ITP患者骨髓CD8~+T细胞对巨核细胞生长和血小板生成的影响及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特发性血小板减少性紫癜(ITP)是临床最为常见的出血性、自身免疫性疾病,约占出血性疾病总数的30%。以外周血小板减少、骨髓巨核细胞正常或增多伴成熟障碍为主要表现。目前,治疗以长期使用肾上腺皮质激素、免疫抑制剂及脾切除等方法为主,容易引发感染、骨髓抑制等,并且约有1/3的患者上述治疗无效,迁延不愈,甚至危及生命。其发病机制复杂,至今尚未完全阐明。随着对ITP发病机制的深入了解,将会为临床提供新的治疗靶点。
     长期以来由自身抗体介导的血小板破坏增多被看成是ITP的主要病因,即血小板膜表面糖蛋白(GP)作为自身抗原,特别是GPⅡb/Ⅲa和GPIb/Ⅸ复合物,刺激机体免疫系统产生特异性自身抗体,通过其Fab段与自身抗原结合。这些被自身抗体结合的血小板容易被机体的网状内皮系统所清除,从而导致血小板减少。
     由于GP在巨核祖细胞阶段就开始表达在细胞膜上,并且在巨核细胞成熟过程中膜表面的表达量逐步升高,因此ITP患者的巨核细胞生长和血小板生成也应该受到影响。目前普遍认为,除血小板破坏增多外,血小板生成减少也参与ITP的发病。血小板动力学研究及骨髓巨核细胞形态学检查均证实ITP患者的血小板生成减少。最近,Chang等和McMillan等发现ITP患者血浆和纯化的血小板自身抗体可抑制体外巨核细胞生长,导致巨核细胞数量明显降低。充分证明血小板特异性抗原的自身抗体不仅介导外周血小板破坏,还影响骨髓中巨核细胞的生长和发育成熟。
     曾认为体液免疫异常在ITP的发病过程中起决定性作用,但随着研究的深入,这一观点已日益受到挑战。近几年细胞免疫功能失调在ITP发病中的作用越来越受重视,尤其是T细胞在其中所起的作用。研究表明ITP的发病机制是以细胞免疫紊乱为中心的,其中Fas/FasL途径介导的T淋巴细胞凋亡障碍是重要原因。Yoshimura等研究发现ITP患者血清中sFas水平明显高于正常人,且其活化的CD8~+T细胞比例显著升高,提示高浓度的sFas抑制了免疫细胞发生Fas/FasL途径介导的激活诱导的细胞死亡(AICD),导致激活的T淋巴细胞因凋亡不足而大量积累于体内,不仅介导体液免疫异常、产生自身抗体,而且体外实验已证实细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL,CD8~+T)能直接参与对ITP患者血小板的杀伤,导致血小板持续破坏。
     血小板生成与成熟巨核细胞的凋亡密切相关,巨核细胞凋亡异常即会引起血小板生成障碍。对ITP患者骨髓巨核细胞超微结构的研究表明,患者的巨核细胞存在广泛的异常,这些异常的巨核细胞发生与凋亡相似但不同于凋亡的程序性细胞死亡,是导致血小板生成减少的重要原因。ITP患者骨髓巨核细胞发生异常凋亡的机制还不清楚。
     ITP患者骨髓中活化的CD8~+T细胞是否影响巨核系造血,目前尚不清楚。我们通过体外培养巨核细胞观察了ITP患者骨髓CD8~+T细胞对巨核细胞生成数量和质量的影响以及地塞米松对这种影响的逆转并探讨了相关机制,为临床治疗提供依据。
     第一部分ITP患者骨髓CD8~+T细胞对体外巨核细胞生成数量的影响
     研究目的:研究ITP患者骨髓中活化的CD8~+T细胞对自体巨核细胞生成数量的影响。
     研究方法:*抽取15例慢性ITP患者和13例对照10mL骨髓以及30mL外周血。
     *分离骨髓和外周血中的单个核细胞。
     *检测单个核中CD8~+T细胞的比例。
     *用免疫磁珠分离技术分离骨髓单个核细胞中CD8~+T细胞。
     *分离外周血中的血小板。
     *检测骨髓中CD8~+T细胞对自身血小板的增殖反应。
     *将骨髓单个核细胞(MNC),分为MNC组(单个核细胞直接培养)、CD8~-组(单个核细胞去除CD8~+T细胞后培养)、CD8~+组(纯化的CD8~+T细胞1:1加入自体去CD8~+T细胞后的单个核细胞中共同培养)和DEX组(在CD8~+组加入地塞米松)。
     *体外无血清半固体培养和液体培养定向扩增巨核细胞。
     *流式细胞仪检测CD41a的表达。
     *巨核祖细胞集落分析。
     研究结果:*ITP患者骨髓中CD8~+T/CD3~+T比例为59.94%±5.15%,明显高于ITP患者外周血中的比例49.33%±3.70%(P<0.05),也明显高于正常骨髓中CD8~+T/CD3~+T比例38.70%±3.43%(P<0.05)。
     *正常骨髓中的CD8~+T细胞和自身血小板在一起体外培养7天后,不发生增殖反应(cpm:1934±319),而ITP骨髓中的CD8~+T细胞和自身血小板在一起培养后,发生明显的增殖反应(cpm:13526±1037,P<0.05)。
     *正常骨髓CD8~-组形成的CFU-MK和CD41a~+细胞数(61.00±16.00和4.61±0.53)与MNC组(59.23±16.20和4.57±0.58)和CD8~+组(60.77±16.48和4.60±0.57)相比,差异无统计学意义(均P>0.05),提示正常骨髓中的CD8~+T细胞不影响CFU-MK和CD41a~+细胞数。
     *ITP患者骨髓CD8~-组形成的CFU-MK(59.40±12.76)与MNC组(55.87±18.40)和CD8~+组(54.47±21.48)相比,差异无统计学意义(均P>0.05);CD8~-组CD41a+细胞数(5.01±0.58)低于MNC组(5.75±0.70,P<0.05),CD8~+组与CD8~-组相比,CD41a~+细胞(6.18±0.79,P<0.05)增加,提示ITP骨髓中的CD8~+T细胞不影响自身CFU-MK数量,但CD41a~+细胞数随培养体系中CD8~+T细胞数的增多而增多。
     *与ITP患者的CD8~+组相比,DEX组产生的CFU-MK为56.93±14.54,P>0.05,差异无统计学意义;DEX组产生的CD41a~+细胞数减少为(5.26±0.70)×10~5,P<0.05,差异显著。
     结论:ITP患者骨髓中活化的CD8~+T细胞可使巨核细胞数增加,巨核细胞数量增加不是由于巨核祖细胞增殖加速引起的。
     第二部分ITP患者骨髓CD8~+T细胞对体外巨核细胞生成质量的影响
     研究目的:初步探讨ITP患者骨髓中活化的CD8~+T细胞引起的巨核细胞数量增多与巨核细胞凋亡和血小板生成减少之间的关系。
     研究方法:*检测培养体系中生成的血小板。
     *CD41a~+细胞DNA倍体分析。
     *CD41a~+细胞凋亡检测。
     *检测CD41a~+细胞内Bcl-xl的表达。
     *检测CD41a~+细胞膜表面Fas的表达。
     *检测培养细胞上清液中sFas和sTRAIL水平。
     研究结果:*正常骨髓中的CD8~+T细胞不影响血小板生成和巨核细胞凋亡。
     *与ITP患者MNC组相比,CD8~-组产生的血小板明显增加,P<0.05,差异显著;CD8~+组与CD8~-组相比,血小板减少,P<0.05,差异显著。在ITP患者的三组中,CD8~+组培养体系中含有的CD8~+T细胞最多,所产生的CD41a~+细胞数最多,但产生的血小板最少。ITP患者MNC组血小板产生量与正常MNC组相比,明显减少,P<0.05,差异显著。提示ITP骨髓中的CD8~+T细胞影响自身巨核细胞产生血小板的能力,血小板数随CD8~+T细胞数的增多而减少。
