCastro M J, Fondecave R M, Clarke L A, et al.2000. Working strokes by singlemolecules of the kinesin-related microtubule motor ncd. Nat Cell Biol [J],2:724-729.
    Deretic D, Williams A H, Ransom N, et al.2005. Rhodopsin C terminus, the site ofmutations causing retinal disease, regulates trafficking by binding toADP-ribosylation factor4(ARF4). Proc Natl Acad Sci U S A [J],102:3301-3306.
    Desai A, Mitchison T J1997. Microtubule polymerization dynamics. Annu Rev Cell DevBiol [J],13:83-117.
    Desai A, Verma S, Mitchison T J, et al.1999. Kin I kinesins are microtubule-destabilizingenzymes. Cell [J],96:69-78.
    Dutcher S K, Morrissette N S, Preble A M, et al.2002. Epsilon-tubulin is an essentialcomponent of the centriole. Mol Biol Cell [J],13:3859-3869.
    Efimenko E, Blacque O E, Ou G, et al.2006. Caenorhabditis elegans DYF-2, anorthologue of human WDR19, is a component of the intraflagellar transportmachinery in sensory cilia. Mol Biol Cell [J],17:4801-4811.
    Ehler L L, Holmes J A, Dutcher S K1995. Loss of spatial control of the mitotic spindleapparatus in a Chlamydomonas reinhardtii mutant strain lacking basal bodies.Genetics [J],141:945-960.
    Ems-McClung S C, Walczak C E2010. Kinesin-13s in mitosis: Key players in the spatialand temporal organization of spindle microtubules. Semin Cell Dev Biol [J],21:276-282.
    Endoh-Yamagami S, Evangelista M, Wilson D, et al.2009. The mammalian Cos2homologKif7plays an essential role in modulating Hh signal transduction during development.Curr Biol [J],19:1320-1326.
    Fink G, Hajdo L, Skowronek K J, et al.2009. The mitotic kinesin-14Ncd drivesdirectional microtubule-microtubule sliding. Nat Cell Biol [J],11:717-723.
    Finst R J, Kim P J, Griffis E R, et al.2000. Fa1p is a171kDa protein essential foraxonemal microtubule severing in Chlamydomonas. J Cell Sci [J],113(Pt11):1963-1971.
    Fischer N, Rochaix J D2001. The flanking regions of PsaD drive efficient gene expressionin the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics [J],265:888-894.
    Fliegauf M, Benzing T, Omran H2007. When cilia go bad: cilia defects and ciliopathies.Nat Rev Mol Cell Biol [J],8:880-893.
    Follit J A, Li L, Vucica Y, et al.2010. The cytoplasmic tail of fibrocystin contains aciliary targeting sequence. J Cell Biol [J],188:21-28.
    Fujiwara M, Ishihara T, Katsura I1999. A novel WD40protein, CHE-2, actscell-autonomously in the formation of C. elegans sensory cilia. Development [J],126:4839-4848.
    Gandhi R, Bonaccorsi S, Wentworth D, et al.2004. The Drosophila kinesin-like proteinKLP67A is essential for mitotic and male meiotic spindle assembly. Mol Biol Cell [J],15:121-131.
    Garcia M A, Vardy L, Koonrugsa N, et al.2001. Fission yeast ch-TOG/XMAP215homologue Alp14connects mitotic spindles with the kinetochore and is a componentof the Mad2-dependent spindle checkpoint. EMBO J [J],20:3389-3401.
    Gard D L, Kirschner M W1987. A microtubule-associated protein from Xenopus eggs thatspecifically promotes assembly at the plus-end. J Cell Biol [J],105:2203-2215.
    Gardner M K, Haase J, Mythreye K, et al.2008. The microtubule-based motor Kar3andplus end-binding protein Bim1provide structural support for the anaphase spindle. JCell Biol [J],180:91-100.
    Gardner M K, Zanic M, Gell C, et al.2011. Depolymerizing kinesins Kip3and MCAKshape cellular microtubule architecture by differential control of catastrophe. Cell [J],147:1092-1103.
    Garrett S, Kapoor T M2003. Microtubule assembly: catastrophe factors to the rescue. CurrBiol [J],13: R810-812.
    Geng L, Okuhara D, Yu Z, et al.2006. Polycystin-2traffics to cilia independently ofpolycystin-1by using an N-terminal RVxP motif. J Cell Sci [J],119:1383-1395.
    Gergely F, Draviam V M, Raff J W2003. The ch-TOG/XMAP215protein is essential forspindle pole organization in human somatic cells. Genes Dev [J],17:336-341.
    Gibbons B H, Asai D J, Tang W J, et al.1994. Phylogeny and expression of axonemal andcytoplasmic dynein genes in sea urchins. Mol Biol Cell [J],5:57-70.
    Gindhart J G, Chen J, Faulkner M, et al.2003. The kinesin-associated protein UNC-76isrequired for axonal transport in the Drosophila nervous system. Mol Biol Cell [J],14:3356-3365.
    Goud B, Zahraoui A, Tavitian A, et al.1990. Small GTP-binding protein associated withGolgi cisternae. Nature [J],345:553-556.
