贫燃条件下Ag-Rh/CZA催化剂上氮氧化物的催化还原研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出于燃油经济性的考虑,贫燃发动机得到了越来越广泛的应用,然而,贫燃发动机尾气中富含大量的氮氧化物(其中90%以上是NO)和氧,使得传统的汽车尾气净化三效催化剂在贫燃工况下失去了催化活性,因此,开发出新型的适合贫燃条件下机动车尾气净化的催化剂势在必行。Ag/AlB2BOB3B催化剂是目前烃类选择性催化还原NO反应中研究最广泛的,它具有较好的反应活性及良好的水热稳定性,但该催化剂的低温反应活性低、反应温度范围窄。
     为提高催化剂的低温活性及拓宽反应温度范围,本文采用浸渍法制备了以储氧性能佳、比表面积大的CeOB2B-ZrOB2B-AlB2BOB3B复合氧化物为载体,Ag,Rh为活性金属的单组分及双组分催化剂。通过多种表征手段考察了不同Ce/Zr比CZA载体的结构、热稳定性及储氧量等性能;通过活性评价和其他表征手段考察和研究了各催化剂体系的吸附性能、反应活性、反应条件对活性的影响及催化反应机理等。
     研究结果表明,在铈锆固溶体中加入氧化铝使得复合氧化物具有更好的热稳定性及高的储氧性能,更适于用作贫燃机动车尾气净化催化剂的载体材料。
     以CZA(0.5)为载体的催化剂反应活性高于CZA(0.75)担载的催化活性,其中,双组分催化剂的反应活性又高于单组分催化剂的活性,Ag(0.04)-Rh(0.007)/CZA(0.5)是反应活性最高的催化剂,它催化作用下的NO转化率可达到90.3%,且该反应的起燃温度低,活性温度范围宽(300℃~500℃)。
     原位红外结果显示,在Ag-Rh/CZA催化剂作用下的丙烯还原NO反应过程如下:丙烯首先被部分氧化成羧酸盐类,NO被氧化成硝酸盐类,丙烯氧化产物与硝酸盐类反应生成反应中间体酰胺基,反应中间体再进一步与NO等反应生成目的产物。
     在反应过程中,活性组分Rh的存在不仅有利于催化剂表面NO及CB3BHB6B等反应物的吸附,而且能促进Ag催化生成关键反应中间体-CO-NH-,进而显著提高NO的转化率。
The application of lean-burn engine is rising now for the more effective burning andmore economy. However, the traditional three-way catalyst would be ineffective under thislean-burn conditions,because of the significant increment of NOBx B(the content of NO>90%)and oxygen among the exhaust of lean-burn engine. Therefore, a new type of catalyst forautomobile exhaust purification under lean-burn condition is urgently needed to be developed.The selective catalytic reduction of NO by hydrocarbons over Ag/AlB2BOB3B catalyst is consideredto be the most effective way to remove NO from the exhaust gas, the Ag/AlB2BOB3B catalyst hashigh catalytic active and good thermal stability, however, it is inactive at low Ttemperature, andits Tactivity window is also TnarrowT.
     To improve the catalyst activity at low temperature and broaden the activity window, aseries of (Ag)-(Rh)/CZA catalysts were prepared by impregnation methods, usingCeOB2B-ZrOB2B-AlB2BOB3B(CZA) compounds as support due to its high specific surface area andoxygen storage capacity(OSC). The characters of the structure, thermal stability, and the OSCduring the different Ce/Zr ratio CZA compounds were characterized using kinds oftechnologies. By combining the catalytic performances and the characterized methods, thecatalysts adsorption, catalytic activities, effected factors and the reactive mechanism havebeen investigated.
     The results showed that the CZA which formed by adding the AlB2BOB3B into the CeBxBZrB1-xBOB2Bcompound, have the high thermal stability and OSC, and is more suitable for the lean-burnautomobile exhaust catalyst carrier material.
