用户名: 密码: 验证码:
Mn,N掺杂纳米二氧化钛的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2具有高的氧化还原能力、化学性质稳定、对人体无毒和成本低等优点,在利用太阳能的半导体中受到重视。近来TiO_2被广泛应用到空气净化(例如NOx及VOCs的降解)、杀菌以及水质净化方面,并可以将大多数有机污染物最终降解成为CO2、H2O以及其它无机小分子物质。但TiO_2禁带宽度大(3.2 eV),只能利用太阳光中的紫外线部分(仅占太阳光能3~5%),此外,光生电子与空穴的高复合几率还会降低光量子产率,这使TiO_2作为光催化剂在实际应用中难以大规模推广。考虑到以上因素,本研究使用锰、氮共掺杂TiO_2 ,对其进行改性研究,以期使TiO_2的吸收波长向可见光方向移动,并使TiO_2的光催化活性得到提高。
     分别以MnSO4·H2 O和MnC2 O4·4H2O为锰源,采用水热法制备了锰掺杂的Mn-TiO_2光催化剂,并采用X-射线衍射、紫外-可见光漫反射光谱等技术对样品进行了表征。以罗丹明B的光催化降解为模型反应,考察了不同锰源、锰掺杂量对催化剂光催化性能的影响。结果表明,所有制备的Mn-TiO_2均表现为锐钛矿相,Mn的掺杂抑制了TiO_2晶粒生长,且以MnSO4·H2 O为锰源制备的Mn-TiO_2粒径略小于以MnC2 O4·4H2O为锰源制备的样品,所有Mn-TiO_2催化剂的光响应范围拓宽至可见光区域,对罗丹明B具有明显的可见光降解效果,并且以MnSO4·H2 O为锰源的催化剂具有较高的光催化活性。
     采用溶胶-凝胶法成功合成了具有可见光响应的不同锰掺杂量的Mn-TiO_2和Mn-N-TiO_2光催化剂,并采用XRD、UV-vis、XPS、ESR等技术考察了锰掺杂量、多元掺杂、煅烧温度等因素对催化剂结构性质的影响。结果表明在400℃热处理的Mn-TiO_2和Mn-N-TiO_2样品均表现为锐钛矿晶型,Mn、N掺杂对TiO_2由锐钛矿相向金红石相的转变有明显抑制作用,其光响应范围拓宽至可见光区域。400℃热处理的Mn-N-TiO_2-400的XPS图谱表明N原子取代TiO_2中O形成Ti-N结构,同时发现加入了少量的Mn后,促进N元素在TiO_2的有效掺杂。以罗丹明B的光催化降解为模型反应表明,掺杂N、Mn元素后,催化剂对罗丹明B具有明显的可见光降解效果,并且Mn-N-TiO_2的可见光光催化活性优于TiO_2 ,N-TiO_2及Mn-TiO_2。
Photocatalysis based on powdered semiconductors has received much attention for the effective utilization of solar energy. Among all semiconductors, TiO_2 is the most widely studied photocatalyst, due to its strong redox ability, chemical stability, non-toxicity, and cheapness. Recently, TiO_2 is extensively applied to the purification of air such as De-NOx, De-VOCs, the bactericidal action, and degradation of organic pollutant compounds in wastewater. It can decompose most organic pollutants into CO2 , H2O, and other small inorganic molecules under UV light irradiation. However, TiO_2 absorbs only the very small ultraviolet part (3~5%) of solar light due to its wide band-gap (3.2 eV for anatase form). In addition, easy recombination of photo-induced electrons and holes makes the efficiency of photoquantum lower. These unfavorable factors make the large scale application of TiO_2 as mutual photocatalyst hampered. Considering the above factors, manganese and nitrogen was doped into TiO_2 to make its absorbing wavelength move to the visible light region and improve its photocatalytic performance.
