聚酰亚胺/银复合薄膜的制备及相关机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺银的复合薄膜以其表面银层无与伦比的反射性和电导率,再加上聚酰亚胺基体本身优异的热稳定性和物理机械性能,以及其其它各方面的优异性能(柔软、轻质、高强),在航空航天和微电子等许多领域具有广阔的应用前景,成为近年来广泛研究的多功能材料之一。本文采用两种不同的方法,原位一步自金属化法和直接离子交换自金属化法,制得了表面金属化的聚酰亚胺银复合薄膜,对复合薄膜的表面性能、热性能和机械性能进行了表征,考察了薄膜表面金属化过程中的各种影响因素,并探讨了相关的机理。
     在原位一步自金属化法中,以均苯四甲酸酐/4,4'-二胺基二苯醚(PMDA/ODA)基聚酰亚胺为基体,以三氟乙酰丙酮银(AgTFA)作为银的母体制备出了表面金属化的聚酰亚胺银复合薄膜。薄膜的表面反射性能随着含银量的增加呈现出上升的趋势,但是反射率整体较低,只有20~40%。在快速升温固化时,得到了具有很好导电性的薄膜,其表面电阻达到了5Ωsq~(-1)左右。但是由于基体刚性太大,薄膜的热稳定较差,300℃热处理4 h以上时发生严重降解。
     合成了均苯四甲酸酐—3,3',4,4'-二苯甲醚四酸二酐/4,4'-二胺基二苯醚(PMDA-ODPA/ODA)基的嵌段和无规共聚型聚酰亚胺,考察了共聚组成和共聚序列对金属化复合薄膜性能的影响。其中,嵌段共聚型聚酰亚胺由于两组分保持了自己的独立特性,产生了协同作用,所得到的薄膜同时具有了较好的反射率和导电性。薄膜最高反射率达到了55%以上,电阻值最低达到了5Ωsq~(-1)。而无规共聚型聚酰亚胺由于两者实现了分子水平混合,破坏了各组分的特性,所得到的薄膜最大反射率只有42%,而且不导电。复合薄膜很好地保持了母体聚酰亚胺薄膜的力学性能和热性能。实验通过扫描电镜(SEM)和X射线光电子能谱(XPS)阐明了复合薄膜的表面反射性能在固化过程中呈现出阶梯形变化的原因,建立起了薄膜的表面形貌与表面性能之间的关系。采用透射电镜(TEM)和X射线衍射(XRD)跟踪了复合薄膜中银颗粒的还原聚集长大和银层的形成过程,讨论了银层的形成机理。
     开创了直接离子交换自金属化法,通过将半干性的聚酰胺酸薄膜在银盐的水溶液中进行离子交换载银然后热处理制得了双面银金属化的聚酰亚胺薄膜。实验分别以PMDA/ODA、ODPA/ODA和3,3',4,4'-二苯甲酮四酸二酐/4,4'-二胺基二苯醚(BTDA/ODA)基聚酰亚胺为基体,以硝酸银(AgNO_3)、氟化银(AgF)和银氨络离子([Ag(NH_3)_2]~+)为银源,制得了聚酰亚胺银的复合薄膜。结果表明聚酰亚胺基体和银盐的结构对复合薄膜的表面反射性能和导电性能都具有很大的影响。其中以BTDA/ODA基聚酰亚胺为基体时,所制得的银化薄膜达到了高反射高导电的水平。性能最优异的是BTDA/ODA-AgF体系的复合薄膜,其上下两个表面的反射率分别超过了80%和100%,表面电阻达到了0.6Ωsq~(-1)和0.2Ωsq~(-1)。金属化效率最高的是以碱性的[Ag(NH_3)_2]~+为银源的情况,在很低的银盐浓度(0.01 M)和很短的离子交换时间(5 min)下即实现了蹦さ挠行Ы鹗艋?薄膜上下表面的反射率分别达到了81.8%和93.1%,表面电阻达到了0.6Ωsq~(-1)。但是复合薄膜上下两面均呈现出一定的差异,下表面的反射率和导电性往往高于上表面,而且金属化通常发生较早,研究发现这是由于预聚体薄膜在制备的过程中其上表面发生了轻微的亚胺化作用所致。
     通过SEM、XRD、XPS、TEM和紫外/可见(UV/Vis)分光光度仪表征对薄膜的表面金属化过程进行了研究,弄清了银的还原聚集过程,建立了薄膜的表面形貌、表面组成和表面性能之间的关系。观察到了薄膜浅表层的银颗粒向薄膜表面迁移的现象,指出了这种作用对形成表面银层的贡献很弱。并通过差示扫描量热(DSC)、热失重(TGA)、XPS和SEM分析证明了聚酰亚胺表面高反射高导电银层的形成是在银催化下、氧气辅助的表层聚合物降解和表层银颗粒自加速聚集共同作用的结果。表面银层与>(?)[1 3 5](?)XPS表明银与聚合物之间有很强烈的化学成键作用,但是其主要以面心立方(FCC)晶型的单质银的形式存在于薄膜表面。
     对薄膜的离子交换过程进行了深入的研究,通过傅立叶红外(FTIR)和XPS揭示了聚酰胺酸分子与银离子之间所发生了各种反应。发现了金属离子掺杂后聚酰胺酸大分子的交联行为;建立了一种方法测定了聚酰胺酸在离子交换过程中的质量损失,发现纯水对聚酰胺酸的破坏作用很小,而银离子则有强烈催化加速聚酰胺酸分子水解断链的作用。
     金属化后的复合薄膜在空气中的热稳定性有较大的下降(降低约130~160℃),但是其基本上保持了母体薄膜优异的机械性能。
     将离子交换自金属化法的应用进行了拓展,以水溶性的PMDA/ODA聚酰胺酸为载体,以AgNO_3为银源,在银的加入量不高于1 mol%时,制得了单分散的立方形纳米银颗粒。通过控制热处理时间可以控制银颗粒的尺寸在90~150 nm之间。
Surface-silvered polyimide(PI)film,due to the combination of the excellent thermal and mechanical properties of the polyimide matrix and the unmatched optical reflectivity and electrical conductivity of the surface silver(Ag)layer as well as its many other outstanding performances such as flexibility,light weight,and high strength,has been found widely attractive in aerospace and microelectronic industry and therefore has been extensively studied in recent years.In this dissertation,we report our efforts on the preparation of such silver-metallized polyimide films via two different techniques,in-situ single-stage self-metallization and direct ion-exchange self-metallization.The surface reflectivity and conductivity,thermal and mechanical properties of the composite film were characterized.Factors influencing the film metallization process and related mechanism were investigated.