     The activities of the catalysts which use the CZA(0.5) as support were higher than theCZA(0.75) catalysts, the Ag-Rh catalysts exhibited higher catalytic performances than thesingle-component Ag or Rh catalysts. The highest NO conversion is reached at 90.3% overthe Ag(0.04)-Rh(0.007)/CZA(0.5) catalyst, accompanied by the lower light-off temperatureand wider activity window (300℃~500℃).
     According to the in situ DRIFTS results, the process of the NO reduction reaction byCB3BHB6B over Ag-Rh/CZA catalyst is as following: oxidation of CB3BHB6B is the first part of all,formed the carboxylate, NO is oxidized into nitrate, and the oxidation products can react witheach other which produced the crucial intermediate of -CO-NH-, the intermediate furtherreacts with NO and achieve the objective response.
     In this reaction, the existence of Rh not only favored the adsorption of reactants such asNO and CB3BHB6B on the catalyst surface, but also promoted the formation of crucial intermediate of -CO-NH- by Ag, thus enhancing the NO conversion notably.
引文
[1]郝吉明,傅立新,贺克斌.城市机动车排放污染控制:国际经验分析与中国的研究成果[M].北京:中国环境科学出版社, 2001
    [2] Fu L., Hao J.,He H., Assessment of vehicular pollution in China[J]. Journal of the Air &Waste Management Association, 2001, 51(5): 658-668
    [3]王长会.现状和治理技术的发展及标准介绍[J].机械工业标准化与质量, 2008,3:20-21
    [4] Twigg M.V. Emission control technology at detroit[J]. Platinum Metals Rev., 1998, 42(2):56-58
    [5] Cooper B.J. Challenges in emission control catalysis for the next decade[J]. PlatinumMetals Rev., 1994, 38(3): 101-111
    [6]李勤.现代内燃机排气污染物的测量与控制[M].第一版.北京:机械工业出版社,1998:10-17
    [7]马清芝,车胜新.我国汽车污染物排放标准制、修订发展一瞥[J].机械工业标准化与质量, 2006, (3): 14-16
    [8] Koitsakis G.C., Stamatelos A.M. Catalytic automotive exhaust aftertreatment[J]. Prog.Energy Combust Sci, 1997, 23: 1-39
    [9]邢娜.乙炔在ZSM-5和ferrierite基催化剂上选择还原氮氧化物的机理研究[D].大连:大连理工大学, 2009
    [10]程昊.贫燃发动机尾气NOBxB存储-还原催化剂研究[D].大连:中国科学院大连化学物理研究所,2004
    [11] Farrauto R.J., Heck R.M. Catalytic converters: state of the art and perspectives[J].Catalysis Today, 1999, 51: 351-360
    [12] Glick H., Klien J.J., Squire W. Single-Pulse shock tube studies of the kinetics of thereaction NB2B+OB2B→2N0 between 2000-3000K[J]. Chem. Phys., 1957, 27: 850-857
    [13]申林涛. Fe-Mo/ZSM-5催化剂上氮氧化物催化还原性能的实验研究[D].太原:太原理工大学, 2007
    [14] Takahashi N., Shinjoh H., Lijima T., et al. The new concept 3-way catalyst forautomotive lean-burn engine: NOBxB storage and reduction catalyst[J]. Catal. Today, 1996,27(1-2): 63-69
    [15] Bogner W., Kramer M., Krutzsch B., et al. Removal of nitrogen oxides from the exhaustof a lean-tune gasoline engine[J]. Appl.Catal.B, 1995, 7(1-2): 153-171
    [16]高爱梅. NOBxB储存-还原催化剂C12A7/M(M=K, Na, Mg)和Ba-Zr-O的性能及机理研究[D].合肥:中国科学技术大学, 2006
    [17] Fridell E., Skoguyndh M., Westerberg B., et al. NOBxB storage in barium-containingcatalysts[J]. Journal of Catalysis, 1999, 183: 196-209
    [18] Rodrigues F., Juste L., Potvin C.,et al. NOBxB storage on barium-containing 3-way catalystin the presence of COB2B[J]. Catalysis Letters, 2001, 72(1-2): 59-64