     Mn-doped TiO_2 nanocrystal photocatalysts, named Mn-TiO_2-S and Mn-TiO_2-C samples, were synthesized by a simple hydrothermal synthesis method using MnSO4·H2O and MnC2 O4·4H2O as manganese source, respectively. The samples were characterized by X-ray diffraction and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity for the degradation of rhodamine B was evaluated, and the effects of the manganese source and Mn doping amount were investigated. The results showed that all of the Mn-TiO_2 had an anatase crystallite structure and the Mn doping inhibited the growth of the TiO_2 particles. The particle size of Mn-TiO_2 -S was smaller than that of Mn-TiO_2-C. The absorption edge of Mn-TiO_2 shifted to the visible light region. The Mn-TiO_2 showed obvious photocatalytic activity for the degradation of rhodamine B under visible light irradiation, and Mn-TiO_2-S samples showed higher photocatalytic activity than undoped TiO_2 and Mn-TiO_2-C samples.
     Mn-doped and Mn-N-codeped TiO_2 nanocrystal photocatalysts were synthesized by sol-gel method. XRD, UV-vis, XPS, ESR were employed to characterize the structure of undoped TiO_2 and doped TiO_2 powders, and the effects of the Mn-N-codoping, Mn doping amount and heat treatment temperature were investigated. The results showed that all of the Mn-TiO_2 and Mn-N-TiO_2 had an anatase crystallite structure and Mn-N-codoping promote the phase transition from anatase phase to rutile phase. The absorption edge of Mn-TiO_2 and Mn-N-TiO_2 shifted to the visible light region. The XPS survey spectrum of Mn-N-TiO_2-400 sample calcined at 400℃suggsted that some N atoms substitute O atoms in TiO_2 lattice, and the introduction of a small amount of Mn facilitates further N uptake. N-TiO_2, Mn-TiO_2 and Mn-N-TiO_2 samples showed obvious photocatalytic activity for the degradation of rhodamine B under visible light irradiation, and Mn-N-TiO_2 samples showed higher photocatalytic activity than undoped TiO_2 , N-TiO_2 and Mn-TiO_2 samples.
     .
引文
[1] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95(3): 735-758
    [2] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Photochem. Photobiol. C, 2000, 1(1): 1-21
    [3]彭涛,周曦,李远志.可见光响应纳米TiO_2光催化材料研究进展[J/OL].中国科技论文在线(http: //www.paper.edu.cn). 2010-03-28
    [4] Klosek S, Raftery D. Visible light driven V-doped TiO_2 photocatalyst and its photooxidation of ethanol[J]. J. Phys. Chem. B, 2001, 105(14): 2815-2819
    [5] Huber R, Moser J E, Gratzel M, et al. Observation of photoinduced electron transfer in dye/semieonductor colloidal systems with different coupling strengths[J]. Chem. Phys., 2002, 285(l): 39-45
    [6]高镰,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002. 25-34
    [7]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社, 2006, 168-175
    [8] Sopyan I,Watanabe M, Murasawa S,et al. Efficient TiO_2 powder and film photocatalysts rutile crystal structure[J]. Chem. Lett., 1996, 289(l): 69-70
    [9] Sclafani A, Herrmann J M. Compasion of the photoelectronic and photocatalytic activities of varlous anatase and rutile forms of titania in pure liquid organic prase and in aqueous solution[J]. J. Phys. Chem., 1996, 100(32): 13655-13661