     With the in-situ single-stage self-metallization protocol,surface-silvered polyimide film has been prepared using pyromellitic dianhydride/ 4,4'-oxydianiline(PMDA/ODA)-based polyimide as the matrix and (1,1,1-trifluoro-2,4-pentadionato)silver(AgTFA)as the silver precursor. Surface reflectance of the metallized film increases with increasing silver concentration.However,the reflectivity for the films prepared from this system is relatively low,with a value in the range of 20~40%.Electrical conductivity was obtained only under rapid thermal treatment cycle and the films were prepared with surface resisitivity of ca.5Ωsq~(-1).However,because of the rigid macromolecule structure,the thermal stability of the metallized film was greatly reduced and serious decomposition would occur on the film after 4 h at 300℃.
     Block and random pyromellitic dianhydride - 4,4'-oxydiphthalic anhydride /4,4'-oxydianiline(PMDA-ODPA/ODA)-based copolyimides were synthesized in our work and used as the matrix to investigate the influence of copolymerization ratio and sequence on the properties of the metallized films. For the silvered random copolyimide,only 40%reflectivity was achieved and no conductivity was observed.However,both reflectivity and conductivity were obtained on the block matrix with a maximum reflectivity over 55%and surface resistivity of ca.5Ωsq~(-1),which is suggested to be due to the synergistic effect of the PMDA/ODA block chain and the ODPA/ODA block chain existing in the block copolyimide.The final metallized films retain the essential thermal and mechanical properties of the pristine polyimide film.The step-wise variation of reflectivity during the thermal curing cycle was fully clarified through scanning electron microscopy(SEM)and X-ray photoelectron spectroscopic(XPS)analysis.The relationship between surface properties and surface morphology has been established.Silver reduction, aggregation and the formation of surface silver layer has been traced in the work using transmission electron microscopy(TEM)and X-ray diffraction (XRD).And the mechanism pertaining to the silver layer formation has been discussed.
     A direct ion-exchange self-metallization approach was developed in our work and double-surface-silvered polyimide film has been fabricated through the ion exchange of damp-dry poly(amic acid)(PAA)films in aqueous silver ion solution and subsequent thermal treatment.In this dissertation,three different polyimides including PMDA/ODA,ODPA/ODA and 3,3',4,4'-benzophenonetetracarboxylic dianhydride - 4,4'-oxydianiline (BTDA/ODA)were used as the matrices and three different simple silver salts including silver nitrate,silver fluoride and silver ammonia complex cation were employed as the silver origins for the film preparation.The results suggest that both polyimide structure and silver structure have significant influence on the surface reflectivity and conductivity of the final metallized film.Films prepared using BTDA/ODA-based polyimide as the matrix achieved very high reflectivity and conductivity.The optimum one was the film prepared from the BTDA/ODA-AgF system,with maximum reflectivity over 80%/ 100%and surface resisitivity of 0.6 / 0.2Ωsq~(-1)on the upside and underside,respectively.Silver ammonia complex cation has the highest efficiency for polyimide silver metallization.Films with maximum reflectivity of 81.8%/ 93.1%and surface resistance of 0.6 / 0.6Ωsq~(-1)on the upside/underside could be fabricated by employing very dilute silver ion solution(0.01 M)and very short ion exchange time(5 min).Surface differences were observed on the metallized film,that is,the reflectivity and conductivity of the underside are always superior to that of the upside.And surface metallization usually(?)curs earlier on the underside.It is suggested that slight imidizaiton occurring on the upside of the poly(amic acid)film should be responsible for all these differences.
     SEM,XRD,XPS,TEM and ultraviolet/visible(UV/Vis)analysis were carried out on the films cured at different thermal stage to investigate the film metallization process.We have clarified the silver reduction and aggregation process and established the relationships of surface properties with the surface morphology and the surface composition of the hybrid films.The migration of small silver particles from the near-surface bulk to the top surface of the film was observed by TEM in our work.However,we figure that this effect doesn't play very important role in the formation of well-established silver layer.And we have demonstrated through differential scanning calorimetry(DSC), thermogravimetry(TGA),XPS and SEM analysis that the formation of highly reflective and conductive silver layers on polyimide film is a result of the silver-catalyzed and oxygen-assisted decomposition of the polymer overlayer and the self-accelerated aggregation of silver clusters on the film surface.The surface silver layers were well-boned to the underlying polyimide.XPS analysis indicates that there are strong chemical bonging interactions between the silver and the polymer groups.However,silver present on the surface mainly exists as native metal in the form of face-centered-cubic(FCC)crystal.
     The ion exchange process between poly(amic acid)and silver ions was extensively studied in our work.Detailed chemical interactions occurring between the macromolecule and silver ions have been disclosed through Fourier transform infrared spectroscopy(FTIR)and XPS analysis.A metal-ion-induced cross-linking behavior of the matrix was observed during the loading of silver into poly(amic acid)via ion exchange.We have developed a method and measured the mass loss of poly(amic acid)during the ion exchange process.The results indicate that water molecules have very weak damaging effect on the precursor,while the silver ions have strong catalytic and accelerated effect on the hydrolysis of poly(amic acid) molecules.
     Compared to the pristine film,the thermal stability of the hybrid films in air were ca.130~160℃degraded after the incorporation of silver.However,the final metallized film maintains the basic mechanical properties of the polyimide matrix.