    [19] Mahzoul H., Limousy L., Brilhac J.F., et al. Experimental study of SOB2B adsorption onbarium-based NOBxB adsorbers[J]. Journal of analytical and Applied pyrolysis, 2000, 56:179-193
    [20] Lietti L., Forzatti P., Nova I.,et al. NOBxB storage reduction over Pt-Ba/γ-A1B2B0B3B catalyst[J].Journal of Catalysis, 2001, 204: 175-191
    [21] Engstrom P., Amberntsson A., Skoglundh M., et al. Sulphur dioxide interaction with NOBxBStorage catalyst[J]. Applied Catalysis B: Environmental, 1999, 22: 241-248
    [22]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社, 2002
    [23]任丽丽.担载型分子筛催化剂上CHB4B选择还原NO反应的研究[D].大连:大连化学物理研究所, 2003
    [24]牛金海.富氧条件下烃选择还原氮氧化物过程研究[D].大连:大连理工大学, 2006
    [25] Iwamoto M. Proceedings of meeting of catalytic technology for removel of nitrogenmonoxide[J]. Tokyo, Japan, 1990: 17-22
    [26] Iwamoto M., Yahiro H., Yu-u Y, et al. Selective reduction of NO by lower hydrocarbonsin the presence of OB2B and SOB2B over copper ion-exchanged zeolites[J]. Shokubai, 1990,32: 430-433
    [27] Amin N.A.S., Tan E.F., Manan Z.A. SCR of NOBxB by CB3BHB6B: comparison betweenCu/Cr/CeOB2B and Cu/Ag/CeOB2B catalysts[J]. Journal of Catalysis, 2004, 222: 100–106
    [28] Bethke K. A., Alt D., Kung M. C. NO reduction by hydrocarbons in an oxidizingatmosphere over transition metal-zirconium mixed oxides[J]. Catalysis Letters, 1994,25:37-48
    [29] Meunier F.C., Breen J.P., Zuzaniuk V.,et al. Mechnaistic aspects of selective reduction ofNO by propene over alumina and silver-alumina catalysts[J]. Journal of Catalysis, 1999,187: 493-505
    [30] He?leáne Praliaud, Serguei Mikhailenko, Zakaria Chajar, et al. Surface and bulkproperties of Cu-ZSM-S and Cu/AlB2BOB3B solids during redox treatments. Correlation withthe selective reduction of nitric oxide by hydrocarbons[J]. Appl.Catal. B, 1998,l6:359-374
    [31] Li Y., Armor J. N. Selective catalytic reduction of NOBxB with methane over metalexchanged zeolites[J]. Applied Catalysis B: Environmental, 1993, 2:239-256
    [32] Li Y., Armor J. N. Catalytic reduction of nitrogen oxides with methane in the presence ofoxygen[J]. Applied Catalysis B: Environmental, 1992, 1(4): 31-40
    [33] Maunula T., Ahola J., Hamada H. Reaction mechanism and kinetics of NOBxB reduction bymethane on In/ZSM-5 under lean conditions[J]. Applied catalysisB:Environmental,2006,64(1-2):13-24
    [34] Brosius R., Bazin P., Frédéric T-S., et al. Operando FTIR study of reaction pathways ofselective catalytic reduction of NOBxB with decane in the presence of water oniron-exchange MFI-type zeolite[J]. Journal of Catalysis, 2005, 234(1): 191-198
    [35] Burch R., Watling T.C. Kinetics and mechanism of the reduction of NO by CB3BHB8B overPt/AlB2BOB3B under lean-burn condition[J]. J. Catal., 1997, 169: 45-54
    [36] Burch R., Sullivan J.A. A transient kinetic study of the mechanism of the NO/CB3BHB6B/OB2Breaction over Pt-SiOB2B catalysts [J]. J. Catal., 1999, 182: 489-496
    [37] Burch R., Sullivan J.A., Watling T.C. Mechanistic consideration for the reduction of NOBxBover Pt/AlB2BOB3B and AlB2BOB3B catalysts under lean-burn conditions[J]. Catalysis today, 1998,42: 13-23