    Guillaud L, Wong R, Hirokawa N2008. Disruption of KIF17-Mint1interaction byCaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. NatCell Biol [J],10:19-29.
    Gupta M L, Jr., Carvalho P, Roof D M, et al.2006. Plus end-specific depolymeraseactivity of Kip3, a kinesin-8protein, explains its role in positioning the yeast mitoticspindle. Nat Cell Biol [J],8:913-923.
    Guttman S D, Gorovsky M A1979. Cilia regeneration in starved tetrahymena: an induciblesystem for studying gene expression and organelle biogenesis. Cell [J],17:307-317.
    Habermacher G, Sale W S1996. Regulation of flagellar dynein by an axonemal type-1phosphatase in Chlamydomonas. J Cell Sci [J],109(Pt7):1899-1907.
    Hao L, Thein M, Brust-Mascher I, et al.2011. Intraflagellar transport delivers tubulinisotypes to sensory cilium middle and distal segments. Nat Cell Biol [J],13:790-798.
    Haycraft C J, Schafer J C, Zhang Q, et al.2003. Identification of CHE-13, a novelintraflagellar transport protein required for cilia formation. Exp Cell Res [J],284:251-263.
    Head J, Lee L L, Field D J, et al.1985. Equilibrium and rapid kinetic studies onnocodazole-tubulin interaction. J Biol Chem [J],260:11060-11066.
    Hearn T, Spalluto C, Phillips V J, et al.2005. Subcellular localization of ALMS1supportsinvolvement of centrosome and basal body dysfunction in the pathogenesis of obesity,insulin resistance, and type2diabetes. Diabetes [J],54:1581-1587.
    Helenius J, Brouhard G, Kalaidzidis Y, et al.2006. The depolymerizing kinesin MCAKuses lattice diffusion to rapidly target microtubule ends. Nature [J],441:115-119.
    Hildebrandt E R, Hoyt M A2000. Mitotic motors in Saccharomyces cerevisiae. BiochimBiophys Acta [J],1496:99-116.
    Hiller G, Weber K1978. Radioimmunoassay for tubulin: a quantitative comparison of thetubulin content of different established tissue culture cells and tissues. Cell [J],14:795-804.
    Hirokawa N, Noda Y, Okada Y1998. Kinesin and dynein superfamily proteins in organelletransport and cell division. Curr Opin Cell Biol [J],10:60-73.
    Hirokawa N, Noda Y, Tanaka Y, et al.2009. Kinesin superfamily motor proteins andintracellular transport. Nat Rev Mol Cell Biol [J],10:682-696.
    Holmes J A, Dutcher S K1989. Cellular asymmetry in Chlamydomonas reinhardtii. J CellSci [J],94(Pt2):273-285.
    Holmfeldt P, Stenmark S, Gullberg M2004. Differential functional interplay ofTOGp/XMAP215and the KinI kinesin MCAK during interphase and mitosis. EMBO J[J],23:627-637.
    Hood E A, Kettenbach A N, Gerber S A, et al.2012. Plk1regulates the kinesin-13proteinKif2b to promote faithful chromosome segregation. Mol Biol Cell [J],23:2264-2274.
    Hou Y, Qin H, Follit J A, et al.2007. Functional analysis of an individual IFT protein:IFT46is required for transport of outer dynein arms into flagella. J Cell Biol [J],176:653-665.
    Huang K, Beck C F2003. Phototropin is the blue-light receptor that controls multiple stepsin the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc Natl AcadSci U S A [J],100:6269-6274.
    Huang K, Diener D R, Mitchell A, et al.2007. Function and dynamics of PKD2inChlamydomonas reinhardtii flagella. J Cell Biol [J],179:501-514.
    Huang K, Diener D R, Rosenbaum J L2009. The ubiquitin conjugation system is involvedin the disassembly of cilia and flagella. J Cell Biol [J],186:601-613.
    Huangfu D, Liu A, Rakeman A S, et al.2003. Hedgehog signalling in the mouse requiresintraflagellar transport proteins. Nature [J],426:83-87.
    Humbert M C, Weihbrecht K, Searby C C, et al.2012. ARL13B, PDE6D, and CEP164form a functional network for INPP5E ciliary targeting. Proc Natl Acad Sci U S A [J],109:19691-19696.
    Hunter A W, Caplow M, Coy D L, et al.2003. The kinesin-related protein MCAK is amicrotubule depolymerase that forms an ATP-hydrolyzing complex at microtubuleends. Mol Cell [J],11:445-457.
    Hyman A A, Chretien D, Arnal I, et al.1995. Structural changes accompanying GTPhydrolysis in microtubules: information from a slowly hydrolyzable analogueguanylyl-(alpha,beta)-methylene-diphosphonate. J Cell Biol [J],128:117-125.
    Hyman A A, Salser S, Drechsel D N, et al.1992. Role of GTP hydrolysis in microtubuledynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell[J],3:1155-1167.
    Iomini C, Babaev-Khaimov V, Sassaroli M, et al.2001. Protein particles inChlamydomonas flagella undergo a transport cycle consisting of four phases. J CellBiol [J],153:13-24.
    Iomini C, Li L, Esparza J M, et al.2009. Retrograde intraflagellar transport mutantsidentify complex A proteins with multiple genetic interactions in Chlamydomonasreinhardtii. Genetics [J],183:885-896.