     *与ITP患者MNC组相比,CD8~+组产生的CD41a~+细胞中多倍体细胞比例明显增加,P<0.05,差异显著;CD8~+组与CD8~-组相比,多倍体细胞比例下降,P<0.05,差异显著。提示ITP骨髓中的CD8~+T细胞影响自身巨核细胞的成熟,多倍体巨核细胞数随CD8~+T细胞数的增多而减少。
     *与ITP患者MNC组相比,CD8~-组产生的CD41a~+细胞中凋亡细胞比例明显增加,P<0.05,差异显著;CD8~+组与CD8~-组相比,凋亡细胞比例下降,P<0.05,差异显著。提示ITP骨髓中的CD8~+T细胞影响自身巨核细胞的凋亡,凋亡的巨核细胞数随CD8~+T细胞数的增多而减少。
     *与ITP患者MNC组相比,CD8~-组产生的CD41a~+细胞Bcl-xl表达强度明显下降,P<0.05,差异显著;CD8~+组与CD8~-组相比,Bcl-xl表达强度明显增加,P<0.05,差异显著。提示ITP骨髓中的CD8~+T细胞影响自身巨核细胞内Bcl-xl的表达,Bcl-xl的表达强度随CD8~+T细胞数的增多而增高。
     *与ITP患者MNC组相比,CD8~-组产生的CD41a~+细胞Fas表达强度明显增加,P<0.05,差异显著;CD8~+组与CD8~-组相比,Fas表达强度明显下降,P<0.05,差异显著。提示ITP骨髓中的CD8~+T细胞影响自身巨核细胞膜表面Fas的表达,Fas的表达强度随CD8~+T细胞数的增多而下降。
     *与ITP患者MNC直接培养相比,CD8~-组sFas水平明显下降,P<0.05,差异显著;CD8~+组与CD8~-组相比,sFas水平明显升高,P<0.05,差异显著;DEX组与CD8~+组相比,sFas水平明显下降,P<0.05,差异显著。而各组细胞上清液中的sTRAIL水平太低,基本检测不到。提示ITP骨髓中的CD8~+T细胞影响自身骨髓细胞培养上清液中sFas水平,sFas水平随CD8~+T细胞数的增多而升高。
     *与ITP患者的CD8~+组相比,DEX组产生的血小板增多为(16.36±6.86)×10~3,P<0.05,差异显著;多倍体细胞数比例升高为21.37%±4.23%,P<0.05,差异显著;CD41a~+细胞凋亡比例升高为19.04%±3.41%,P<0.05,差异显著;Bcl-xl表达强度下降为30.70±5.88,P<0.05,差异显著;Fas表达强度升高为26.57±4.63,P<0.05,差异显著。
     结论:ITP患者骨髓中活化的CD8~+T细胞抑制自体巨核细胞凋亡,导致巨核细胞数量增多但血小板生成减少,干预巨核细胞凋亡可能成为ITP治疗的一个新靶点。
Idiopathic thrombocytopenic purpura (ITP) is one of the most common forms of autoimmune disease affecting both adults and children, characterized by a low platelet count and normal or increased number of megakaryocytes in bone marrow. It is usually a persisting disease, which relapses frequently and requires a long-term treatment. In some cases, it progresses rapidly and even threatens the patients' survival. The severe side effects of routine treatment lead to a poor prognosis.
     The pathogenetic mechanism of ITP is not completely clear yet. It has long been believed that thrombocytopenia is mediated by autoantibodies that are directed against various platelet membrane receptors, including platelet glycoproteins such as glycoprotein II b/IIIa (GPIIb/IIIa) or GP I b/IX complexes. Binding of autoantibodies to these target antigens eventually results in platelet destruction by the reticuloendothelial system.
     Since the target antigens are present on both platelets and their precursors, megakaryocytes, it is possible that megakaryocytopoiesis and thrombopoiesis are also impaired during ITP, which could further aggravate the thrombocytopenia caused initially by increased peripheral destruction of platelets. This hypothesis that megakaryocytopoiesis and thrombopoiesis may be disrupted in ITP has been supported by platelet kinetic studies and morphologic alterations of ITP marrow megakaryocytes. Recently, Chang et al reported that plasma from patients with childhood ITP suppressed in vitro megakaryocyte production. Similarly, McMillan et al studied the effect of plasma from adult patients with chronic ITP on in vitro megakaryocyte production. Their further study proved the suppression was mediated by plasma autoantibodies. Taken together, these data indicate that autoantibodies not only are involved in platelet destruction, but may also contribute to the inhibition of platelet production.