    [38] Fritz A. The current state of research on automotive lean NOBxB catalysis[J]. AppliedCatalysis B: Environment, 1997, 13(l): l-25
    [39] Tabata T., Kokitsu M., Okada O. Relationship between methane adsorption and selectivecatalytic reduction of nitrogen oxide by methane on gallium and indium ion-exchangedZSM-5[J]. Applied catalysis B: Environmental, 1995, 6(3): 225-236
    [40] Shimizu K., Satsuma A., Hattori T. Selective catalytic reduction of NO by hygrocarbonson GaB2BOB3B/AlB2BOB3B catalysts[J]. Applied catalysisi B: Environmental, 1998, 16(4): 319-320
    [41] García-Cortés J.M.,Pérez-Ramírez J.,Illán-Gómez M.J.,et al. Comparative study ofPt-based catalysts on different supports in the low-temperature de-NOBxB-SCR withpropene[J]. Applied catalysis B: Environmental, 2001, 30: 399-408
    [42] Burch R., Halpin E., Sullivan J.A. A comparison of the selective catalytic reduction ofNOBxB over AlB2BOB3B and sulphated AlB2BOB3B using CHB3BOH and CB3BHB8B as reductants[J]. Appliedcatalysis B: Environmental, 1998, 17(1-2): 115-129
    [43]谭宇新.贫燃条件下汽车尾气净化催化剂的研究[D].广州:华南理工大学工学,2000
    [44] Huuhtanen M., Kolli T., Maunula T., et al. In situ FTIR study on NO reduction by CB3BHB6Bover Pd-based catalysts[J]. Catalysis today, 2002, 75(1-4):379-384
    [45] Parksll J. E., Wagner G. J., Eplng W. E., et al. NOBxB sorbate catalyst system with sulfurcatalyst protection for the aftertreatment of No.2 diesel exhaust[J]. SAE Paper, 1999,No. 993557
    [46] James D., FourréE., Ishii M.,et al. Catalytic decompositionlregeneration of Pt/Ba(NOB3B)B2Bcatalysts: NOx storage and reduction[J]. Applied Catalysis B: Envionment, 2003, 45:147-159
    [47] Centi G., Firnasari G., Gobbi C.,et al. NOBxB storage-reduction catalysts based onhydrotalcite effect of Cu in promoting resistance to deactivation[J]. Catalysis Today,2002, 73: 287-296
    [48] Xin M., Hwang I.C., Woo S.H. FTIR studies of the reduction of nitric oxide by propeneon Pt/ZSM-5 in the presence of oxygen[J]. Journal of Physical Chemistry B, 1997, 101:9005-9009
    [49] Burch R., Watling T.C. The effect of promoters on Pt/AlB2BOB3B catalysts for the reduction ofNO by CB3BHB6B under lean-burn conditions[J]. Applied Catalysis B: Environmental, 1997,11(2): 207-216
    [50] Burch R., Millington P J., Walker A. P. Mechanism of the selective reduction of nitrogenmonoxide on platinum-based catalysts in the presence of excess oxygen[J]. AppliedCatalysis B: Environmental, 1994, 4: 65-94
    [51]张平,王乐夫.原位漫反射红外光谱研究氮氢化物在Ag/ZSM-5催化剂上的吸附态及选择性催化还原反应机理[J].分析化学研究简报, 2002, 30(12): 1469-1472
    [52] Ukisu Y., Sato S., Abe A.,et al. Possible role of isocyanate species in NOx reduction byhydrocarbons over copper-containing catalysts[J]. Appl. Catal. B, 1993, 2: 147-152
    [53] Obuchi A., Ogata A., Mizuno K.,et al. Mechanism of selective catalytic reduction ofnitrogen monoxide by organic compounds[J]. Chem. Soc., Chem. Commun., 1992,247-248
    [54]李俊华,郝吉明,傅立新等.富氧条件下贵金属催化剂上丙烯选择性还原NO研究[J].高等学校化学学报, 2003, 1(24): 2060-2064