     Recently,the application of the direct ion-exchange self-metallization approach was extended in our work.Monodispersed silver nanocubes have been fabricated via this method with silver adding amount no more than 1 mol%by employing water-soluble PMDA/ODA-based poly(amic acid)as the intermediate and silver nitrate as the silver origin.The size of silver particles could be controlled in the range of 90~150 nm by adjusting the thermal treatment time.
引文
[1]吕生华,吕庆莉,梁国正.聚酰亚胺树脂合成及应用研究的新进展[J].西北轻工业学院学报,2002,20(2):73-78
    [2]Alegaokar P S,Bhoraskar V N.Characterization of polyimide irradiated in silver solution with a plused electron beam[J].Nucl.Instrum.Meth.B,2004,225:267-274
    [3]Liaw D J,Hsu P N,Chen W H.High glass transitions of new polyamides,polyimides,and poly(amide-imide)s containing a triphenylamine group:Synthesis and characterization[J].Macromolecules,2002,35:4669-4676
    [4]Ranucci E,Sandgren A,Andronova N.Improved polyimide/metal adhesion by chemical modification approaches[J].J.Appl.Polym.Sci.,2001,82:1971-1985
    [5]Terui Y,Matsuda S,Ando S.Molecular structure and thickness dependence of chain orientation in aromatic polyimide films[J].J.Polym.Sci.B:Polym.Phys.,2005,43:2109-2120
    [6]匿名.聚酰亚胺流延薄膜[J].化学世界,1995,(4):217-218
    [7]汤浩,董丽松,冯之榴.聚酰亚胺及其共混物[J].材料研究学报,1996,10(5):449-459
    [8]杨祖华,王刚,王鸿灵.聚酰亚胺薄膜的制备及其摩擦学性能研究[J].材料科学与工程学报,2004,22(1):105-109
    [9]丁孟贤.聚酰亚胺--化学、结构与性能的关系及材料[M].北京:科学出版社,2006.
    [10]Lee K W,Kowalczyk S P,Shaw J M.Surface modification of BPDA-PDA polyimide[J].Langmuir,1991,7:2450-2453
    [11]Stoffel N C,Hsieh M,Chandra S.Surface modification studies of polyimdie films using rutherford backscattering and forward recoil spectrometry[J].Chem.Mater.,1996,8:1035-1044
    [12]Rubira A F,Rancourt J D,Taylor L T.Chemical factors that influence the production of conductivie and/or reflective silver-doped polyimide films[J].J.Macromol.Sci.-Pure Appl.Chem.,1998,A35(4):621-636
    [13]Porta G M,Rancourt J D,Taylor L T.Copper/polyimide multilayered composites[J].Chem.Mater.,1989,1(2):269-276
    [14]Bergmeister J J,Rancourt J D,Taylor L T.The synthesis and characterization of magnetic iron-modified polyimide films[J].Chem.Mater.,1990,2(6):640-641
    [15]Ellison M M,Taylor L T.Modifier and polymer interactions in metal-modified polyimide composites[J].Chem.Mater.,1994 6(7):990-998
    [16]Southward R E,Thompson D W.Inverse CVD:A novel synthetic approach to metallized polymeric films[J].Adv.Mater.,1999,11(12):1043-1047
    [17]Akamatsu K,Ikeda S,Nawafune H.Surface modification-based synthesis and microstructural tuning of nanocomposite layers:Monodispersed copper nanoparticles in polyimide resins[J].Chem.Mater.,2003,15:2488-2491
    [18]Beecroft L L,Ober C K.Nanocomposite materials for optical applications[J].Chem.Mater.,1997,9:1302-1317
    [19]Lamber R,Wetjen S,Schulz-Ekloff G.Metal clusters in plasma polymer matrixes:Gold clusters[J].J.Phys.Chem.,1995,99(38):13834-13838
    [20]Southward R E,Stoakley D M.Reflective and electrically conductive surface silvered polyimide films and coatings prepared via unusual single-stage self-metallization techniques[J].Prog.Org.coat.,2001,41:99-119
    [21]Southward R E,Thompson D S,Thompson D W.Prepartion of silvered polyimide mirrors via self-metallizing poly(amic acid)resins[J].Metal-containing Polym.Mater.,1996:349-356
    [22]Quaroni L,Chumanov G.Preparation of polymer-coated functional silver nanoparticles[J].J.Am.Chem.Soc.,1999,121:10642-10643
    [23]Southward R E,Thompson D W.Reflective and conductive silvered polyimide films for space applications prepared via a novel single-stage self-metallization technique[J].Mater.Design,2001,22:565-576
    [24]Akamatsu K,Ikeda S,Nawafune H.Site-selective direct silver metallization on surface-modified polyimide layers[J].Langmuir,2003,19:10366-10371
    [25]Akamatsu K,Ikeda S,Nawafune H.Direct patterning of copper on polyimide using ion exchangeable surface templates generated by site-selective surface modification[J].J.Am.Chem.Soc.,2004,126:10822-10823
    [26]Akamatsu K,Shinkai H,Ikeda S.Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decompostion of surrounding polymer matrix[J].J.Am.Chem.Soc.,2005,127:7980-7981
    [27]Andreescu D,Wanekaya A K,Sadik O A.Nanostructured polyamic acid membrances as novel electrode materials[J].Langmuir,2005,21:6891-6899
    [28]Bai Z,Chen M Y,Tan S C.Preparation and characterization of novel polyimide nanocomposite film[J].Polym.Prepr.,2002,43:1277-1278
    [29]Ektessabi A M,Hakamata S.Xps study of ion beam modified polyimide films[J].Thin Solid Films,2000,377-378:621-625