     However, these mechanisms cannot account for all observations made in this disorder. Some ITP patients' platelets are absent of detectable antigen-specific autoantibodies and remission in ITP can occur despite the presence of platelet autoantibodies. It is difficult to interpret all the impairment of platelet with antibody-mediated immunity. These phenomena indicate the presence of other mechanisms in ITP.
     It has been well known that T-lymphocyte abnormalities may have pathogenetic importance in ITP patients. Mature reactive T-cell clones have also been shown to be deleted peripherally through activation-induced cell death (AICD). AICD is induced in T cells via different death pathways, of which Fas/FasL is the best characterized. Yoshimura et al found a higher level of soluble Fas which protects cells from undergoing FasL induced apoptosis in patients with chronic ITP. Furthermore, Olsson et al reported that apoptotic resistance of T cells in patients with active ITP may lead to defective clearance of potentially pathogenic reactive T cells through AICD and consequently, may allow continuing autoimmune platelet destruction, i.e. platelet antibody production and cell-mediated cytotoxicity. Most recently, in vitro studies suggested that cytotoxic T-lymphocyte (CTL) (CD8~+) may be involved in the pathogenesis of chronic ITP through cell-mediated destruction of autologous platelets
     In normal physiology platelet production and mature megakaryocyte apoptosis are closely related events. In disease, however, the decreased megakaryocyte apoptosis might disrupt platelet formation. Growing evidence suggests that ITP megakaryocytes demonstrate predominantly characteristics of apoptosis-like programmed cell death which contribute to thrombocytopenia. Triggers for the different cell death pattern are largely unknown.
     To understand the contribution of CD8~+ T cells in bone marrow to the pathogenesis of ITP, we investigated the effect and mechanism of the CD8~+ T cells of patients with ITP on autologous megakaryocytopoiesis.
     I Effects of CD8~+ T cells from patients with ITP on quantity of in vitro megakaryocytopoiesis
     Objective: To investigate the effects of CD8~+ T lymphocytes in bone marrow from patients with chronic ITP on quantity of in vitro autologous megakaryocytopoiesis.
     Methods: * 10 mL bone marrow and 30 mL blood from 15 chronic ITP patients and 13 controls were collected respectively.
     * Mononuclear cells (MNCs) were prepared.
     * CD8~+T/CD3~+ T ratio in MNCs was detected.
     * CD8~+ T lymphocytes were positively selected using CD8~+ magnetic microbeads, according to the manufacture's recommendations.
     * Platelets were prepared from peripheral blood.
     * Proliferative responses by CD8~+ T cells in bone marrow to autologous platelets were performed.
     * The prepared bone marrow cells were divided into four groups: MNCs were cultured directly (group MNC); CD8~+T depleted MNCs were cultured (group CD8~+T-dep); purified CD8~+ T cells were 1:1 added to autologous CD8~+T-dep MNCs in coculture (group coculture); and dexamethasone was added to coculture (group DEX) and adjusted final concentration to 1.0×10~(-6) mol/L.