    Ishikawa H, Marshall W F2011. Ciliogenesis: building the cell's antenna. Nat Rev MolCell Biol [J],12:222-234.
    Jang C Y, Coppinger J A, Seki A, et al.2009. Plk1and Aurora A regulate thedepolymerase activity and the cellular localization of Kif2a. J Cell Sci [J],122:1334-1341.
    Jenkins P M, Hurd T W, Zhang L, et al.2006. Ciliary targeting of olfactory CNG channelsrequires the CNGB1b subunit and the kinesin-2motor protein, KIF17. Curr Biol [J],16:1211-1216.
    Johnson K A, Rosenbaum J L1992. Polarity of flagellar assembly in Chlamydomonas. JCell Biol [J],119:1605-1611.
    Katsanis N2006. Ciliary proteins and exencephaly. Nat Genet [J],38:135-136.
    Keady B T, Samtani R, Tobita K, et al.2012. IFT25links the signal-dependent movementof Hedgehog components to intraflagellar transport. Dev Cell [J],22:940-951.
    Kim J, Lee J E, Heynen-Genel S, et al.2010. Functional genomic screen for modulators ofciliogenesis and cilium length. Nature [J],464:1048-1051.
    Kinoshita K, Noetzel T L, Arnal I, et al.2006. Global and local control of microtubuledestabilization promoted by a catastrophe kinesin MCAK/XKCM1. J Muscle Res CellMotil [J],27:107-114.
    Kobayashi T, Tsang W Y, Li J, et al.2011. Centriolar kinesin Kif24interacts with CP110to remodel microtubules and regulate ciliogenesis. Cell [J],145:914-925.
    Kosco K A, Pearson C G, Maddox P S, et al.2001. Control of microtubule dynamics byStu2p is essential for spindle orientation and metaphase chromosome alignment inyeast. Mol Biol Cell [J],12:2870-2880.
    Kozminski K G, Beech P L, Rosenbaum J L1995. The Chlamydomonas kinesin-likeprotein FLA10is involved in motility associated with the flagellar membrane. J CellBiol [J],131:1517-1527.
    Kozminski K G, Johnson K A, Forscher P, et al.1993. A motility in the eukaryoticflagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A [J],90:5519-5523.
    Kurvari V, Zhang Y, Luo Y, et al.1996. Molecular cloning of a protein kinase whosephosphorylation is regulated by genetic adhesion during Chlamydomonas fertilization.Proc Natl Acad Sci U S A [J],93:39-43.
    Lan W, Zhang X, Kline-Smith S L, et al.2004. Aurora B phosphorylates centromericMCAK and regulates its localization and microtubule depolymerization activity. CurrBiol [J],14:273-286.
    Lawrence C J, Dawe R K, Christie K R, et al.2004. A standardized kinesin nomenclature.J Cell Biol [J],167:19-22.
    Lechtreck K F, Johnson E C, Sakai T, et al.2009. The Chlamydomonas reinhardtiiBBSome is an IFT cargo required for export of specific signaling proteins fromflagella. J Cell Biol [J],187:1117-1132.
    Lechtreck K F, Witman G B2007. Chlamydomonas reinhardtii hydin is a central pairprotein required for flagellar motility. J Cell Biol [J],176:473-482.
    LeDizet M, Piperno G1986. Cytoplasmic microtubules containing acetylatedalpha-tubulin in Chlamydomonas reinhardtii: spatial arrangement and properties. JCell Biol [J],103:13-22.
    Lefebvre P A, Rosenbaum J L1986. Regulation of the synthesis and assembly of ciliaryand flagellar proteins during regeneration. Annu Rev Cell Biol [J],2:517-546.
    Li G, Vega R, Nelms K, et al.2007. A role for Alstrom syndrome protein, alms1, in kidneyciliogenesis and cellular quiescence. PLoS Genet [J],3: e8.
    Li J, Wang X, Qin T, et al.2011. MDP25, a novel calcium regulatory protein, mediateshypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. PlantCell [J],23:4411-4427.
    Li J B, Gerdes J M, Haycraft C J, et al.2004. Comparative genomics identifies a flagellarand basal body proteome that includes the BBS5human disease gene. Cell [J],117:541-552.
    Liem K F, Jr., He M, Ocbina P J, et al.2009. Mouse Kif7/Costal2is a cilia-associatedprotein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci U S A [J],106:13377-13382.
    Loktev A V, Zhang Q, Beck J S, et al.2008. A BBSome subunit links ciliogenesis,microtubule stability, and acetylation. Dev Cell [J],15:854-865.
    Luo M, Cao M, Kan Y, et al.2011. The phosphorylation state of an aurora-like kinasemarks the length of growing flagella in Chlamydomonas. Curr Biol [J],21:586-591.
    Maddox P S, Stemple J K, Satterwhite L, et al.2003. The minus end-directed motor Kar3is required for coupling dynamic microtubule plus ends to the cortical shmoo tip inbudding yeast. Curr Biol [J],13:1423-1428.
    Mahjoub M R, Montpetit B, Zhao L, et al.2002. The FA2gene of Chlamydomonasencodes a NIMA family kinase with roles in cell cycle progression and microtubulesevering during deflagellation. J Cell Sci [J],115:1759-1768.