    [55] Descorme L., Gelin P., Primet M., et al. Infrared study of nitrogen monoxide adsorptionon palladium ion exchanged ZSM-5 catalysts[J]. Catal. Lett., 1996, 41: 133-138
    [56] Kikuchi E., Ogura M., Terasaki I.,et al. Selective reduction of nitric oxide with methaneon gallium and indium containing H-ZSM-S catalysts formation of active sites bysolid-state ion exchange[J]. J. Catal., 1996, 161: 465-470
    [57] Delahay G., Guzmán-Vargas A., Bernard Coq. Deactivation of a Fe-ZSM-5 catalystduring the selective catalytic reduction of NO by n-decane:An operando DRIFT study[J].Applied catalysis B: Environmental, 2007, 70(1-4): 45-52
    [58] Chen J.X., Wu Q.Y., Zhang J.X., et al. Effect of preparation methods on structure andperformance of Ni/CeB0.75BZrB0.25BOB2B catalysts for CHB4B–COB2B reforming[J]. Fuel, 2008, 87:2901–2907
    [59] Guo Y., Lu G.Z., Zhang Z.G., et al. Preparation of CeBxBZrB1-xBOB2B(x=0.75,0.62)solid solutionand its application in Pd-only three-way catalysts[J]. Catalysis Today , 2007, 126:296–302
    [60] Wei Z.L., Li H.M., Zhang X.Y., et al. Preparation and property investigation ofCeOB2B-ZrOB2B-AlB2BOB3B oxygen-storage compounds [J]. Journal of Alloys and Compounds,2008, 455: 322–326
    [61] Zhang X.Y., Long E.Y., Li Y.L., et al. CeOB2B-ZrOB2B-LaB2BOB3B-AlB2BOB3B composite oxide and itssupported palladium catalyst for the treatment of exhaust of natural gas enginedvehicles[J]. Journal of Natural Gas Chemistry, 2009, 18: 139-144
    [62] Overbury S. H., Huntley D. R., Mullins D. R., et al. XANES studies of the reductionbehavior of (CeB1-yBZrByB)OB2B and Rh/(CeB1-yBZrByB)OB2B[J]. Catal. Lett., 1998, 51(3,4): 133-138
    [63] Boaro M., De Leitenburg C., Dolcetti G., et al. The dynamics of oxygen storage inceria-zirconia model catalysts measured by CO oxidation under stationary and cyclingfeedstream compositions[J]. J. Catal., 2000, 193: 338-347
    [64]T TDi Monte R., Fornasiero P.,Ka?par J., et al. Pd/CeB0.6BZrB0.4BOB2B/AlB2BOB3B as asvanced materialsfor three-way catalysts:Part 1. Catalyst characterisation, thermal stability and catalyticactivity in the reduction of NO by CO[J]. Appl. Catal.B: Environ., 2000, 24(1-2):157-167
    [65] Di Monte R., Kaspar J., Fornasiero P., et al. NO reduction by CO overPd/CeB0.6BZrB0.4BOB2BAlB2BOB3B catalysts: in siru FT-IR studies of NO and CO adsorption[J]. Inorg.Chim. Acta., 2002, 334: 318-326
    [66] Iglesias-Juez A., Martinez-Arias A., Fernandez-Garcia M. Metal-promoter interface inPd/(Ce, Zr)OBxB/ AlB2BOB3B catalysts : effect of thermal aging[J]. Journal of Catalysis, 2004,221(1): 148-161
    [67] Di Monte R., Fornasiero P., Kaspar J., et al. Stabilisation of nanostructured CeB0.2BZrB0.8BOB2Bsolid solutionby impregnation on AlB2BOB3B : a suitable method for the production ofthermally stable oxygen storage/ release promoters for three-way catalysts[J]. ChemCommun, 2000: 2167-2168
    [68]杨春清,周仁贤,李振国.耐高温高比表面CeBxBZrB1-xB-Al复合氧化物的制备及其单Pd型三效催化性能的研究[J].浙江大学学报(理学版), 2008, 35(4): 428-437