     *The prepared cells were planted in semi-solid and liquid culture systems.
     *Megakaryocytes were recognized as CD41a~+ events by fluorescence -activated cell sorter (FACS).
     * Megakaryocyte colony forming units (CFU-MK) were quantitated.
     Results: * The ratio of CD8~+T/CD3~+T in ITP bone marrow was 59.94%±5.15%, which was significantly higher than that in ITP peripheral blood (49.33%±3.70%; p<0.05) and in normal bone marrow (38.70%±3.43%; p<0.05).
     * CD8~+ T cells derived from patients with chronic ITP showed vigorous proliferation after being incubated with autologous platelets for 7 days, but CD8~+ T cells from controls did not show reactivity (p<0.05).
     * The counts of CFU-MK and megakaryocytes were very similar among group MNC, group CD8~+T-dep and group coculture, which were not influenced by the depletion or addition of autologous CD_8~+T cells from normal bone marrow.
     * When numbers of CFU-MK of ITP were compared, there was no statistical difference between group MNC and group CD8~+T-dep (55.87±18.40 vs. 59.40±12.76; p>0.05), between group CD8~+T-dep and group coculture (59.40±12.76 vs. 54.47±21.48; p>0.05),nor between group MNC and group coculture(55.87±18.40 vs. 54.47±21.48; p>0.05). CFU-MK formation of chronic ITP patients was not influenced by the depletion or addition of autologous CD8~+ T cells. When megakaryocyte counts were compared, the depletion of CD8~+ T cells caused a significant reduction in megakaryocytes when compared with group MNC, the addition of CD8~+ T cells increased megakaryocytes when compared with group CD8~+T-dep, and DEX decreased megakaryocytes when compared with group coculture. Also, megakaryocyte count of group coculture was maximal in coculture containing the most numerous CD8~+T cells.
     Conclusion: ITP CD8~+ T cells increased megakaryocytes, and the increased megakaryocyte count was not mediated by accelerated proliferation of megakaryocyte progenitors.
     II Effects of CD8~+ T cells from patients with ITP on quality of in vitro megakaryocytopoiesis
     Objective: To investigate the connection between the increased megakaryocytes mediated by ITP CD8~+ T cells and the suppressed apoptotic megakaryocytes and platelet production.
     Methods: * Platelet count was analyzed in cultured cells.
     * Megakaryocyte ploidy was measured. CD41a~+ cells were gated and ploidy distribution was assessed by the intensity of the PI fluorescence.
     * Apoptosis in megakaryocytes was measured using the Annexin V-FITC Apoptosis Detection Kit according to the manufacturers instructions..
     * Bcl-xl expression in megakaryocytes was performed by first incubating the cells with PEcy5-conjugated CD41a mAb. After staining, cells were fixed in 1% paraformaldehyde, permeabilized with 0.1% saponin, and incubated with FITC-conjugated Bcl-xl. CD41a~+ cells were gated and Bcl-xl expression was shown as mean fluorescence intensity (MFI) within that population.