    Maney T, Hunter A W, Wagenbach M, et al.1998. Mitotic centromere-associated kinesinis important for anaphase chromosome segregation. J Cell Biol [J],142:787-801.
    Maney T, Wagenbach M, Wordeman L2001. Molecular dissection of the microtubuledepolymerizing activity of mitotic centromere-associated kinesin. J Biol Chem [J],276:34753-34758.
    Manning A L, Ganem N J, Bakhoum S F, et al.2007. The kinesin-13proteins Kif2a, Kif2b,and Kif2c/MCAK have distinct roles during mitosis in human cells. Mol Biol Cell [J],18:2970-2979.
    Manning B D, Barrett J G, Wallace J A, et al.1999. Differential regulation of the Kar3pkinesin-related protein by two associated proteins, Cik1p and Vik1p. J Cell Biol [J],144:1219-1233.
    Marshall W F, Rosenbaum J L2001. Intraflagellar transport balances continuous turnoverof outer doublet microtubules: implications for flagellar length control. J Cell Biol [J],155:405-414.
    Mayr M I, Hummer S, Bormann J, et al.2007. The human kinesin Kif18A is a motilemicrotubule depolymerase essential for chromosome congression. Curr Biol [J],17:488-498.
    Mazelova J, Astuto-Gribble L, Inoue H, et al.2009. Ciliary targeting motif VxPx directsassembly of a trafficking module through Arf4. EMBO J [J],28:183-192.
    McEwen D P, Koenekoop R K, Khanna H, et al.2007. Hypomorphic CEP290/NPHP6mutations result in anosmia caused by the selective loss of G proteins in cilia ofolfactory sensory neurons. Proc Natl Acad Sci U S A [J],104:15917-15922.
    McIntosh J R, Grishchuk E L, West R R2002. Chromosome-microtubule interactionsduring mitosis. Annu Rev Cell Dev Biol [J],18:193-219.
    Merchant S S, Prochnik S E, Vallon O, et al.2007. The Chlamydomonas genome revealsthe evolution of key animal and plant functions. Science [J],318:245-250.
    Miki H, Setou M, Kaneshiro K, et al.2001. All kinesin superfamily protein, KIF, genes inmouse and human. Proc Natl Acad Sci U S A [J],98:7004-7011.
    Mitchison T, Kirschner M1984. Dynamic instability of microtubule growth. Nature [J],312:237-242.
    Miyamoto D T, Perlman Z E, Burbank K S, et al.2004. The kinesin Eg5drives polewardmicrotubule flux in Xenopus laevis egg extract spindles. J Cell Biol [J],167:813-818.
    Molk J N, Salmon E D, Bloom K2006. Nuclear congression is driven by cytoplasmicmicrotubule plus end interactions in S. cerevisiae. J Cell Biol [J],172:27-39.
    Molnar A, Bassett A, Thuenemann E, et al.2009. Highly specific gene silencing byartificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J [J],58:165-174.
    Moores C A, Milligan R A2006. Lucky13-microtubule depolymerisation by kinesin-13motors. J Cell Sci [J],119:3905-3913.
    Moores C A, Yu M, Guo J, et al.2002. A mechanism for microtubule depolymerization byKinI kinesins. Mol Cell [J],9:903-909.
    Morfini G, Szebenyi G, Elluru R, et al.2002. Glycogen synthase kinase3phosphorylateskinesin light chains and negatively regulates kinesin-based motility. Embo J [J],21:281-293.
    Moser J J, Fritzler M J, Rattner J B2009. Primary ciliogenesis defects are associated withhuman astrocytoma/glioblastoma cells. BMC Cancer [J],9:448.
    Mountain V, Simerly C, Howard L, et al.1999. The kinesin-related protein, HSET,opposes the activity of Eg5and cross-links microtubules in the mammalian mitoticspindle. J Cell Biol [J],147:351-366.
    Mukhopadhyay S, Wen X, Chih B, et al.2010. TULP3bridges the IFT-A complex andmembrane phosphoinositides to promote trafficking of G protein-coupled receptorsinto primary cilia. Genes Dev [J],24:2180-2193.
    Murayama T, Toh Y, Ohshima Y, et al.2005. The dyf-3gene encodes a novel proteinrequired for sensory cilium formation in Caenorhabditis elegans. J Mol Biol [J],346:677-687.
    Mykytyn K, Mullins R F, Andrews M, et al.2004. Bardet-Biedl syndrome type4(BBS4)-null mice implicate Bbs4in flagella formation but not global cilia assembly.Proc Natl Acad Sci U S A [J],101:8664-8669.
    Nachury M V, Loktev A V, Zhang Q, et al.2007. A core complex of BBS proteinscooperates with the GTPase Rab8to promote ciliary membrane biogenesis. Cell [J],129:1201-1213.
    Nakamura S, Takino, H. and Kojima, M. K.1987. Effect of lithium on flagellar length inChlamydomonas reinhardtii. Cell Structure and Function [J],12:369-374.
    Nakaseko Y, Goshima G, Morishita J, et al.2001. M phase-specific kinetochore proteins infission yeast: microtubule-associating Dis1and Mtc1display rapid separation andsegregation during anaphase. Curr Biol [J],11:537-549.