    [69] Kozlov Alexander I., Kim Do H., Yezerets A., et al. Effect of preparation method andredox treatment on the reducibility and structure of supported ceria-zirconia mixedoxide[J]. J. Catal., 2002, 209(2): 417-426
    [70] Suhonen S., Valden M., Hietikko M., et al. Effect of Ce-Zr mixed oxides on the chemicalstate of Rh in alumina supported automotive exhaust catalysts studied by XPS andXRD[J]. Appl. Catal A, 2001, 218(1): 151-160
    [71] Yao M.H., Baird R. J., Kunz F. W., et al. An XRD and TEM investigation of the structureof alumina-supported ceria-zirconia[J]. J. Catal., 1997, 166(1): 67-74
    [72] Fang P., Lu J.Q., Xiao X.Y., et al. Catalytic combustion study of soot on CeB0.7BZrB0.3BOB2Bsolid solution[J]. Journal of rare earths, 2008, 26(2): 250-253
    [73]吕臻.铈锆铝基储氧材料的制备及其性能的研究[D].成都:四川大学, 2005
    [74] Liu Z., Woo S.I., Lee W.S. In siru FT-IR studies on the mechanism of selective catalyticreduction of NOBxB by propene over SnOB2B/AlB2BOB3B catalyst[J]. Journal of physicalchemistry B, 2006, 110(51): 26019-26023
    [75] Damyanova S., Pawelec B., Arishtirova K., et al. Study of the surface and redoxproperties of ceria–zirconia oxides[J]. Applied Catalysis A: General, 2008, 337: 86–96
    [76] Damyanova S., Pawelec B., Arishtirova K.,et al. Study of the surface and redoxproperties of ceria–zirconia oxides[J]. Applied Catalysis A: General, 2008, 337: 86–96
    [77]T TYao M.H., Baird R..J., Kunz F.W., et al. An XRD and TEM investigation of the structureof alumina-supported ceria-zirconia[J]. Journal of catalysis, 1997, 166(1): 67-74
    [78] Silva P.P., Silva F.A., Portela L.S.,et al. Effect of Ce/Zr ratio on the performance ofPt/CeZrOB2B/AlB2BOB3Bcatalysts for methane partial oxidation[J]. Catalysis Today, 2005,107-108: 734–740
    [79] Adamopoulos O., Bj?rkman E., Zhang Y., et al. A nanophase oxygen storage material:Alumina-coated metal-based ceria[J]. Journal of the European Ceramic Society, 2009, 29:677–689
    [80]托马斯,兰伯特.催化剂的表征[M].黄仲涛等译,北京:化学工业出版社, 1987:160-220
    [81] Fornasiero P.,Montini T.,Graziani M.,et al. Effects of thermal pretreatment on the redoxbehaviour of CeB0.5BZrB0.5BOB2B:isotopic and spectroscopic studies[J]. Chem. Phys., 2002, 4,149-15960
    [82] Juan R. González-Velasco, Miguel A., et al. Effects of redox thermal treatments andfeedstream composition on the activity of Ce/Zr mixed oxides for TWC applications[J].Appl. Catal. B: Environ., 2001, 25: 19-29
    [83] Fornasiero P., Balducci G., Di Monte R. Modification of the Redox Behaviour of CeOB2BInduced by Structural Doping with ZrOB2B[J]. J. Catal., 1996, 164: 173-183
    [84] Piacentini M., Maciejewski M., Baiker A. Supported Pt-Ba NOBxB storage-reductioncatalysts: Influence of support and Ba loading on stability and storage efficiency ofBa-containing species[J]. Applied Catalysis B: Environmental, 2006, 66: 126–136
    [85]王进,余运波,解淑霞等.新型贵金属修饰的Ag/AlB2BOB3B催化剂选择性催化还原NOBxB的催化性能及反应机理[J].催化学报, 2004, 25(10): 824-828
    [86]T TAnderson J.A., Daley R.A., Christou S.Y.,et al. Regeneration of thermally agedPt-Rh/CeBxBZrB1-xBOB2B-AlB2BOB3B model three-way catalysts by oxychlorination treatments[J].Applied Catalysis B: Environmental, 2006, 64: 189-200