     * Fas expression in megakaryocytes was performed by sequentially incubating with PEcy5-conjugated CD41a mAb and FITC-conjugated Fas mAb. CD41a~+ cells were gated and Fas expression was reported as MFI within that population.
     * The levels of soluble Fas (sFas) and soluble TRAIL (sTRAIL) of cell-free supernatants of megakaryocytic cultures were quantified by the respectiveenzyme-linked immunosorbent assay (ELISA) kits according to the manufacturer's instructions.
     Results: * The megakaryocytic characteristics were very similar among group MNC, group CD8~+T-dep and group coculture in controls. The depletion or addition of autologous CD8~+ T cells from normal bone marrow did not affect apoptotic megakaryocytes and platelet production.
     * A significant reduction in platelets was noted in cocultures when compared with CD8~+T-dep cultures and MNC cultures. The count of platelets in group CD8~+T-dep was remarkably higher than that of group MNC. When the yield of megakaryocytes was maximal in cocultures, in contrast, the platelet production reached the minimum, indicating the ability of platelet production by megakaryocytes dropped, though the quantity of megakaryocytes increased.
     * The percentage of polyploidy (N≥4) megakaryocytes in group CD8~+T-dep was significantly higher than that in group MNC (p<0.05). The addition of CD8~+ T cells decreased the percentage of polyploidy megakaryocytes when compared with group CD8~+T-dep (p<0.05).
     * The percentage of apoptotic megakaryocytes was significantly higher in group CD8~+T-dep than that in group MNC (p<0.05). The addition of CD8~+T cells decreased the percentage of apoptotic megakaryocytes when compared with group CD8~+T-dep (p<0.05).
     * The expression of Bcl-xl was significantly lower in group CD8~+T-dep than that in group MNC (p<0.05). The addition of CD8~+T cells increased the expression of Bcl-xl when compared with group CD8~+T-dep (p<0.05).
     * The expression of Fas was significantly higher in group CD8~+T-dep than that in group MNC (p<0.05). The addition of CD8~+ T cells decreased the expression of Fas when compared with group CD8~+T-dep (p<0.05).
     * The sFas level of the group CD8~+T-dep (415.01±178.47) was significantly lower than that of the group MNC (977.46±287.31) and the group coculture (1424.88±469.93, both P<0.05). sTRAIL level was too low to be detected by ELISA.
     * Compared with the ITP group coculture, the platelet numbers and the percentage of polyploid nuclei of the group DEX increased largely(16.36±6.86 and 21.37±4.23 respectively, both P<0.05), the percentage of apoptotic CD41a~+ cells and the Fas expression level increased(19.04±3.41 and 26.57±4.63 respectively, both P<0.05), the Bcl-xl expression level reduced(30.70±5.88, P<0.05), and the sFas level reduced(719.13±220.53, P<0.05).
     Conclusion: CD8~+ T cells in bone marrow of patients with chronic ITP might suppress megakaryocyte apoptosis leading to the increased megakaryocytes and the impaired platelet production. Megakaryocyte apoptosis would be a novel target for the management of ITP.
引文
1. McMillan R. Chronic idiopathic thrombocytopenic purpura. N Engl J Med. 1981,304:1135-1147
    