    [10]陈建华,龚竹青. TiO_2半导体光催化材料离子掺杂[M].北京:北京科学出版社, 2006: 2-5
    [11]钟璟,邢卫红,徐南平,等.废水中有机污染物高级氧化过程的降解[J].化工进展, 1998, 4: 51-53
    [12]詹雪艳,宋丹丹,曾胜年,等. TiO_2光催化去除有机污染物的研究进展[J].化学研究与应用, 2002, 14(4): 387-390
    [13] Serpone N, Borgarello E, Barbeni M, et al. Photocatalytical reduction of gold(Ⅲ)on semiconductor dispersions of TiO_2 in the presence of CN- ion: disposal of CN- bytreatment with hydrogen peroxide[J]. J. Photo. Chem., 1987, 36: 373-388
    [14] Frank A J, Kopidakis N, Lagemaat J. Electrons in nanostructured TiO_2 solar cells: transport, recombination and photovoltaic properties[J]. Coordination Chemistry Review, 2004, 248: 1165-1179
    [15]李庆霖,席婵娟,金振声.多相光催化的一个分支方面的应用[J].太阳能学报, 1994, 15(3): 279-282
    [16]王雅思.联想ThinkCentre打出光触媒技术牌[EB/OL]. http: //www.cenn.cn/News/ 2009-12/18118205_20091231124057.shtml, 2009-12-31
    [17] Kikuchi Y. Photocatalytic bactericidal effect of TiO_2 thin films: dynamic view of the active oxygen species responsible for the effect[J]. J. Photochem. Photoboi. A: Chem, 1997, 106: 51-56
    [18]黄惠莉,黄妙良,蔡阿娜,等. TiO_2光催化薄膜在陶瓷器具上抗菌效果的研究[J].应用化学, 2002, 19(1): 48-52
    [19] Cai R, Hashimoto K, Kubota. et a1.Incremenr of photocatalytic killing of cancer cells using TiO_2 with the aid of superoxide dismutase[J]. Chem. Lett., 1992, 243(3): 427-430
    [20]周铭.纳米TiO_2研究进展[J].涂料工业, 1996(4): 36-39
    [21] Kay A, Baker H R, Gratze1 M. Artificial photosynthesis. 2. investigations on the mechanism of photosensitization of nanocrystalline TiO_2 solar cells by chlorophyll derivatives[J]. J. Phys. Chem., 1994,98: 952-959
    [22] Cherian S, Wamser C C. Adsorption and Photoactivity of Tetra (4-carboxyphenyl) porphyrin (TCPP) on Nanoparticulate TiO_2 [J]. J. Phys. Chem. B, 2000, 104: 3624-3629
    [23] Nasr C, Liu D, Hotchandani S, et a1. Dye-capped semiconductor nanoclusters. excited state and photosensitization aspects of rhodamine 6G H-aggregates bound to SiO2 and SnO2 colloids[J]. J. Phys. Chem., 1996, 100: 11054-11061
    [24] Qu P, Zhao J C, Zhang L, et a1.Enhancement of the photoinduced electron transfer from cationic dyes to colloidal TiO_2 particles by addition of an anionic surfactant in acidic media [J]. Colloids and Surface A, 1998, 138: 39-50
    [25] Ramakrishna G, Hirendra N G. Emission from the charge transfer state of xanthenedye-sensitized TiO_2 nanoparticles: a new approach to determining back electron transfer rate and verifying the marcus inverted regime[J]. J. Phys. Chem. B, 2001, 105: 7000
    [26] Enriquez R, Pichat P. Interactions of humic acid, quinoline, and TiO_2 in water in relation to quinoline photocatalytic removal[J]. Langmuir, 2001, 17: 6132-6137
    [27] Tryk D A, Fujishima A, Honda K. Recent topics in photoelectrochemistry: achievements and future prospects[J]. Electrochim Acta, 2000, 45: 2363-2376
    [28] Hirano K, Suzuki E, Ishikawa A, et a1.Sensitization of TiO_2 particles by dyes to achieve H2 evolution by visible light[J]. J. Photochem. Photobio. A, 2000, 136: 157-161
    [29] Zhang F, Zang J, Shen L, et a1. Photoassisted degradation of dye pollutants in aqueous TiO_2 dispersions under irradiation by visible light[J]. J. Mol. Catal. A, 1997, 120: 173-178
