一株微生物絮凝剂产生菌的分离鉴定及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物絮凝剂主要是由微生物在特定条件下培养到一定阶段分泌产生的具有絮凝活性的代谢产物,主要为多糖、蛋白、核酸等高分子化合物。它们通过电荷中和、吸附、桥联、网捕等作用,使胶体脱稳、絮凝沉淀达到固液分离的目的,具有安全、高效、易降解等优点,可广泛应用于废水处理、医药、食品生产等领域,是一种具有发展前途的水处理剂。
     本课题从污泥样品中分离得到245株单菌落,通过进一步筛选得到一株絮凝活性稳定的菌株JX18,絮凝率达到84%。通过菌落形态、生理生化和分子生物学鉴定,初步表明该菌为荧光假单胞菌。
     研究了P. fluorescens JX18的菌体生长曲线,该菌在12h时进入对数生长期,42h进入稳定期,培养48h时絮凝活性达到最大。通过单因素实验得出菌株P. fluorescens JX18在30℃,培养基初始pH 7.0,摇床转速160r/min的条件下发酵液絮凝活性最好。通过单因素和正交试验,确定了P. fluorescens JX18的最适发酵培养基为:葡萄糖7g,蛋白胨1.3g,KH_2PO_4 2g,K2HPO_4 5g,MgSO_4·7H_2O 0.1g,NaCl 0.3g,FeSO_4·7H_2O 0.02g,水1000mL,在此条件下絮凝率达到91.19%。
     采用5L发酵罐进行间歇发酵实验,定时测定生物量、葡萄糖含量、絮凝物质产量,研究了P. fluorescens JX18的培养动力学方程。以Logistic方程和Luedeking-Piret方程为基础,建立了该菌株在发酵过程中菌体生长、产物形成和底物消耗的动力学模型,其模型能较好地反应P. fluorescens JX18产絮凝剂的发酵规律。
     进一步研究发现,絮凝物质主要分布在发酵液中。通过对絮凝物质进行提取、纯化,化学、物理方法分析表明该絮凝物质主要为中性多糖,占粗产物的68%。在扫描电子显微镜下观察,粗产物为长纤维丝状。通过薄层层析(TLC)、高效液相色谱(HPLC)分析,该多糖主要由葡萄糖、半乳糖、甘露糖组成。
     以高岭土悬浮液模拟实际废水,研究了P. fluorescens JX18所产絮凝物质的絮凝特性:该絮凝剂具有较宽的温度和pH值使用范围。温度在20~100℃范围内,絮凝活性在90%以上,当温度在100℃时,絮凝活性基本无损失,表现出良好的热稳定性;pH值在3~10范围内,絮凝率稳定在85%以上。对于4g/L的高岭土悬浮液体系,絮凝物质的最适用量为2.5 mg/L,最适助凝剂为CaCl_2,其最适用量为0.5 g/L。
     通过电子显微镜观察和红外光谱分析,结合絮凝特性,初步描述絮凝过程为:高岭土本身为小颗粒物质,在溶液中分散比较均匀。加入助凝剂CaCl_2后,CaCl_2可中和溶液中部分负电荷,使胶体颗粒和絮凝物质之间的静电斥力减小。线性絮凝物质的加入,伸展的絮凝剂分子通过不同的基团与不同的颗粒发生吸附,同时长的线性分子之间容易交互连接,形成大的颗粒快速沉降。
Microbial flocculants were mainly produced by microorganisms under certain conditions of cultivation, including polysaccharides, proteins and nucleic acid polymers with flocculation activity. By charge neutralization, adsorption, bridging effect and immesh, the flocculants cause the colloid aggregation. Since microbial flocculants are biodegradable, nontoxic, and no secondary pollution, they were deemed as highly promising water treatment chemicals and could be widely used in wastewater treatment, pharmaceutical, food-production and other fields.
     245 strains were isolated from sludge samples and a new kind of high flocculants-producing bacteria JX18 with flocculation rate of 84% was obtained. It was identified as a Pseudomonas fluorescens based on its morphological, physiological characteristics and the partial sequences of its 16S rRNA.