    [30]Huang J C,Qian X F,Yin J.Preparation of soluble polyimide-silver nanocomposites by a convenient ultraviolet irradiation technique[J].Mater.Chem.Phys.,2001,69:172-175
    [31]Kariuki N N,Luo J,Hassan S A.Assembly of biometallic gold-silver nanopartilces via selective interparticle dicarboxylate-silver linkages[J].Chem.Mater.,2006,18:123-132
    [32]Li Y,Lu Q,Qian X.Preparation of surface bound silver nanoparticles on polyimide by surface modification method and its application on electroless metal deposition[J].Appl.Surf.Sci.,2004,233:299-306
    [33]Rifai S,Breen C A,Solis D J.Faciel in situ silver nanoparticle formation in insulating porous polymer matrices[J].Chem.Mater.,2006,18:21-25
    [34]Southward R E,Bagdassarian C K,Sudol C J.Synthesis of surface-metallized polymeric films by in situ reduction of(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato)silver(I)in a polyimide matrix[J].J.Mater.Res.,1999,14(7):2897-2904
    [35]Southward R E,W.Thompson D,K.St.Clair.A.Control of reflectivity and surface conductivity in metallized polyimide films prepared via in situ silver(I)reduction[J].Chem.Mater.,1997,(9):501-507
    [36]Wilbur J L,Jackman R J,Whitesides G M.Elastomeric optics[J].Chem.Mater.,1996,8(7):1380-1385
    [37]Yen C T,Chen W C.Effects of molecular structures on the near-infrared optical properties of polyimide derivatives and their corresponding optical waveguides[J].Macromolecules,2003,36:3315-3319
    [38]Zhang F,Guan N,Li Y.Control of morphology of silver clusters coated on titanium dioxide during photocatalysis[J].Langmuir,2003,19:8230-8234
    [39]Breimer M A,Yevgeny G;Sy S.Incorporation of metal nanoparticles in photopolymerized organic conducting polymers:A mechanistic insight[J].Nano Lett.,2001,1(6):305-308
    [40]Matsuda S,Yasuda Y,Ando S.Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible,linear polarizers[J].Adv.Mater.,2005,17:2221-2224
    [41]Warner J D,Pevzner M,Dean C J.Synthesis of hexafluoroisopropylidene-containing polyimide-silver nanocomposite films evolving specularly reflective metal surfaces[J].J.Mater.Chem.,2003,13(7):1847-1852
    [42]张留城,李佐邦.缩合聚合[M].北京:化学工业出版社,1986.482
    [43]Bogert M T,Renshaw R R.4-Amino-0-phthalic acid and some of its derivatives[J].J.Am.Chem.Soc.,1908,30(7):1135-1144
    [44]Searle N E.N-arylmaleimides[P].US Patent,2444536.1948-07-06
    [45]Edwards W M,Robinson I M.Polyimides of pyromellitic acid[P].US Patent,2710853.1955-06-14
    [46]李生柱.聚酰亚胺的现状和将来[J].化工新型材料,1999,27(11):12-17
    [47]李生柱,吴建华,朱小华.高性能聚酰亚胺的进展[J].化工新型材料,2002,30(6):19-24
    [48]张雯,张露,李家利.国外聚酰亚胺薄膜概况及其应用进展[J].绝缘材料,2001,(2):21-23
    [49]李战雄,王标兵,欧育湘.耐高温聚合物[M].化学工业出版社 2007.409
    [50]李生柱.聚酰亚胺新进展[J].化工新型材料,1997,(1):3-10
    [51]张秀菊,陈鸣才,黄玉惠.聚酰亚胺的性能、应用及发展概况[J].广州化学,1998,(3):58-66
    [52]刘金刚,何民辉,王丽芳.含氟聚酰亚胺及其在微电子工业中的研究进展Ⅰ含氟单体及聚酰亚胺的合成[J].高分子通报,2003,(3):1-14
    [53]李敏,张佐光,仲伟虹.聚酰亚胺树脂研究与应用进展[J].复合材料学报,2000,17(4):48-53
    [54]李英葆.我国聚酰亚胺薄膜制造技术发展水平的评估[J].绝缘材料,2002,(5):28-34
    [55]汪多仁.聚酰亚胺的合成与应用的进展[J].电线电缆,2001,(6):10-12
    [56]胡福增,郑安呐.缩聚系树脂的开发应用现状及展望[J].金山油化纤,1998,(2):41-46
    [57]Shahram M A,Naeemeh B B.Synthesis and properties of polyimides and copolyimides containing pyridine units:A review[J].Iran.Polym.J.,2008,17(2):95-124
    [58]赵斯梅.纳米杂化聚酰亚胺薄膜的制备及性能分析[D].哈尔滨:哈尔滨理工大学,2006
    [59]童跃进,李悦生,丁孟贤.聚酰亚胺的预聚体--聚酰胺酯的研究进展[J].高分子通讯,1998,(3):44-50
    [60]王睦铿.含氟聚酰亚胺的制备及应用[J].有机氟工业,1994,(2):15-25
    [61]冯华君.热固性聚酰亚胺拉伸薄膜[D].北京:北京化工大学,2001
    [62]仇武林.新型聚酰亚胺的合成与表征[D].南京:南京理工大学,1995
    [63]丁孟贤,洪维.聚酰胺酸稳定性的研究[J].高分子材料科学与工程 1990,6(3):97-102
    [64]谢光贤.聚酰胺酸分子量的控制及其对聚酰亚胺薄膜性能的影响[J].绝缘材料,1986,(06):8-13
    [65]刘润山,郭铁东,赵文秀.芳香聚酰亚胺化学若干问题[J].高分子材料科学与工程,1994,10(2):1-8
    [66]张俊彦,刘维民,薛群基.聚酰亚胺膜的热性能分析[J].化学物理学报,1999,12(2):197-200
    [67]史宝利,吴庸烈.聚酰亚胺/磺化聚芳醚砜共混中空纤维膜用于醇/醚气相分离的研究 [J].膜科学与技术,1999,19(6):48-51
    [68]戴俊燕,刘德山.含氟聚酰亚胺的研究进展[J].功能高分子学报,1999,(3):337-344
    [69]刘金刚,王强,朱普坤.热分析方法研究四种聚酰亚胺的热稳定性[J].河北工业大学学报,1999,28(1):15-19
    [70]路庆华,李梅,陶萍.含羟基活性基团的聚酰亚胺制备和表征[J].上海交通大学学报,2001,35(4):605-609
    [71]李友清,刘丽,刘润山.聚酰亚胺的改性[J].化工新型材料,2003,31(8):18-24
    [72]李友清,刘丽,刘润山.聚酰亚胺研究[J].精细石油化工进展,2002,4(3):38-46
    [73]葛建芳,卢风纪.可溶性聚酰亚胺研究新进展[J].绝缘材料通讯,1999,(6):22-27
    [74]蔡辉,闫逢元,陈建敏.聚酰亚胺的改性研究[J].材料科学与工程学报,2003,21(1):95-98
    [75]印杰,叶羽丰,张智勇.主链含长柔性链的聚酰亚胺的合成与性能研究[J].高分子材料科学与工程,1999,15(1):44-47
    [76]黄俐研,史燚,金熹高.可溶性聚酰亚胺的热分解[J].中国科学(B辑),1999,29(4):319-326
    [77]Chung I S,Kim S Y.Soluble polyimides from unsymmetrical diamine with trifluoromethyl pendent group[J].Macromolecules,2000,33(9):3190-3193