    2. Cines DB, Blanchette VS. Medical Progress: Immune Thrombocytopenic Purpura. N Engl J Med.2002,346:995-1008.
    
    3. Jones HW, Tocantins LM. The history of purpura hemorrhagica. Ann Med History. 1933;5:349-351
    
    4. Harrington WJ, Minnich V, Hollingsworth JW, et al. Demonstration of a thrombocytopenic factor in the blood of patients with thrombocytopenic purpura. J Lab Clin Med. 1951;38:l-10
    
    5. Shulman NR, Marder VJ, Weinrach RS. Similarities between known antiplatelet antibodies and the factor responsible for thrombocytopenia in idiopathic purpura. Physiologic, serologic and isotopic studies. Ann N Y Acad Sci. 1965;124:499-542
    
    6. Van Leeuwen EF, Van Der Ven JTM, Engeffriet CP, et al. Specificity of autoantibodies in autoimmune thrombocytopenia. Blood. 1982, 59:23-26
    
    7. McMillan R.Autoantibodies and autoantigens in chronic immune thrombocytopenia purpura. Semin Hematol. 2000, 37:239-248
    
    8. Fujisawa K, Tani P, O'Toole TE, et al. Different specificities of platelet- associated and plasma autoantibodies to platelet GP II b-IIIa in patients with chronic immune thrombocytopenic purpura. Blood. 1992; 79: 1441-1446
    
    9. Kiefel V, Santoso S, Kaufmann E, et al. Autoantibodies against platelet glycoprotein I b/IX: a frequent finding in autoimmune thrombocytopenic purpura. Br J Haematol. 1991;79: 256-262
    
    10. Saleh MN, Moore DL, Lee JY, et al. Monocyte-platelet interaction in immune and nonimmune thrombocytopenia. Blood. 1989;74:1328-1331
    
    11. George JN, el-Harake MA, Raskob GE. Chronic idiopathic thrombocytopenic purpura. N EnglJ Med. 1994;331:1207-1211
    12. Dameshek W, Miller EB. The megakaryocytes in idiopathic thrombocytopenic purpura, a form of hypersplenism. Blood. 1946;1: 27-52
    