     The bacteria entered the logarithmic phase after culturing12 h, reached stationary phase after culturing 40 h, and had a maximum ?occulating activity after culturing 48 h. The further investigation indicated that the optimum flocculants-producing conditions obtained were initial pH 7.0, temperature 30℃, rotation speed 160 r/min. The optimum compent proportion of medium of P. fluorescens JX18 were glucose 7g, peptone 1.3g, KH_2PO_4 2g, K2HPO_4 5g, NaCl 0.3g, MgSO_4?7H_2O 0.1g, FeSO_4?7H_2O 0.02g, water 1L according to the single factor experiments and the orthogonal experiment. Optimum cultivation conditions, the flocculation efficiency toward Kaolin clay suspension reached 91.19%.
     Biomasses, content of flocculant, concentration of glucose in fermentation broth during different time were detected in 5L fermentator. Based on the Logistic equation and Luedeking-Piret equation, the fermentation dynamics models on growth of cell, consumpution of glucose and the content of flocculant were founded. The model could well reflect the changing pattern in growth of cell, the consumpution of glucose and flocculants yield.
     The further study showed that the materials with flocculation activity were mainly distributed in the fermentation broth. Measurements of chemical and physical analysis revealed that the flocculant is a kind of polysaccharidesthe, accounting for 68% of the crude product. Scanning electron microscopy (SEM) image of the solid-state crude product showed that the flocculant has a linear morphology. It was consisted of glucose, galactose and mannose with the thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analysis.
     As Kaolin suspension modeling waste water, the results of the flocculate properties showed that the flocculant has high heated stability and wide pH serviceable range. At 20~100℃, the flocculating activity was almost not descended, and the flocculating activity was above 85% at pH 3.0~10.0. Toward 4g/L Kaolin suspension, the optimum concentration of bioflocculant was 2.5 mg/L, and CaCl_2 was proved to be the best coagulant aid in this flocculating system, in which the optimum concentration was 0.5 g/L.
     By flocculate property, electron microscopy images and infrared spectra analysis, the initial description of flocculation process are that: kaolin itself is small particulate matter, more evenly dispersed in solution; CaCl_2 is a coagulant aid, the major role of Ca2+ in flocculation is neutralizing negative charge and reducing repulsion of electric charge. Adding the flocculant, bridge and adsorption effect occured. The bioflocculant has a long-linear morphology, and connected the molecule of Kaolin clay together.
引文
[1]白振光,王成伟,李冠伦.我国水污染现状及对策[J].舰船防化, 2006,增刊, 15~17.
    [2]唐受印,戴友芝.水处理工程师手册[M].北京:化学工业出版社, 2000, 4~5.
    [3]孙希君,水污染与污水处理[J].哈尔滨学院学报, 2002, 23: 48~49.
    [4] Ryuichiro, Kurane,Tomizuka Nobora. Towards new-biomaterial produced by microorganism bioflocculants and bioabsorbent[J]. Nippon Kagaku Kaishi, 1992, 25(5): 457~463.
    [5]马青山,贾瑟,孙丽民.絮凝化学与絮凝剂.北京:中国环境科学出版社, 1988, 3~8.
    [6]甘光奉,甘莉.高分子絮凝剂研究的进展[J].工业水处理, 1999, 19: 6~7.
    [7]郑怀礼,生物絮凝剂与絮凝技术[M].北京:化学工业出版社, 2004: 47~49.
    [8]张莉,李本高.铝盐絮凝剂及其环境效应[J].工业用水与废水.2001. 32 (3): 5~7.
    [9]徐国想,阮复昌.铁系和铝系无机絮凝剂的性能分析[J].重庆环境科学. 2001, 23(3): 52~55.
    [10]尹华,彭辉,肖锦.天然高分子改性阳离子型絮凝剂的开发与应用[J].工业水处理, 1998, 19: 1~3.
    [11] Salehizadeh H, Vossoughi M, Alemzadeh I. Some investigations on bioflocculant producing bacteria[J]. Biochemical Engineering Journal, 2000, 5: 39~44.
    [12] Jang J H, Ike M, Kim S M, et al. Production of a novel bio?occulant by fed-batch culture of Citrobacter sp[J]. Biotechnology, 2001, 23: 593~597.
    [13]王建龙,文湘华.现代环境生物技术[M].北京:清华大学出版社, 2001 : 287~302.
    [14]甘莉,孟召平.微生物絮凝剂的研究进展[J].水处理技术, 2006, 32 (7): 5~8.
    [15] Salehizadeh H, Shojaosadati S A. Extracellular biopolymeric flocculants Recent trends and biotechnological importance[J]. Biotechnology Advances, 2001, 19: 371~385.
    [16]毛艳丽,张延风,罗世田,等.水处理用絮凝剂絮凝机理及研究进展[J].华中科技大学学报(城市科学版), 2008, 25 (2): 78~81.