    [78]Chen J P,Natansohn A.Synthesis and characterization of novel carbazole-containing soluble polyimides[J].Macromolecules,1999,32(10):3171-3177
    [79]赵育.含氟聚酰亚胺的开发和应用[J].化工新型材料,1994,(2):17-23
    [80]李生柱.透明聚酰亚胺[J].化学世界,1995,(8):897-402
    [81]Maier G Low dielectric constant polymers for microelectronics[J].Prog.Polym.Sci.,2001,(26):3-65
    [82]Matsuura T,Ando S,Sasaki S.Polyimides derived from 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl.4.Optical properties of fluorinated polyimides for optoelectronic components[J].Macromolecules,1994,27(22):6665-6670
    [83]Hougham G,Tesoro G,Shaw J.Synthesis and properties of highly fluorinated polyimides[J].Macromolecules,1994,27(13):3642-3649
    [84]林保平.含硅聚酰亚胺及其复合薄膜的制备与性能[D].南京:东南大学,2005
    [85]Zhao J,Rojstaczer S R,Chen J.Effect of siloxane segment length on the surface composition of poly(imidesiloxane)copolymers and its role in adhesion[J].Macromolecules,1999,32(2):455-461
    [86]Tiptipakom S,Damrongsakkul S,Ando S.Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends[J].Polym.Degrad.Stabil.,2007,92(7):1265-1278
    [87]Furukawa N,Yuasa M,Kimura Y.Characterization of polysiloxane-block-polyimides with silicate group in the polysiloxane segments[J].Polym.Degrad.Stabil.,1999,40(7):1853-1862
    [88]冯威,李佐邦,朱普坤.光敏聚酰亚胺的研究进展[J].功能高分子学报,1996,9(1):125-136
    [89]Morita K,Ebara K,Shibasaki Y.New positive-type photosensitive polyimide having sulfo groups[J].Polym.Degrad.Stabil.,2003,44(20):6235-6239
    [90]Moore J A,Dasheff A N.An intrinsically photosensitive polyimide[J].Chem.Mater.,1989,1(1):163-166
    [91]Ueda M,Nakayama T.A new negative-type photosensitive polyimide based on poly(hydroxyimide),a cross-linker,and a photoacid generator[J].Macromolecules,1996,29(20):6427-6431
    [92]封伟,郑建邦,曹猛.非线性光学材料聚酰亚胺的研究进展[J].化工新型材料,1999,(8):17-19
    [93]钱军民,李旭样.聚酰亚胺改性和应用研究进展[J].绝缘材料,2001,(6):12-17
    [94]Chen T A,Jen A K Y,Cai Y.Facile approach to nonlinear optical side-chain aromatic polyimides with large second-order nonlinearity and thermal stability[J].J.Am.Chem.Soc.,1995,117(27):7295-7296
    [95]Hsiue G H,Kuo J K,Jeng R J.Stable second-order nonlinear optical polymer network based on an organosoluble polyimide[J].Chem.Mater.,1994,6(7):884-887
    [96]吕宝堂,王滨生,胡宏勋.聚合物衬底非晶硅太阳电池的研制[J].太阳能学报,1996,17(3):252-255
    [97]陈焕.超支化聚酰亚胺及其功能材料的研究[D].上海:上海交通大学,2003
    [98]Hao J,Jikei M,Kakimoto M.Preparation of hyperbranched aromatic polyimides via A_2+B_3approach[J].Macromolecules,2002,35(14):5372-5381
    [99]Whang W T,Wu S C.The liquid crystalline state of polyimide precursors[J].J.Polym.Sci.Part A:Polym.Chem.,1988,26(10):2749-2761
    [100]Kricheldorf H R.Liquid-crystalline polyimides[J].Adv.Polym.Sci.,1999,141:83-188
    [101]付祥峰.联苯型侧链聚酰亚胺液晶取向膜预倾角的研究[D].成都:四川大学,2006
    [102]Angelo R J.Electrically conductive polymeric compositions[P].US Patent,3073785.1963-01-15
    [103]Han S M,Armstrong D W.Packing-induced brittleness in polyimide- and aluminum-clad fused-silica capillaries[J].Anal.Chem.,1987,59(11):1583-1584
    [104]Strunskus T,Grunze M,Kochendoerfer G.Identification of physical and chemical interaction mechanisms for the metals gold,silver,copper,palladium,chromium,and potassium with polyimide surfaces[J].Langmuir,1996,12(11):2712-2725
    [105]Khor E,Taylor L T.A study of polyimide properties imparted by the addition of lithium ions[J].Macromolecules,1982,15(2):379-382
    [106]Li W,Osora H,Otero L.Photoelectrochemistry of a substituted-Ru(Bpy)_3~(2+)-labeled polyimide and nanocrystalline SnO_2 composite formulated as a thin-film electrode[J].J.Phys.Chem.A.,1998,102(28):5333-5340
    [107]Khor E,Tan H S,Ng S C.A.C.Electrical behaviour of cobaltcomplex-doped polyimide films[J].Polymer,1990,31(4):623-626
    [108]Rancourt J D,Porta G M,Taylor L T.Comparison of the electrical properties of polyimide films containing surface metal oxide:Cobalt oxide vs.Tin oxide[J].Thin Solid Films,1988,158(2):189-206
    [109]Rancourt J D,Porta G M,Moyer E S.Polyimide/metal composite films via in situ decomposition of inorganic additives:Soluble polyimide versus polyimide precursor[J].J.Mater.Res.,1988,3(5):996-1001
    [110]Southward R E,Thompson D W.Metal-polyimide nanocomposite films:Single-stage synthesis of silvered polyimide films prepared from silver(I)and bpda/4,4'-oda[J].Chem.Mater.,2004,16:1277-1284
    [111]Ezzell S,Taylor L T.Surface-semiconductive polyimide films containing tin complexes[J].Macromolecules,1984,17(8):1627-1632
    [112]Zhan J,Tian G,Jiang L.Superparamagnetic polyimide/γ-Fe_2O_3 nanocomposite films:Preparation and characterization[J].Thin Solid Films,2008.In press.