    [87] Yuan Z.S., Ni C.J., Zhang C.X.,et al. Rh/MgO/CeB0.5BZrB0.5BOB2B supported catalyst forautothermal reforming of methane: The effects of ceria–zirconia doping[J]. CatalysisToday, 2009
    [88] Hannes K.,Hanna H?relind I., Magnus S. Ag–AlB2BOB3B catalysts for lean NOBxBreduction-Influence of preparation method and reductant[J]. Journal of MolecularCatalysis A: Chemical, 2009
    [89]贺泓,张润铎,余运波等.富氧条件下氮氧化物的选择性催化还原Ⅰ.Ag/AlB2BOB3B催化剂上CB3BHB6B选择性催化还原NO的性能[J].催化学报, 2003, 24(10): 788-794
    [90] Seker E., Cavataio J., Gulari E., et al. Nitric oxide reduction by propene oversilver/alumina and silver-gold/alumina catalysts:effect of preparation methods[J].Applied catalysis A: General, 1999, 183(1): 121-134
    [90] Haneda M., Shinoda K., Nagane A., et al. Catalytic performance of rhodium supportedon ceria-zirconia mixed oxides for reduction of NO by propene[J]. Journal of Catalysis,2008, 259(2): 223-231
    [91] Huuhtanen M., Kolli T., Maunula T., et al. In situ FTIR study on NO reduction by CB3BHB6Bover Pd-based catalysts[J]. Catalysis Today, 2002, 75(1-4): 379-384
    [92]陈晓春,张之旭,饶国瑛等.合成甲醇基元过程瞬态动力学的模型化(Ⅰ)基元过程序列结构[J].化工学报, 1999, 50(2): 145-151
    [93]T TBentrup U., Richter M., Fricke R. Effect of HB2B admixture on the adsorption of NO, NOB2Band propane at Ag/AlB2BOB3B catalyst as examined by in situ FTIR[J]. Applied Catalysis B:Environmental, 2005, 55(3): 213-220
    [94]T T余运波,贺泓. Ag/AlB2BOB3B选择性催化丙烯还原氮氧化物表面反应机理的原位红外光谱研究[J].催化学报, 2003, 24(5): 385-390
    [95]T TKameoka S., Ukisu Y., Miyadera T. Selective catalytic reduction of NOBxB withCHB3BOH,CB2BHB5BOH and CB3BHB6B in the presence of OB2B over Ag/AlB2BOB3B catalyst:Role ofsurface nitrate species[J]. Physical Chemistry Chemical Physics, 2000, 2(3): 367-372
    [96] Satsuma A., Shimizu K. In situ FT/IR study of selective catalytic reduction of NO overalumina-based catalysts[J]. Progress in energy and combustion science, 2003, 29: 71-84
    [97] Rottlander C., Andorf R., Plog C., et al. Selective NO reduction by propane and propeneover a Pt/ZSM-5 catalyst: a transient study of the reaction mechanism[J]. Appl. Catal. B,1996, 11: 49-63
    [98] Martens J. A., Cauvel A., Francis A., et al. NOBxB abatement in exhaust from lean-burncombustion engines by reduction of NOB2B over silver-containing zeolite catalysts[J].Angew. Chem. Int. Ed. Eng1., 1998, 37(13-14): 1901-1907
    [99] Halasz I., Brenner A. Selectivity-determining role of CB3BHB8B/NO ratio in the reduction ofnitric oxide by propane in presence of oxygen over ZSM5 zeolites[J]. Catal. Lett., 1998,51(3-4): 195-206
    [100] Yokoyama C., Misono M. Catalytic reduction of nitrogen oxides by propene in thepresence of oxygen over cerium ion-exchanged zeolites:III. effects of carriers[J].J.Catal., 1996, 160(1):95-105
    [101] Chen H.Y., Voskoboinikov T., Sachtler W. M. H. Reduction of NOx over Fe/ZSM-5catalysts: adsorption complexes and their reactivity toward hydrocarbons[J]. J.Catal.,1998, 180(2): 171-183