    [17]何宁,李寅,陈坚,等.生物絮凝剂的最新研究进展及其应用[J].微生物学通报, 2005, 32 (2): 104~108.
    [18] Takeda M, Kurane R, Koizumi J, et al. A protein bioflocculant produced by Rhodococcus erythropolis[J]. Agric.Biol.Chem, 1991, 55: 2663~2664.
    [19] Kurane R, Hatamochi K, Kakuno T, et al. Purification and characterization of liquid bioflocculant produced by Rhodococcus erythropolis[J]. Biosci. Biotechnol. Biochem,1994, 58: 1977~1982.
    [20] J. Nakamura, S. Miyashiro, Y Hirose. Screening, Iolation and some Properties of Microbial Cell Flocculants[J]. Agric. Biol.Chem, 1976.40(2):377~383.
    [21]尹华,彭辉.微生物絮凝剂产生菌筛选及其絮凝除浊性能[J].城市环境与城市生态, 2000,13(3): 10~12.
    [22]胡筱敏,邓述波,牛力东,等.一株芽孢杆菌所产絮凝剂的研究.环境科学研究, 2001, 14(1): 36~40.
    [23]辛宝平.生物絮凝剂的研究和应用[J].环境科学进展, 1998, 6(5): 57~61.
    [24]庄源益.生物絮凝剂对水中染料絮凝效果探讨[J].水处理技术.1997, 23 (6):349~353.
    [25]李兆龙,虞杏英.微生物絮凝剂[J].上海环境科学, 1991,10(9): 45~48.
    [26]王猛,施宪法,柴晓利.微生物絮凝剂的应用与研究[J].化工环保, 2001, 21(6): 328~332.
    [27]王镇,王孔星.微生物絮凝剂的研究概况[J].微生物学通报, 1993, 20(6): 362~367.
    [28] Haruhiko Yokoi, Takashi Yoshida, Jun Hirose, et al. Biopolymer ?occulant produced by a Pseudomonas sp[J]. Biotechnology Techniques, 1998, 12 (7): 511~514.
    [29] Kurane R, Hatamochi K, Kakuno T, et al. Purification and characterization of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci Biotechnol Biochem, 1994, 58(11): 1977~1982.
    [30] Nakamura J, Miyashiro S, Hirose Y. Conditions of production of microbial cell ?occulant by Aspergillus sojae AJ-7002. Agric. Biol. Chem, 1976, 40: 1341~1347.
    [31] M. Takeda, J. Koizumi, H. Matsuoka, et al. Factors Affecting the Activity of a Protein Bioflocculant Produced by Nocardia amarae[J]. Ferment.Bioeng, 1992, 47: 408~409.
    [32] R.Kurane,TakedaK, SuzukiT. Screening and characteristics of microbial flocculants[J]. Agric. Biol. Chem,1986,50(9): 2301~2307.
    [33]胡筱敏.一株芽袍杆菌所产絮凝剂的研究[J].环境科学研究,2001, 14(1): 36~40.
    [34]尹华.微生物絮凝剂产生菌的筛选及其絮凝除浊性能.城市环境与城市生态[J], 2000, 13(1): 5~8.
    [35]黄民生.微生物絮凝剂的研制及其絮凝条件[J].环境科学, 2000,21(1): 23~26.
    [36]张永波.微生物絮凝剂聚铝复合絮凝法强化一级处理低浓度城市污水的试验研究[R].武汉:武汉大学,2000: 47~50.
    [37]尹华,余莉萍.固氮菌J25利用味精废水产生絮凝剂的研究[J].环境化学, 2003, 22(6): 582~587.
    [38]周旭,王竟.利用废弃物生产生物絮凝剂研究[J].化工装备技术, 2003, 24(4): 48~51.
    [39] Zheng Yan, Ye Zhi-Long, Fang Xu-Liang, et al. Production and characteristics of a bio?occulant produced by Bacillus sp. F19[J]. Bioresource Technology, 2008, 99: 7686~7691.
    [40] Yang Y, Ren NQ, Wang AJ, et al. Use of waste fermenting liquor to produce bio?occulants with isolated strains. International Journal of Hydrogen Enegy, 2008, 33: 3295~3301.
    [41] Dermlim W, Prasertsan P, Doelle P. Screening and characterization of bio-flocculant produced by isolated Klebsiella sp. Appl Microbiol Biotechnol, 1999, 52: 698~703.