    13. Diggs LW, Hewlett JS. A study of the bone marrow from thirty-six patients with idiopathic hemorrhagic (thrombopenic) purpura. Blood. 1948;3: 1090-1104
    
    14. Stahl CP, Zucker-Franklin D, McDonald TP. Incomplete antigenic cross- reactivity between platelets and megakaryocytes: relevance to ITP. Blood. 1986; 67:421-428
    
    15. Ballem PJ, Segal GM, Stratton JR, et al. Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance. J Clin Invest. 1987;80:33-40
    
    16. Isaka Y, Kambayashi J, Kimura K, et al. Platelet production, clearance and distribution in patients with idiopathic thrombocytopenic purpura. Thromb Res. 1990;60:121-131
    
    17. Anne-marie M, Ying L, Jacque-Philippe C, et al. Ex vivo expansion of megakaryocytic cells. Int J Hematol. 2000; 71: 203-210.
    
    18. Jackson CW. Cholinesterase as a possible marker for early cells of the megakaryocytic series. Blood. 1973; 42:413-421
    
    19. Rabellino EM, Levene RB, Leung LLK, et al. Human megakaryocytes. II. Expression of platelet proteins in early marrow megakaryocytes. J Exp Med. 1981; 154:88-100
    
    20.邓家栋主编,邓家栋临床血液学,上海:上海科学技术出版社,2001,1220
    
    21. McMillan R, Luiken GA, Levy R, et al. Antibody against megakaryocytes in idiopathic thrombocytopenic purpura. JAMA. 1978;239:2460-2462
    
    22. Stahl CP, Zucker-Franklin D, McDonald TP. Incomplete antigenic cross-reactivity between platelets and megakaryocytes: relevance to ITP. Blood. 1986;67:421-428
    
    23. Hoffman R, Zaknoen S, Yang HH, et al. An antibody cytotoxic to megakaryocyte progenitor cells in a patient with immune thrombocytopenic purpura. N Engl J Med. 1985;312:1170-1174
    
    24. Nagasawa T. Immunological approaches to normal and abnormal megakaryopoiesis-effects of monoclonal antibody and autoantibody against platelet glycoprotein IIb/IIIa on the growth of megakaryocytic progenitors. Nippon Ketsueki Gakkai Zasshi. 1987;50:1723-1729
    
    25. Takahashi R, Sekine N, Nakatake T. Influence of monoclonal antiplatelet glycoprotein antibodies on in vitro human megakaryocyte colony formation and proplatelet formation. Blood. 1999;93:1951-1958
    
    26. Chang M, Nakagawa PA, Williams SA, et al. Immune thrombocytopenic purpura (ITP) plasma and purified ITP monoclonal autoantibodies inhibit megakaryocytopoiesis in vitro. Blood. 2003; 102:887-895
    
    27. McMillan R, Wang L, Tomer A, et al. Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patients with chronic ITP. Blood. 2004;103:1364-1369
    
    28. Perrotta PL, Perrotta CL, Snyder EL. Apoptotic activity in stored human platelets. Transfusion, 2003, 43:526-35.
    
    29. Li J, Xia Y, Bertino AM, et al. The mechanism of apoptosis in human platelets during storage. Transfusion,2000,40:1320-9.
    
    30. Ozsoylu S, Karabent A, Irken G,et al. Related Articles, Antiplatelet antibodies in childhood idiopathic thrombocytopenic purpura.Am J Hematol,1991,36:82-5.
    
    31. Berchtold P, Wenger M. Autoantibodies against platelet glycoproteins in autoimmune thrombocytopenic purpura: their clinical significance and response to treatment. Blood, 1993, 81:1246-50.
    
    32. Semple JW, Milev Y, Cosgrave D, et al. Differences in serum cytokine levels in acute and Chronic autoimmune thrombocytopenic purpura: relationship to platelet phenotype and antiplatelet T2cell reactivity. Blood, 1996,87:4245—4254.
    