    [30] Hepel M, Shiyanovskaya I. Dye photosensitization of transition metal oxide film hotoelectrodes[J]. Proceedings of the Symposium on Photoelectrochemistry, 1997, 141
    [31] Wen C, Hasegawa K, Kanbara T, et a1. Visible light-induced catalytic degradation of iprobenfos fungicide by poly (3-octylthiophene-2, 5-diyl) film[J]. J. Photochem. Photobio. A, 2000, 137: 59-66
    [32] Dai Q, Rabani J.Photosensitization of nanocrystalline TiO_2 films by anthocyanin dyes[J]. J. Photochem. Photobio. A, 2002, 148: 17-24
    [33] Hong A P, Bahnemann D W,Hoffmann M R. Cobalt(II) tetrasulfophthalocyanine on titanium dioxide. 2. Kinetics and mechanisms of the photocatalytic oxidation of aqueous sulfur dioxide[J]. J. Phys. Chem., 1987, 91: 6245-6251
    [34] Kamat P V, Patrick B.Photoelectrochemistry in semiconductor particulate systems. Photosensitization of large–bandgap semiconductors. charge injection from triplet excited thionine into ZnO colloids[J]. J. Phys. Chem., 1992, 96: 1423-1428
    [35]毛立群,杨建军,李庆霖.多孔纳晶TiO_2薄膜光催化剂的研制及其催化性能[J].催化学报, 2003, 24(7): 553-557
    [36]张青红,高镰.高度分散的Pt/TiO_2的制备及光催化活性[J].化学学报, 2005,63(l):65-70
    [37]章福祥,张秀,陈继新,等. Ag/TiO_2复合纳米催化剂的制备和表征及其光催化活性[J].催化学报, 2003, 24(11): 877-880
    [38]吴遵义,姚兰英.氮铂共掺杂纳米二氧化钛的制备及表征[J].化学研究, 2006,17(1): 24-27
    [39] Elahifard M R, Rahimnejad S, Haghighi S. et al. Apatite-coated Ag/AgBr/TiO_2 visible-light photocatalyst for destruction of bacteria[J]. J. Am. Chem. Soc, 2007, 129: 9552-9553
    [40] Li X Z, Li F B. Study of Au/Au 3+-TiO_2 photocatalysts toward visible photooxidation for water and wastewater treatment[J]. Environ. Sci. Technol., 2001, 35: 2381-2384
    [41] Ishibai Y, Sato J, Nishikawa T, et al. Synthesis of visible-light active TiO_2 photocatalyst with Pt-modification: role of TiO_2 substrate for high photocatalytic activity[J]. Applied Catalysis B, 2008, 79: 117-121
    [42] Yang H M,Shi R R, Zhang K. Synthesis of WO3 /TiO_2 nanoeomposites via sol-gel method[J]. Journal of Alloys and Cmpounds, 2005,398: 200-202
    [43]张青龙,沈毅,吴国友.纳米TiO_2的掺杂改性及应用进展研究[J].稀有金属报,2005, 24(12): 6-10
    [44] Srinivasan S S, Wade J, Stefanakos E K. Synergistic effeets of sulfation and co-doping on the visible light Photoeatalysis of TiO_2[J]. Joumal of Alloys and Compounds, 2006, 424: 322-326
    [45] Sun X J, Jing L Q, Cai W M, et al. Preparation and characterization of TiO_2 nanoparticles and their photocatalytic performance[J]. Journal of the Chinese Ceramic Society, 2002, 30: 26
    [46] Chio W, Termin A, Hoffman M R. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem, 1994, 98(51): 13669-13679
    [47] Xu A W, GaoY, Liu H Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO_2 nanopartieles[J]. Journal of Catalysis, 2002, 207(2): 151-157
    [48] XieY B, Yuan C W. Photocatalysis of neodymium ion modified TiO_2 sol under visible light irradiation[J]. Applied Surface Seience, 2004, 221(1-4): 23-24
    [49] Rachel A, Sarakha M. Comparison of several titanium dioxide for the photocatalytic degradation of benzensulfonic acids[J]. Applied Catalysis B: Environmental, 2002, 37(3): 293-300