    Nauli S M, Alenghat F J, Luo Y, et al.2003. Polycystins1and2mediatemechanosensation in the primary cilium of kidney cells. Nat Genet [J],33:129-137.
    Noda Y, Sato-Yoshitake R, Kondo S, et al.1995. KIF2is a new microtubule-basedanterograde motor that transports membranous organelles distinct from those carriedby kinesin heavy chain or KIF3A/B. J Cell Biol [J],129:157-167.
    Nonaka S, Tanaka Y, Okada Y, et al.1998. Randomization of left-right asymmetry due toloss of nodal cilia generating leftward flow of extraembryonic fluid in mice lackingKIF3B motor protein. Cell [J],95:829-837.
    Ohi R, Sapra T, Howard J, et al.2004. Differentiation of cytoplasmic and meiotic spindleassembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell[J],15:2895-2906.
    Okada Y, Hirokawa N2000. Mechanism of the single-headed processivity: diffusionalanchoring between the K-loop of kinesin and the C terminus of tubulin. Proc NatlAcad Sci U S A [J],97:640-645.
    Orozco J T, Wedaman K P, Signor D, et al.1999. Movement of motor and cargo alongcilia. Nature [J],398:674.
    Ou G, Blacque O E, Snow J J, et al.2005a. Functional coordination of intraflagellartransport motors. Nature [J],436:583-587.
    Ou G, Koga M, Blacque O E, et al.2007. Sensory ciliogenesis in Caenorhabditis elegans:assignment of IFT components into distinct modules based on transport andphenotypic profiles. Mol Biol Cell [J],18:1554-1569.
    Ou G, Qin H, Rosenbaum J L, et al.2005b. The PKD protein qilin undergoes intraflagellartransport. Curr Biol [J],15: R410-411.
    Ou Y, Zhang Y, Cheng M, et al.2012. Targeting of CRMP-2to the primary cilium ismodulated by GSK-3beta. PLoS One [J],7: e48773.
    Page B D, Satterwhite L L, Rose M D, et al.1994. Localization of the Kar3kinesin heavychain-related protein requires the Cik1interacting protein. J Cell Biol [J],124:507-519.
    Page B D, Snyder M1992. CIK1: a developmentally regulated spindle polebody-associated protein important for microtubule functions in Saccharomycescerevisiae. Genes Dev [J],6:1414-1429.
    Pan J, Snell W J2002. Kinesin-II is required for flagellar sensory transduction duringfertilization in Chlamydomonas. Mol Biol Cell [J],13:1417-1426.
    Pan J, Snell W J2005. Chlamydomonas shortens its flagella by activating axonemaldisassembly, stimulating IFT particle trafficking, and blocking anterograde cargoloading. Dev Cell [J],9:431-438.
    Pan J, Wang Q, Snell W J2004. An aurora kinase is essential for flagellar disassembly inChlamydomonas. Dev Cell [J],6:445-451.
    Pathak N, Obara T, Mangos S, et al.2007. The zebrafish fleer gene encodes an essentialregulator of cilia tubulin polyglutamylation. Mol Biol Cell [J],18:4353-4364.
    Pazour G J, Dickert B L, Vucica Y, et al.2000. Chlamydomonas IFT88and its mousehomologue, polycystic kidney disease gene tg737, are required for assembly of ciliaand flagella. J Cell Biol [J],151:709-718.
    Pazour G J, Dickert B L, Witman G B1999. The DHC1b (DHC2) isoform of cytoplasmicdynein is required for flagellar assembly. J Cell Biol [J],144:473-481.
    Pazour G J, Witman G B2003. The vertebrate primary cilium is a sensory organelle. CurrOpin Cell Biol [J],15:105-110.
    Peden E M, Barr M M2005. The KLP-6kinesin is required for male mating behaviors andpolycystin localization in Caenorhabditis elegans. Curr Biol [J],15:394-404.
    Pennarun G, Escudier E, Chapelin C, et al.1999. Loss-of-function mutations in a humangene related to Chlamydomonas reinhardtii dynein IC78result in primary ciliarydyskinesia. Am J Hum Genet [J],65:1508-1519.
    Perkins L A, Hedgecock E M, Thomson J N, et al.1986. Mutant sensory cilia in thenematode Caenorhabditis elegans. Dev Biol [J],117:456-487.
    Perrone C A, Tritschler D, Taulman P, et al.2003. A novel dynein light intermediate chaincolocalizes with the retrograde motor for intraflagellar transport at sites of axonemeassembly in chlamydomonas and Mammalian cells. Mol Biol Cell [J],14:2041-2056.
    Pfister K K, Shah P R, Hummerich H, et al.2006. Genetic analysis of the cytoplasmicdynein subunit families. PLoS Genet [J],2: e1.
    Piao T, Luo M, Wang L, et al.2009. A microtubule depolymerizing kinesin functionsduring both flagellar disassembly and flagellar assembly in Chlamydomonas. ProcNatl Acad Sci U S A [J],106:4713-4718.
    Piperno G, Luck D J1977. Microtubular proteins of Chlamydomonas reinhardtii. Animmunochemical study based on the use of an antibody specific for the beta-tubulinsubunit. J Biol Chem [J],252:383-391.