    [113]Wu Z,Wu D,Yang W.Preparation of highly reflective and conductive metallized polyimide films through surface modification:Processing,morphhology and properties[J].J.Mater.Chem.,2006,16:310-316
    [114]Wu Z,Wu D,Qi S.Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique[J].Thin Solid Films,2005,493:179-184
    [115]熊金钰,徐国财.纳米银的制备及表征[J].金属功能材料,2004,11(2):38-42
    [116]孙磊,周静芳,张治军.DDP修饰Ag纳米微粒的制备及结构表征[[J].河南大学学报(自然科学版),2000,3(30):24-27
    [117]Hornebecq V,Antonietti M,Cardinal T.Stable silver nanoparticles immobilized in mesoporous silica[J].Chem.Mater.,2003,15(10):1993-1999
    [118]杨玉旺,刘敬利.纳米银研究和应用新进展[J].工业催化,2003,11(12):7-12
    [119]张昊然,李清彪,孙道华.纳米级银颗粒的制备方法[J].贵金属,2005,26(2):51-56
    [120]于兵川,吴洪特,张万忠.纳米银的合成研究进展[J].化工科技市场,2005,28(3):30-34
    [121]熊金钰,徐国财,吉小利.纳米银的超声合成及分形研究[J].安徽理工大学学报(自然科学版),2004,24(3):69-72
    [122]郭立俊,魏红彬,邢前.银纳米粒子的制备及溴离子对其表面性质的影响[J].河南大学学报(自然科学版),2000,30(3):20-23
    [123]李德刚,陈慎豪,赵世勇.相转移方法制备银纳米粒子单层膜[J].化学学报,2002,60(3):408-412
    [124]李亚栋,贺蕴普,钱逸泰.银纳米粒子的制备及其表面特性研究[J].化学物理学报,1999,12(4):465-468
    [125]彭子飞,汪国忠,冯贵武.化学共沉淀法制备纳米级PbTiO_3粉末[J].材料科学与工程学报,1997,15(1):26-28
    [126]宋文海,姜柳笛,赵兵.纳米银掺杂对Bi(2223)超导体的影响[J].低温物理学报,1999,21(6):456-459
    [127]曾戎,章明秋,曾汉民.高分子纳米复合材料研究进展(Ⅰ)--高分子纳米复合材料的制备、表征和应用前景[J].宇航材料工艺,1999,(1):1-7
    [128]Yuan Z,Dryden N H,Vittal J J.Chemical vapor deposition of silver[J].Chem.Mater.,1995,7(9):1696-1702
    [129]Tian M,Wang J,Kurtz J.Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism[J].Nano Lett.,2003,3(7):919-923
    [130]Ward L J,Schofield W C E,Badyal J P S.Atmospheric pressure plasma deposition of structurally well-defined polyacrylic acid films[J].Chem.Mater.,2003,15:1466-1469
    [131]Rozovskis G,Vinkevicius J,Jaciauskiene J.Plasma modification of polyimide for improving adhesion[J].J.Adhes.Sci.Tech.,1996,10:399-406
    [132]Green P F,Berger L L.Effects of polyimide chemical structure and environment on the diffusivity of copper[J].Thin Solid Films,1993,224(2):209-216
    [133]Rubira A F,Rancourt J D,Taylor L T.Polyimides doped with silver-Ⅱ:Surface conductive films[J].Metal-containing Polym.Mater.,1996:357-368
    [134]Rubira A F,Rancourt J D,Caplan M L.Optically reflective polyimide films created by in situ silver metal formation[J].Chem.Mater.,1994,6(12):2351-2358
    [135]Endrey A L.Electrically conductive polypyromellitimides[P].US Patent,3073784.1963-01-15
    [136]Southward R E,Thompson D S,Thompson D W.Synthesis of reflective polyimide films via in situ silver(I) reduction[J]. Chem. Mater., 1995, 7: 2171-2180
    [137] Clair A K S, Taylor L T. A comparison of physical and mechanical properties of polyimide films containing different metal ions[J]. J. Appl. Polym. Sci., 1983,28(7): 2393-2400
    [138] Southward R E, Thompson D S, Thompson D W. Inverse chemical vapor deposition: A novel single stage synthesis of highly reflective and conductive silvered polymeric films[J]. Chem.Mater., 1999,11:501-507
    [139] Southward R E, W.Thompson D, S.H.Sproul. Control of surface specular reflectivity and electrical conductivity in silvered polyimide films via in situ thermal reduction of (perfluoro-alkanoato) silver(i) complexes[J]. Polym. Mater. Sci. Eng., 1998, 78: 11-12
    [140] Southward R E, Boggs C M, W.Thompson D. Synthesis of surface-metallized polyimide films via in situ reduction of (perfluoroalkanoato) silver(I) complexes in a poly(amic acid) precursor[J]. Chem. Mater., 1998, (10): 1408-1421
    [141] Southward R E, Thompson D S, W.Thompson D. Fabrication of highly reflective composite polyimide films via in situ reduction of matrix constrained silver(I)[J]. Chem. Mater., 1997, 9:1691-1699