    [50] Cong Y, Zhang J L, Chen F, et al. Preparation, photocatalytic activity, and mechanism of nano-TiO_2 co-doped with nitrogen and iron (III)[J]. J. Phys. Chem. C, 2007, 111(28): 10618-10623
    [51] Zhang Z, Wang C C, Zakaria R, et al. Role of particle size in nanocrystalline TiO_2-based photocatalysts[J]. J. Phys. Chem. B, 1998, 102(52): 10871-10878
    [52] Zhu J, Deng Z, Chen F, et al. Hydrothermal doping method for preparation of Cr3+-TiO_2 photocatalysts with concentration gradient distribution of Cr3+[J]. Appl. Catal. B, 2006, 62(3-4): 329-335
    [53] Zhu J, Zheng W, He B, et al. Characterization of Fe-TiO_2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water[J]. J. Mol. Catal. A, 2004, 216(1): 35-43
    [54] DiPaola A, Marci G, Palmisano L, et al. Preparation of polycrystalline TiO_2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol[J]. J. Phys. Chem. B, 2002, 106(3): 637-645
    [55] Nagaveni K, Hegde M S, Madras G. Structure and photocatalytic activity of Ti1-xMx O2±δ(M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method[J]. J. Phys. Chem. B, 2004, 108(52): 20204-20212
    [56] Yamashita H, Harada M, Misaka J, et al. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts[J]. J. Photochem. Photobiol. A, 2002, 148: 257
    [57] Kubacka A, Fernández-García M, Colón G. Nanostructured Ti-M mixed-metal oxides: toward a visible light-driven photocatalyst[J]. Journal of Catalysis, 2008, 252: 272-284
    [58] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269-271
    [59]方晓明,张正国,陈清林.具可见光活性的氮掺杂二氧化钛光催化剂[J].化学进展, 2007, 19: 1282-1290
    [60] Park J H, Kim S, Bard A J. Novel carbon-doped TiO_2 nanotube arrays with high aspect ratios for efficient solar water splitting[J]. Nano. Lett., 2006, 6: 24-28
    [61] Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide[J]. Angew Chem. Int. Ed., 2003, 42: 4908-4911
    [62] Umebayashi T, Yamaki T. Sulfur-doping of rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first-principles band calculation studies[J]. Appl. Phys. Lett., 2002, 81: 454-456
    [63] Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light[J]. Appl. Catal. A, 2004, 265: 115-121
    [64] Zhao W, Ma W H, Chen C C, et al. Efficient degradation of toxic organic pollutants with Ni 2 O3 /TiO_2-xB under visible irradiation[J]. J. Am. Chem. Soc., 2004, 126: 4782-4783. Bx
    [65] In S, Orlov A, Berg R, et al. Effective visible light-activated B-doped and B,N-codoped TiO_2 photocatalysts[J]. J. Am. Chem. Soc., 2007, 129: 13790-13791
    [66] Reyes-Garcia E A, Sun Y, Raftery D. Solid-state characterization of the nuclear and electronic environments in a boron-fluoride co-doped TiO_2 visible-light photocatalyst[J]. J. Phys. Chem. C, 2007, 111: 17146-17154
    [67] Usseglio S, Damin A, Scarano D, et al. (I2)n encapsulation inside TiO_2: a way to tune photoactivity in the visible region[J]. J. Am. Chem. Soc., 2007, 129: 2822-2826
    [68] Cai W M, Hong X T, Wang Z P, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped[J]. Chem. Mater, 2005, 17: 1548-1552
    [69] Sato S. Photocatalytic activity of NO-doped TiO_2 in the visible light region[J]. Chemical Physics Letters, 1986,123 (1-2) : 126-128