    Piperno G, Mead K1997. Transport of a novel complex in the cytoplasmic matrix ofChlamydomonas flagella. Proc Natl Acad Sci U S A [J],94:4457-4462.
    Piperno G, Mead K, Henderson S1996. Inner dynein arms but not outer dynein armsrequire the activity of kinesin homologue protein KHP1(FLA10) to reach the distalpart of flagella in Chlamydomonas. J Cell Biol [J],133:371-379.
    Porter M E, Bower R, Knott J A, et al.1999. Cytoplasmic dynein heavy chain1b isrequired for flagellar assembly in Chlamydomonas. Mol Biol Cell [J],10:693-712.
    Porter M E, Sale W S2000. The9+2axoneme anchors multiple inner arm dyneins and anetwork of kinases and phosphatases that control motility. J Cell Biol [J],151:F37-42.
    Pugacheva E N, Jablonski S A, Hartman T R, et al.2007. HEF1-dependent Aurora Aactivation induces disassembly of the primary cilium. Cell [J],129:1351-1363.
    Qin H, Diener D R, Geimer S, et al.2004. Intraflagellar transport (IFT) cargo: IFTtransports flagellar precursors to the tip and turnover products to the cell body. J CellBiol [J],164:255-266.
    Qin H, Wang Z, Diener D, et al.2007. Intraflagellar transport protein27is a small Gprotein involved in cell-cycle control. Curr Biol [J],17:193-202.
    Quarmby L M, Hartzell H C1994. Two distinct, calcium-mediated, signal transductionpathways can trigger deflagellation in Chlamydomonas reinhardtii. J Cell Biol [J],124:807-815.
    Raff R A, Greenhouse G, Gross K W, et al.1971. Synthesis and storage of microtubuleproteins by sea urchin embryos. J Cell Biol [J],50:516-527.
    Rank K C, Chen C J, Cope J, et al.2012. Kar3Vik1, a member of the kinesin-14superfamily, shows a novel kinesin microtubule binding pattern. J Cell Biol [J],197:957-970.
    Ravelli R B, Gigant B, Curmi P A, et al.2004. Insight into tubulin regulation from acomplex with colchicine and a stathmin-like domain. Nature [J],428:198-202.
    Rogers G C, Rogers S L, Schwimmer T A, et al.2004. Two mitotic kinesins cooperate todrive sister chromatid separation during anaphase. Nature [J],427:364-370.
    Rompolas P, Pedersen L B, Patel-King R S, et al.2007. Chlamydomonas FAP133is adynein intermediate chain associated with the retrograde intraflagellar transportmotor. J Cell Sci [J],120:3653-3665.
    Rosenbaum J L, Moulder J E, Ringo D L1969. Flagellar elongation and shortening inChlamydomonas. The use of cycloheximide and colchicine to study the synthesis andassembly of flagellar proteins. J Cell Biol [J],41:600-619.
    Rosenbaum J L, Witman G B2002. Intraflagellar transport. Nat Rev Mol Cell Biol [J],3:813-825.
    Ross A J, May-Simera H, Eichers E R, et al.2005. Disruption of Bardet-Biedl syndromeciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet [J],37:1135-1140.
    Sato M, Toda T2004. Reconstruction of microtubules; entry into interphase. Dev Cell [J],6:456-458.
    Sato-Yoshitake R, Yorifuji H, Inagaki M, et al.1992. The phosphorylation of kinesinregulates its binding to synaptic vesicles. J Biol Chem [J],267:23930-23936.
    Saunders W, Lengyel V, Hoyt M A1997. Mitotic spindle function in Saccharomycescerevisiae requires a balance between different types of kinesin-related motors. MolBiol Cell [J],8:1025-1033.
    Savoian M S, Gatt M K, Riparbelli M G, et al.2004. Drosophila Klp67A is required forproper chromosome congression and segregation during meiosis I. J Cell Sci [J],117:3669-3677.
    Sawin K E, Scholey J M1991. Motor proteins in cell division. Trends Cell Biol [J],1:122-129.
    Schafer J C, Haycraft C J, Thomas J H, et al.2003. XBX-1encodes a dynein lightintermediate chain required for retrograde intraflagellar transport and cilia assemblyin Caenorhabditis elegans. Mol Biol Cell [J],14:2057-2070.
    Schneider L, Clement C A, Teilmann S C, et al.2005. PDGFRalphaalpha signaling isregulated through the primary cilium in fibroblasts. Curr Biol [J],15:1861-1866.
    Scholey J M2003. Intraflagellar transport. Annu Rev Cell Dev Biol [J],19:423-443.
    Schroda M2006. RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet[J],49:69-84.
    Schroda M, Beck C F, Vallon O2002. Sequence elements within an HSP70promotercounteract transcriptional transgene silencing in Chlamydomonas. Plant J [J],31:445-455.
    Schroda M, Blocker D, Beck C F2000. The HSP70A promoter as a tool for the improvedexpression of transgenes in Chlamydomonas. Plant J [J],21:121-131.
    Scliwa M, Honer B1993. Microtubules, centrosomes and intermediate filaments indirected cell movement. Trends Cell Biol [J],3:377-380.