    [142] Southward R E, Thompson D S, Thompson D W. Synthesis of highly reflective composite polyimide films via a self-metallizing procedure utilizing (hexafluoroacetyl- acetonato) silver(I)[J]. Polym. Mater. Sci. Eng., 1997,76: 183-184
    [143] Southward R E, Thompson D S, W.Thompson D. Reflective polyimide films via in situ formation of a silvered surface[J]. Polym. Mater. Sci. Eng., 1995, 73: 382-383
    [144] Southward R E, Thompson D W, Clair A K S. Reflective silvered polyimide films via in situ thermal reduction silver (I) complexes[P]. US Patent, 6019926. 2000-02-01
    [145] Southward R E, Chisholm Brause C, Dean C J. Surface metallized BPDA/4,4'-ODA polyimide films via in situ thermal reduction of silver(I) beta-diketonate complexes[J]. Polym. Prep.,2000,41(1): 38-39
    [146] Southward R E, Warren A S, Thompson D W. Silvered polyimide films for space applications via a single stage synthesis, [J]. Polym. Prep. (Am.Chem.Soc, Div.Polym. Chem.), 1999,40(1): 55-56
    [147] Southward R E, Thompson D S, Thompson D W. Highly reflective and surface conductive silver-polyimide films fabricated via reduction of silver(I) in a thermally curing poly(amic acid) matrix[J]. Mater. Res. Soc. Symp. Proc, 1999, 551: 163-168
    [148] Southward R E, Thompson D W, Clair A K S. Surface conductivite and reflective silver-polyimide composite films prepared via thermally induced reduction of (1,1,1-trifluoro-2,4-pentanedionato) silver(I) in curing poly(amic acid) matrix[J]. Polym.Prepr., 1998, 399(1): 423-424
    [149] Thompson D W, Caplan M L, St. Clair A K. Reflective self-metallizing polyimide films [P].US Patent, 5677418. 1997-10-14
    [150] Southward R E, Thompson D W, Clair A K S. Control of surface reflectivity/conductivity in silvered polyimide films via in situ thermal reduction of silver(I) complexes[J]. Polym. Mater. Sci. Eng., 1996,74:414-415
    [151] Southward R E, Clair A K S, Thompson D W. The synthesis of reflective surface metallized silver polyimide films via in situ reduction of (4,4,4-trifluoro-1- (thienyl)-1,3- butanedionato) silver(I) in a polyimide matrix[J]. Polym. Mater. Sci. Eng., 1998, 78: 166-167
    [152] Warner J D, Kranbuehl D E, Dean C J. Silver-polyimide nanocomposite films with highly reflective surfaces synthesized with the poly(amic acid)and imide forms of 6FDA/4-BDAF[J].Polym.Mater.Sci.Eng.,2002,87:102-103
    [153]Foitzik A,Faupel F.Structural investigation of the silver-polyimide interface by cross-sectional tern and ion-beam sputtering[J].Mater.Res.Soc.Symp.Proc.,1991,203:59-64
    [154]Berens A R,Huvard G S,Korsmeyer R W.Process for incorporating an additive into a polymer and product produced thereby[P].US Patent,4820752.1989-04-11
    [155]Sand M L.Impregnating a thermoplastic polymer[P].US Patent,4598006.1986-01-15
    [156]Boggess R K,Taylor L T,Stoakley D M.Highly reflective polyimide films created by supercritical fluid infusion of a silver additive[J].J.Appl.Polym.Sci.,1997,64:1309-317
    [157]Rosolovsky J,Boggess R K,Rubia A F.Supercritical fluid infusion of silver into polyimide films of varying chemical composition[J].J.Mater.Res.,1997,12(11):3127-3133
    [158]Wu Z,Wu D,Qi S.Surface modification-based fabrication of double surface highly reflective and conductive metallized polymeric films and microstructural tuning nanocomposite layers[A].In:Thomas Wohlbier.Proceedings of the Asian International Conference on Advanced Materials(AICAM 2005)[C].Switzerland:Trans Tech Publications Ltd.,2006,497-500.