    [70] Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO_2 photocatalysts by wet-method N doping[J]. Applied Catalysis A: General, 2005, 284 (1-2) : 131-137
    [71] Ihara T, M iyoshiM, Iriyama Y, et al. Visible-light-active titanium oxide photocatalystrealized by an oxygen-deficient structure and by nitrogen doping[J]. Applied Catalysis B: Environmental, 2003, 42: 403-409
    [72] Yuan J, Chen M X, Shi J W, et al. Preparations and photocatalytic hydrogen evolution of N-doped TiO_2 from urea and titanium tetrachloride[J]. International Journal of Hydrogen Energy, 2006, 31: 1326-1331
    [73] Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO_2 nanoparticles[J]. Nano. Lett., 2003, 3(8): 1049
    [74] Sakthivel S, Janczarek M, Kisch H. Visible light activity and photoelectro-chemical properties of nitrogen-doped TiO_2 [J]. J. Phys. Chem. B, 2004, 108: 19384-19387
    [75] Cong Y, Zhang J L, Chen F, et al. Synthesis and characterization of nitrogen-doped TiO_2 nanophotocatalyst with high visible light activity[J]. J. Phys. Chem. C, 2007, 111: 6976-6982
    [76] Cho I W, Term In A, Hoflhlanm R. The role of metal ion opants in quantumsized TiO_2: Correlation between photoreactivity and charge carrer recombination dynamies[J]. Phys. Chem., 1994, 98: 13669-13679
    [77] Borgarello E, Kiw I J, Gragxel M, et al. Visible lightinduced water cleavage in colloidal solutions of chromi-um-doped titamium dioxide partieles[J]. J. Am. Chem. Soe., 1982, 104(11): 2996-3002
    [78] Feld Q, Hudaya T, Adesina A A. ViSible-light activated titania perovskite photoeatalysts: Charaeterisation and initial activity studies[J]. Catalysis Communications, 2005, 6(4): 253-259
    [79]李越湘,王添辉,彭绍琴,等. Eu3 +、Si 4+共掺杂TiO_2光催化剂的协同效应[J].物理化学学报, 2004, 20(12): 1434-1439
    [80] Xu J H, Li J X, Dai W L, et al. Simple fabication of twist-like helix N,S-coped titania photocatalyst with visible-light response[J]. Applied catalysis B, 2008, 79: 72-80
    [81] Chen D M, Jiang Z Y, Geng J Q, et al. Carbon and nitrogen co-doped TiO_2 with enhanced visible-light photocatalytic activity[J]. Ind. Eng. Chem. Res., 2007, 46: 2741-2746
    [82] Ling Q C, Sun J Z, Zhou Q Y. Preparation and characterization of visible-light-driven titania photocatalyst co-doped with boron and nitrogen[J]. Applied Surface Science,2008, 254: 3236-3241
    [83]华南平,吴遵义,杜玉扣,等. Pt, N共掺杂TiO在可见光下对三氯乙酸的催化降解作用2[J].物理化学学报, 2005, 21(10): 108l-1085
    [84]尹霞,向建南,翦立新,等. Fe3 +-H掺杂TiO_2光催化剂的制备、表征与催化性能[J].应用化学, 2005, 22(6): 634-637
    [85] Wei C H, Tang X H, Liang J R, et al. Preparation, characterization and photocatalytic activities of boron- and cerium-codoped TiO_2[J]. Journal of Environmental Sciences, 2007, 19: 90-96
    [86] Bahnemann D, Boekelmann D, Goslieh R. Mechanistic studies of water detoxification inilluminated TiO_2 suspensions[J]. Sol. Energy Mater. Sol. Cells., 1991, 24: 564-583
    [87] Arroyo R, Cordoba G, Padilla J, et al. Influence of manganese ions on the anatase-rutile phase transition of TiO_2 prepared by the sol-gel process[J]. Materials Letters, 2002, 54: 397-402
    [88] Xue M, Huang L, Wang J Q, et al. The direct synthesis of mesoporous structured MnO2 /TiO_2 nanocomposite: a novel visible-light active photocatalyst with large pore size [J]. Nanotech, 2008, 19: 185604