    Shao N, Bock R2008. A codon-optimized luciferase from Gaussia princeps facilitates thein vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii.Curr Genet [J],53:381-388.
    Sharma N, Bryant J, Wloga D, et al.2007. Katanin regulates dynamics of microtubules andbiogenesis of motile cilia. J Cell Biol [J],178:1065-1079.
    Sharma N, Kosan Z A, Stallworth J E, et al.2011. Soluble levels of cytosolic tubulinregulate ciliary length control. Mol Biol Cell [J],22:806-816.
    Sharp D J, Brown H M, Kwon M, et al.2000a. Functional coordination of three mitoticmotors in Drosophila embryos. Mol Biol Cell [J],11:241-253.
    Sharp D J, Rogers G C, Scholey J M2000b. Microtubule motors in mitosis. Nature [J],407:41-47.
    Shipley K, Hekmat-Nejad M, Turner J, et al.2004. Structure of a kinesin microtubuledepolymerization machine. EMBO J [J],23:1422-1432.
    Shirasu-Hiza M, Coughlin P, Mitchison T2003. Identification of XMAP215as amicrotubule-destabilizing factor in Xenopus egg extract by biochemical purification.J Cell Biol [J],161:349-358.
    Shirasu-Hiza M, Perlman Z E, Wittmann T, et al.2004. Eg5causes elongation of meioticspindles when flux-associated microtubule depolymerization is blocked. Curr Biol [J],14:1941-1945.
    Signor D, Wedaman K P, Rose L S, et al.1999. Two heteromeric kinesin complexes inchemosensory neurons and sensory cilia of Caenorhabditis elegans. Mol Biol Cell [J],10:345-360.
    Silflow C D, Lefebvre P A2001. Assembly and motility of eukaryotic cilia and flagella.Lessons from Chlamydomonas reinhardtii. Plant Physiol [J],127:1500-1507.
    Silflow C D, Rosenbaum J L1981. Multiple alpha-and beta-tubulin genes inChlamydomonas and regulation of tubulin mRNA levels after deflagellation. Cell [J],24:81-88.
    Silverman M A, Leroux M R2009. Intraflagellar transport and the generation of dynamic,structurally and functionally diverse cilia. Trends Cell Biol [J],19:306-316.
    Sobkowicz H M, Slapnick S M, August B K1995. The kinocilium of auditory hair cellsand evidence for its morphogenetic role during the regeneration of stereocilia andcuticular plates. J Neurocytol [J],24:633-653.
    Song L, Dentler W L2001. Flagellar protein dynamics in Chlamydomonas. J Biol Chem[J],276:29754-29763.
    Sorokin S1962. Centrioles and the formation of rudimentary cilia by fibroblasts andsmooth muscle cells. J Cell Biol [J],15:363-377.
    Sotelo J R, Trujillo-Cenoz O1958. Electron microscope study on the development ofciliary components of the neural epithelium of the chick embryo. Z ZellforschMikrosk Anat [J],49:1-12.
    Sproul L R, Anderson D J, Mackey A T, et al.2005. Cik1targets the minus-end kinesindepolymerase kar3to microtubule plus ends. Curr Biol [J],15:1420-1427.
    Stagi M, Gorlovoy P, Larionov S, et al.2006. Unloading kinesin transported cargoes fromthe tubulin track via the inflammatory c-Jun N-terminal kinase pathway. Faseb J [J],20:2573-2575.
    Stephens R E1977. Differential protein synthesis and utilization during cilia formation insea urchin embryos. Dev Biol [J],61:311-329.
    Stevens D R, Rochaix J D, Purton S1996. The bacterial phleomycin resistance gene ble asa dominant selectable marker in Chlamydomonas. Mol Gen Genet [J],251:23-30.
    Storms R, Hastings P J1977. A fine structure analysis of meiotic pairing inChlamydomonas reinhardi. Exp Cell Res [J],104:39-46.
    Stukenberg P T2003. Mitosis: long-range signals guide microtubules. Curr Biol [J],13:R848-850.
    Stumpff J, von Dassow G, Wagenbach M, et al.2008. The kinesin-8motor Kif18Asuppresses kinetochore movements to control mitotic chromosome alignment. DevCell [J],14:252-262.
    Sun Z, Amsterdam A, Pazour G J, et al.2004. A genetic screen in zebrafish identifies ciliagenes as a principal cause of cystic kidney. Development [J],131:4085-4093.
    Tan P L, Barr T, Inglis P N, et al.2007. Loss of Bardet Biedl syndrome proteins causesdefects in peripheral sensory innervation and function. Proc Natl Acad Sci U S A [J],104:17524-17529.
    Tokuyasu K, Yamada E1959. The fine structure of the retina studied with the electronmicroscope. IV. Morphogenesis of outer segments of retinal rods. J Biophys BiochemCytol [J],6:225-230.
    Tournebize R, Popov A, Kinoshita K, et al.2000. Control of microtubule dynamics by theantagonistic activities of XMAP215and XKCM1in Xenopus egg extracts. Nat CellBiol [J],2:13-19.
    Tran K D, Rodriguez-Contreras D, Shinde U, et al.2012. Both sequence and context areimportant for flagellar targeting of a glucose transporter. J Cell Sci [J],125:3293-3298.