    [102] Chen H.Y., Voskoboinikov T., Sachtler W.M.H. Reaction intermediates in the selectivecatalytic reduction of NOx over Fe/ZSM-5[J]. J. Catal., 1999, 186(1): 91-99
    [103] Cant N. W., Liu I.O.Y. The mechanism of the selective reduction of nitrogen oxidesby hydrocarbons on zeolite catalysts[J].Catal. Today, 2000, 63(2-4):133-146
    [104] Sedlmair C., Gil B., Seshan K., et al. An in situ IR study of the NOBxBadsorption/reduction mechanism on modified Y zeolites[J]. Phys. Chem.Chem.Phys.,2003, 5(9): 1897-1905
    [105] Cant N. W., Cowan A. D., Liu I.O.Y., et al. The reactions of possible intermediates inthe selective catalytic reduction of nitrogen oxides by hydrocarbons[J]. Catal. Today,1999, 54(4): 473-482
    [106] Haneda M., Bion N., Daturi M.,et al. In situ fourier transform infrared study of theselective reduction of NO with propene over GaB2BOB3B-AlB2BOB3B[J]. Journal of catalysis, 2002,206: 114-124
    [107] Mihaylov M.,Hadjiivanov K.,Panayotov D. FTIR mechanistic studies on the selectivecatalytic reduction of NOBxB with methane over Ni-containing zeolites:comparisonbetween NiY and Ni-ZSM-5[J]. Applied Catalysis B: Environmental, 2004, 51(1):33-42
    [108] Sato K.,Yoshinari T.,Kintaichi Y.,et al. Remarkable promoting effect of rhodium on thecatalytic performance of Ag/AlB2BOB3B for the selective reduction of NO with decane[J].Applied Catalysis B: Environmental, 2003, 44(1): 67-78
    [109] Margel S., Rembaum A. A Potential Reagent for protein immobilization and cellseparation[J]. Macromolecules, 2002, 13(1): 19-24
    [110] Wu Z.B.,Jiang B.Q.,Liu Y.,et al. DRIFT study of manganese/titania-based catalysts forlow-temperature selective catalytic reduction of NO with NHB3B[J]. EnvironmentalSciences and Technology, 2007, 41(16): 5812–5817
    [111]胡国文,黄洪,傅和青等. MMA/BA共聚物改性的水性聚氨酯的合成与表征[J].化工学报, 2007, 58(7): 1851-1856
    [112]皇甫玉国,杨义钧,曹益林等. NO在Rh(100)与(111)表面上吸附理论研究[J].河南师范大学学报(自然科学版), 2009, 37(3): 167-170
    [113]田凯,涂学炎,戴树珊.在Rh(111)面上NO+CO反应机理的密度泛函理论研究[J].高等学校化学学报, 2008, 29(12): 2360-2364
    [114]涂学炎,田凯,戴树珊. NO在Rh(100),Rh(111)面上吸附与直接分解的密度泛函理论研究[J].高等学校化学学报, 2005, 26(12): 2354-2356
    [115] Gao H.W., Yan T.X., Yu Y.B.,et al. DFT and DRIFTS studies on the adsorption ofacetate on the Ag/AlB2BOB3B catalyst[J]. J Phys Chem C., 2008, 112(17): 6933-6938
    [116] Mugniery X., Chafik T., Primet M., et al. Characterization of the sites involved in theadsorption of CO on ZrOB2B and ZnO/ZrOB2B methanol synthesis aerogel catalysts[J].Catalysis Today, 1999, 52(1): 15-22
    [117] Shimizu Ken-ichi, Kawabata Hisaya, Satsuma Atsushi, et al. Role of acetate and nitratesin the selective catalytic reduction of NO by propene over alumina catalyst asinvestigated by FTIR[J]. J Phys Chem B, 1999, 103(25): 5240-5245
    [118] Valentina M. Optical probes for inter-chain interactions in highly oriented poly(p-phenylene vinylene)[J]. Scientifica Acta 2, 2008, 2: 188-195
    [119] Guillermo Q., Sergio A., Salvador G., et al. Fourier transform infrared determination ofimidacloprid in pesticide formulations[J]. J. Braz. Chem. Soc., 2004, 15(2): 307-312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700