    [89] Wu X H, Wei Q, Jiang Z H. Influence of Fe 3+ ions on the photocatalytic activity of TiO_2 films prepared by micro-plasma oxidation method[J]. Thin Solid Films, 2006, 496(2): 288-292
    [90]郑怀礼,张峻华,李宏,等.掺铁TiO_2纳米薄膜的制备及光催化性能研究[J].光谱学与光谱分析, 2005,25(12): 2065-2069
    [91]苏碧桃,张彰,郑坚,等. Fe3 +掺杂的TiO_2纳米复合粒子的合成及表征[J].化学学报, 2002, 60: 1936-1940
    [92] Navio J A, Colon G, Litter M I, et al. Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO_2 and iron(III) acetylacetonate[J]. J. Mot. Catal. A, 1996, 106: 267-276
    [93] Marci G, Palmisano L, Sclafani A, et al. Influence of tungsten oxide on structural and surface properties of sol-gel prepared TiO_2 employed for 4-nitrophenol photodegradation[J]. J. Chem. Soc. Faraday. Trans., 1996, 92: 819-829
    [94] Kubacka A, Baeza B B, Colon G,et al. W,N-codoped TiO_2-anatase: a sunlight-operatedcatalyst for efficient and selective aromatic hydrocarbons photo-oxidation[J]. J. Phys. Chem. Lett., 2009, 115: 8553-8555
    [95] Shen X Z, Guo J, Liu Z C, et al. Visible-light-driven titania photocatalyst co-doped with nitrogen and ferrun[J]. Appl. Surf. Sci., 2008, 254: 4726-4731
    [96] Wonyong C, Andreas T, Michael R H. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem., 1994, 98(51): 13669-13679
    [97]孙红旗,程友萍,金万勤,等.镧、碳共掺杂TiO_2的制备及其可见光催化性能[J].化工学报, 2006, 57 (7): 1570-1574
    [98] Yue L H, Shui M, Xu Z D, et al. The A-R transformation and photocatalytie activities of mixed TiO_2 rare earth oxides[J]. J. Zhejiang Univ., 2000, 27(1): 69-74
    [99] Li Y J, Li X D, Li J W, et al. Effects of active carbon carrier on phase transform and crystallite growth of titanium dioxide in TiO_2 /AC[J]. J. Inorg. Mater., 2005, 20(2): 291-298
    [100] Chen X Y, Liu S X, Chen X. Effect of activated carbon modification on the structure chracteristics and photocatalytic activity of TiO_2 photocatalyst[J]. Chin. J. Appl. Chem, 2006, 23(11): 1218-1222
    [101] Nosaka Y, Matsushita M,Nishino J, et al. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds[J]. Science and Teehnology of Advanced Materials, 2005, 6: 143-148
    [102] Saha N C, Tompkins H G. Titanium nitride oxidation chemistry: an x-ray photoelectron spectroscopy study[J]. Joumal of Applied Physics, 1992, 72(7): 3072-3079
    [103] Wu H Z, Chou T C. Characterization of titanium nitride thin films[J]. Thin Solid Films, 1990, 191: 55-67
    [104] Gyorgy E, Delpino A P, Serra P, et al. Depth profiling characterisation of the surfaee layer obtained by pulsed Nd: YAG laser irradiation of titanium in nitrogen[J]. Surf. Coat. Tech., 2003, 173(2/3): 265-270
    [105]黄东升.铁、氮共掺杂二氧化钛粉末光催化性能和薄膜亲水性能的研究[M].厦门大学硕士学位论文, 2004, 45
    [106] Dance J M, Videau J J, Portier J. EPR of transition metal ions (Mn2 +, Cu2 +, Cr 3+ , Fe3 +)in fluoroaluminate glasses[J]. J. Non-Cryst. Solids, 1986, 86(1-2): 88-93
    [107] Sun X Y, Lin J. Synergetic effects of thermal and photo-catalysis in purification of dye water over SrTi 1-x Mnx O3 solid solutions[J]. J. Phys. Chem. C, 2009, 113: 4970-4975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700