    Tran P V, Haycraft C J, Besschetnova T Y, et al.2008. THM1negatively modulates mousesonic hedgehog signal transduction and affects retrograde intraflagellar transport incilia. Nat Genet [J],40:403-410.
    Tsao C C, Gorovsky M A2008. Tetrahymena IFT122A is not essential for cilia assemblybut plays a role in returning IFT proteins from the ciliary tip to the cell body. J CellSci [J],121:428-436.
    Usui T, Maekawa H, Pereira G, et al.2003. The XMAP215homologue Stu2at yeastspindle pole bodies regulates microtubule dynamics and anchorage. EMBO J [J],22:4779-4793.
    Vale R D, Fletterick R J1997. The design plan of kinesin motors. Annu Rev Cell Dev Biol[J],13:745-777.
    van Breugel M, Drechsel D, Hyman A2003. Stu2p, the budding yeast member of theconserved Dis1/XMAP215family of microtubule-associated proteins is a plusend-binding microtubule destabilizer. J Cell Biol [J],161:359-369.
    Varga V, Helenius J, Tanaka K, et al.2006. Yeast kinesin-8depolymerizes microtubules ina length-dependent manner. Nat Cell Biol [J],8:957-962.
    Varga V, Leduc C, Bormuth V, et al.2009. Kinesin-8motors act cooperatively to mediatelength-dependent microtubule depolymerization. Cell [J],138:1174-1183.
    Verde F, Berrez J M, Antony C, et al.1991. Taxol-induced microtubule asters in mitoticextracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmicdynein. J Cell Biol [J],112:1177-1187.
    Walczak C E2003. The Kin I kinesins are microtubule end-stimulated ATPases. Mol Cell[J],11:286-288.
    Walczak C E, Gan E C, Desai A, et al.2002. The microtubule-destabilizing kinesinXKCM1is required for chromosome positioning during spindle assembly. Curr Biol[J],12:1885-1889.
    Walczak C E, Mitchison T J, Desai A1996. XKCM1: a Xenopus kinesin-related proteinthat regulates microtubule dynamics during mitotic spindle assembly. Cell [J],84:37-47.
    Wang H W, Nogales E2005. Nucleotide-dependent bending flexibility of tubulin regulatesmicrotubule assembly. Nature [J],435:911-915.
    Wang X, Schwarz T L2009. The mechanism of Ca2+-dependent regulation ofkinesin-mediated mitochondrial motility. Cell [J],136:163-174.
    Wargacki M M, Tay J C, Muller E G, et al.2010. Kip3, the yeast kinesin-8, is required forclustering of kinetochores at metaphase. Cell Cycle [J],9:2581-2588.
    Wedaman K P, Meyer D W, Rashid D J, et al.1996. Sequence and submolecularlocalization of the115-kD accessory subunit of the heterotrimeric kinesin-II(KRP85/95) complex. J Cell Biol [J],132:371-380.
    Weeks D P, Collis P S1976. Induction of microtubule protein synthesis inChlamydomonas reinhardi during flagellar regeneration. Cell [J],9:15-27.
    Welburn J P, Cheeseman I M2012. The microtubule-binding protein Cep170promotes thetargeting of the kinesin-13depolymerase Kif2b to the mitotic spindle. Mol Biol Cell[J],23:4786-4795.
    West R R, Malmstrom T, Troxell C L, et al.2001. Two related kinesins, klp5+and klp6+,foster microtubule disassembly and are required for meiosis in fission yeast. Mol BiolCell [J],12:3919-3932.
    Wickstead B, Carrington J T, Gluenz E, et al.2010. The expanded Kinesin-13repertoire oftrypanosomes contains only one mitotic Kinesin indicating multiple extra-nuclearroles. PLoS One [J],5: e15020.
    Williams C L, Li C, Kida K, et al.2011. MKS and NPHP modules cooperate to establishbasal body/transition zone membrane associations and ciliary gate function duringciliogenesis. J Cell Biol [J],192:1023-1041.
    Wilson C W, Nguyen C T, Chen M H, et al.2009. Fused has evolved divergent roles invertebrate Hedgehog signalling and motile ciliogenesis. Nature [J],459:98-102.
    Wilson N F, Lefebvre P A2004. Regulation of flagellar assembly by glycogen synthasekinase3in Chlamydomonas reinhardtii. Eukaryot Cell [J],3:1307-1319.
    Wordeman L, Mitchison T J1995. Identification and partial characterization of mitoticcentromere-associated kinesin, a kinesin-related protein that associates withcentromeres during mitosis. J Cell Biol [J],128:95-104.
    Yokoyama R, O'Toole E, Ghosh S, et al.2004. Regulation of flagellar dynein activity by acentral pair kinesin. Proc Natl Acad Sci U S A [J],101:17398-17403.
    Young R W1976. Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci [J],15:700-725.
    Yuan Q, Ouyang S, Wang A, et al.2005. The institute for genomic research Osa1ricegenome annotation database. Plant Physiol [J],138:18-26.
    Zhao T, Wang W, Bai X, et al.2009. Gene silencing by artificial microRNAs inChlamydomonas. Plant J [J],58:157-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700