    [42] Zheng Y, Ye ZL, Fang XL, et al. Production and characteristics of a bio?occulant produced by Bacillus sp. F19. Bioresource Technology, 2008, 99: 7686~7691.
    [43] Nakamura J, Miyashiro S, Hirose Y. Screening isolation and some properties of microbial cell flocculants. Agric Biol Chem, 1976, 40: 377~383.
    [44] Kurane R. Correlation between flocculant productionand morphological changes in Rhodococcus erythropolis S-1[J]. Ferment Bioengin, 1991, 72(6): 498~500.
    [45] Kurane R. Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols[J].Biosci Biotech Biochem.1994, 58(2): 428~429.
    [46] Takagi H, Hadowaki K. Poly galactosamine produced by a microorganism[J]. Chitin Nat Technol, 1985, 3: 121~128.
    [47]高宝玉,岳钦艳,于慧,等.利用透射电镜研究PACS的形态及絮凝机理[J].环境科学学报, 1998, 18(4): 392~395.
    [48]郭玲香.基于数学形态学的高聚物絮凝作用机理的定量化研究[J].环境科学学报,2002, 22(6): 716~720.
    [49]马放,张金凤,远立江,等.复合型生物絮凝剂成分分析及其絮凝机理的研究[J].环境科学学报, 2005, 25(11): 1491~1496.
    [50] Kurane.R, Nobora. T. Towards new-biomaterial produced by microorganism: bioflocculants and bioabsorbent[J]. Nippon Kagaku Kaishi. 1992, (5): 45~46.
    [51] Kazuo Kakii, Motomitsu Hasumi. Involvement of Ca2+ in the flocculation of Khuyvera cryocrescens KAL103[J]. FermentBioengin, 1990, 69(4): 224~227.
    [52]赵斌,何绍江.微生物学实验[M].北京:科学出版社, 2002.
    [53] Deng S B, Bai R B, Hu X M, et al. Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment[J]. Appl.Microbiol. Biotechnol, 2003, 60: 588~593.
    [54]杜连祥,路福平.微生物实验技术[M].北京:轻工业出版社. 2005.
    [55] H.Salehizadeh, S.A.Shojaosadati. Isolation and characterisation of a bio?occulant produced by Bacillus ?rmus[J]. Biotechnology Letters,2002, 24: 35~40.
    [56]汪长东,陈鹏,闫旭,等.一株耐盐细菌的16S rRNA基因序列分析.生物技术通报, 2008, 6: 164~167.
    [57]李建军,叶广运,陈进林,等.一株硫酸盐还原菌的分离鉴定和系统发育分析.微生物学通报, 2009, 36(10): 1476~1482.
    [58]伦世仪.生化工程[M].北京:中国轻工业出版社, 1993, 215~221.
    [59] Luedeking R, Piret E L. A kinetic study of the lactic acid ferm entation batch process at controlled pH[J].Biochem Microbiol Technol Eng,1959(2):393~412
    [60]杨阿明,夏四清,王学江,等.奇异变形杆菌TJ-1产絮凝剂的培养基优化研究.环境科学学报, 2007, 27(12): 1988~1993.
    [61]罗平,邹小兵,罗固源.胞外多糖生物絮凝剂RL-2的性能研究[J].水处理技术, 2005, 31(6): 20~23.
    [62]李苹苹,丁霄霖.紫贻贝多糖脱除蛋白质方法的研究[J].上海水产大学学报, 2006, 15(3): 328~332.
    [63]郭勇.现代生化技术[J].北京:科学出版社, 2005.
    [64]何晋浙,胡飞华,孙培龙,等.枸杞多糖结构及其单糖组分的分析研究[J].食品与发酵工业. 2008, 34 (5): 48~50.
    [65]逯南南,石丽花,刘辉,等.马尾松花粉多糖中单糖组分的HPLC分析[J].中国野生植物资源, 2008, 27(2): 61~63.
    [66]李剑平.扫描电子显微镜对样品的要求及样品的制备[J].分析测试技术与仪器, 2007, 13(1): 74~77.
    [67]何宁,李寅,陆茂林,等.生物絮凝剂的絮凝条件[J].无锡轻工大学学报. 2001, 20 (3): 248~251.
    [68]汪德生,付蕾,郎咸明,等.生物絮凝剂γ-PGA絮凝性能的研究[J].工业水处理. 2007, 27 (8): 32~35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700