    [159]武德珍,吴战鹏,齐胜利.一种双面高反射高导电聚酰亚胺/银薄膜的制备方法[P].中国专利,1803312.2006-07-19
    [160]Matsuda S,Ando S.Anisotropy in optical transmittance and molecular chain orientation of silver-dispersed uniaxially drawn polyimide films[J].Polym.Adv.Technol.,2003,14:458-470
    [161]Sawada T,Ando S.Synthesis,characterization,and optical properties of metal-containing fluorinated polyimide films[J].Chem.Mater.,1998,10:3368-3378
    [162]Leadley S R,Watts J F.The use of xps to examine the interaction of poly(acrylic acid)with oxidised metal substrates[J].J.Electron Spectrose.,1997,85:107-121
    [163]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.72
    [164]Luo W,Hu W,Xiao S.Size effect on the thermodynamic properties of silver nanoparticles[J].J.Phys.Chem.C,2008,112(7):2359-2369
    [165]Nanda K K,Sahu S N,Behera S N.Liquid-drop model for the size-dependent melting of low-dimensional systems[J].Phys.Rev.A,2002,66:013208(1-8)
    [166]Castro T,Reifenberger R,Choi E.Size-dependent melting temperature of individual nanometer-sized metallic clusters[J].Phys.Rev.B,1990,42(13):8548-8556
    [167]Jeon J Y,Tak T M.Synthesis and characterization of polyimide derivatives prepared by different one-step methods[J].J.Appl.Polym.Sci.,1996,61:371-382
    [168]Thomas R R.Wetting kinetics study of modified polyimide surfaces containing ionizable functional groups[J].Langmuir,2003,19:5763-5770
    [169]Pramoda K P,Liu S,Chung T-S.Thermal imidization of the precursor of a liquid crystalline polyimide[J].Macromol.Mater.Eng.,2002,287:931-937
    [170]Okumura H,Takahagi T,Nagai N.Depth profile analysis of polyimide film treated by potassium hydroxide[J].J.Polym.Sci.Part B:Polym.Phys.,2003,41:2071-2078
    [171]Thomas R R,Buchwalter S L,Buchwalter L P.Organic chemistry on a polyimide surface[J].Macromolecules,1992,25:4559-4568
    [172]Beamson G,Briggs D.High Resolution XPS of Organic Polymers:The Scienta ESCA300Database[M].John Wiley & Sons,Ltd.:New York,1992
    [173]Fu G D,Wang W C,Li S.Nanoporous low-k polyimide films prepared from poly(amic acid)s with grafted poly(methylmethacrylate)/poly(acrylamide) side chains[J]. J. Mater. Chem., 2003,13:2150-2156
    [174] Kang E T, Tan K L, Kato K. Surface modification and fbnctionalization of polytetrafluoroethylene films[J]. Macromolecules, 1996,29: 6872-6879
    [175] Tsai W H, Cave N G, Boerio F J. Characterization of interfaces between pyromellitic dianhydride/2,2-bis[4-(4-aminophenoxy) phenyl]hexafluoropropane polyimides and silver and highly oriented pyrolytic graphite substrates using x-ray photoelectron spectroscopy[J].Langmuir, 1992, 8: 927-935
    [176] Xiao Y, Chung T S, Chng M L. Surface characterization, modification chemistry and seperation performance of polyimide and polyamidoamine dendrimer composite films[J]. Langmuir,2004,20:8230-8238
    [177] Xu F J, Kang E T, Neoh K G Uv-induced coupling of 4-vinylbenzyl chloride on hydrogen-terminated Si(100) surfaces for the preparation of well-defined polymer-Si hybrides via surface-initiated ATRP[J]. Macromolecules, 2005,38: 1573-1580
    [178] Yang C Y, Chen J S, Hsu S L C. Investigation of the interfacial reaction between metal and fluoride-contained polyimides[J]. J. Vac. Sci. Technol., 2005, A 23(4): 862-868
    [179] Liu X, Neoh K G, Kang E T. Viologen-functionalized conductive surfaces: Physicochemical and electrochemical characteristics, and stability[J]. Langmuir, 2002, 18: 9041-9047
    [180] Serghini-Monim S, Norton P R, Puddephatt R J. Chemical vapor deposition of silver on plasma-modified polyurethane surfaces[J]. J. Phys. Chem. B, 1997,101: 7808-7813
    [181] Zhang F, Wolf G K, Wang X. Surface properties of silver doped titanium oxide films[J]. Surf.Coat. Tech., 2001,148:65-70
    [182] Lee W J, Lee Y S, Rha S K. Adhesion and interface chemical reactions of Cu/polyimide and Cu/Tin by xps[J]. Appl. Surf. Sci., 2003, 205: 128-136
    [183] Rojas D M, Subias G, Fraxedas J. Electronic structure of Ag_2Cu_2O_(4-) Evidence of oxidized silver and copper and internal charge delocalization[J]. J. Phys. Chem. B, 2005, 109:6193-6203
    [184] Serghini-Monim S, Norton P R, Puddephatt R J. Adsorption of a silver chemical vapor depostion precursor on polyurethane and reduction of the adsorbate to silver using formaldehyde[J]. J. Phys. Chem. B, 1998, 102: 1450-1458
    [185] Patai S, Rappoport Z. The chemsitry of organic derivatives of gold and silver[M]. John Wiley & Sons, Ltd.: West Sussex, 1999
    [186] Du X Z, Liang Y Q. Structure control of ion exchange in N-octadecanoyl-alanine Langmuir-Blodgett films studied by FTIR spectroscopy[J]. Langmuir, 2000, 16: 3422-3426
    [187] Li G, Luo Y, Li J. Preparation of Ag nanoparticles in the presence of low generation pamam dendrimer with surface ester groups[J]. Chinese J. Inorg. Chem., 2005, 21(2): 165-168
    [188] Sun N, Guo Z X, Dai L. Hexakisaddu CT C_(60))-Ag nanocomposite: Fabrication and optical limiting effect[J]. Chem. Phys. Lett., 2001, 256: 175-180
    [189] Zhao W W, Boerio F J. Characterization of polyimide Langmuir-Blodgett films on silver using Infrared, Raman and X-ray photoelectron spectroscopies[J]. Surf. Interface Anal., 1998, 26:316-328
    [190] Elechiguerra J L, Lopez L L, Liu C. Corrosion at the nanoscale: The case of silver nanowires and nanoparticles[J]. Chem. Mater., 2005, (17): 6042-6052
    [191] Chu Y Q, Qin Q Z. Fabrication and characterization of silver-V_2O_5 composite thin films as lithium-ion insertion materials[J]. Chem. Mater., 2002, 14: 3152-3157
    [192] Gao X Y, Wang S Y, Li J. Study of strucute and optical properties of silver oxide films by ellipsometry, XRD and XPS methods[J]. Thin solid films, 2004, (455-456): 438-442
    [193] Lee K W, Kowalcyzk S P, Shaw J M. Surface modification of PMDA-ODA polyimide: Surface structure-adhesion relationship[J]. Macromolecules, 1990,23: 2097-2100
    [194] Ding Y, Bikson B, Nelson J K. Polyimide membranes derived from poly(amic acid) salt precursor polymer. 2. Composite membrane preparation[J]. Macromolecules, 2002, (35):912-916
    [195] Yang J, Lee M H. A water-soluble polyimide precursor: Synthesis and characterization of poly(amic acid)[J]. Macromol. Res., 2004,12(3): 263-268
    [196] Wiley B, Sun Y, Mayers B. Shape-controlled synthesis of metal nanostructures: The case of silver[J]. Chem. Eur. J., 2005, 11(2): 454-463

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700