    33. Ogawara H, Handa H, Morita K, et al. High Thl/Th2 ratio in patients with chronic idiopathic thrombocytopenic purpura. Eur J Haematol, 2003,71:283-288
    
    34. Hopkins L, Daivis J, Schwartch K, et al.Glycoprotein Ib peptide presented by MHC class I platelets from individuals with ITP. Hum Immunol,2002,5:63-65.
    
    35. Wybran, Fudenberg. Cellular immunity to platelets in idiopathic thrombocytopenic purpura. Blood, 1972, 40:856-61.
    36. Olsson B, Andersson PO, Jernas M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med, 2003, 9:1123-1124.
    
    37. Olsson B, Andersson PO, Jernas M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med, 2003, 9:1123-1124.
    
    38. Zhang F, Chu X, Wang L, et al. Cell-mediated lysis of autologous platelets in chronic idiopathic thrombocytopenic purpura. Eur J Haematol, 2006,76:427-431
    
    39. Suciu-Foca N, Manavalan JS, Cortesini R. Generation and function of antigen-specific suppressor and regulatory T cells. Transpl Immunol. 2003, 11: 235-244
    
    40. Picker LJ, Singh MK, Zdraveski Z, et al. Direct demonstration of cytokine synthesis heterogeneity among human memory effector T cells by flow cytometry. Blood. 1995,86:1408-1419
    
    41. Coopamah MD, Garvey MB, Freedman J, et al. Cellular immune mechanisms in autoimmune thrombocytopenic purpura: An update. Transfus Med Rev. 2003, 17:69-80
    
    42. Panitsas FP, Theodoropoulou M, Kouraklis A, et al. Adult chronic idiopathic thrombocytopenic purpura(ITP) is the manifestation of a type-1 polarized immune response. Blood, 2004, 103:2645-2647.
    
    43. Hedlund-Treutiger I, Elinder G, Wigzell H, et al. T cell receptor V gene useage by CD4+ and CD8+ peripheral blood T lymphocytes in immune thrombocytopenic purpura. Acta Paediatr, 2004, 93:633-637.
    
    44. Wang TT, Zhao H, Ren H, et al. Profiles of type 1 and type 2 T cells in chronic idiopathic thrombocytopenic purpura. Zhonghua Yi Xue Za Zhi, 2006, 86:669-673.
    
    45. Ware RE, Howard TA. Phenotypic and clonal analysis of T lymphocytes in childhood immune thrombocytopenic purpura. Blood 1993; 82: 2137-42.
    
    46. Porcelijn L, Folman CC, Bossers B, Huiskes E, Overbeeke MA, v d Schoot CE, de Haas M, von dem Borne AE. The diagnostic value of thrombopoietin level measurements in thrombocytopenia. Thromb Haemost 1998; 79: 1101-5.
    
    47. Kappers-Klunne MC, de Haan M, Struijk PC, van Vliet HH. Serum thrombopoietin levels in relation to disease status in patients with immune thrombocytopenic purpura. Br J Haematol 2001; 115: 1004-6.
    
    48. Sun L, Hwang WY, Aw SE. Biological characteristics of megakaryocytes: specific lineage commitment and associated disorders. Int J Biochem Cell Biol 2006; 38: 1821-6.
    
    49. Hoffman R, Mazur E, Bruno E, et al. Assay of an activity in the serum of patients with disorders of thrombopoiesis that stimulates formation of megakaryocytic colonies. N Engl J Med, 1981, 305:533-538
    
    50. Bellucci S, Han ZC, Caen JP. Studies of in vitro megakaryocytopoiesis in adult immune thrombocytopenic purpura (ITP). Eur J Haematol, 1991, 47:86-90
    
    51. Podolak-Dawidziak M. Megakaryocyte progenitors in immune thrombocytopenic purpura (ITP). Thromb Res, 1991, 62:93-6
    
    52. Abgrall JF, Berthou C, Sensebe L, et al. Decreased in vitro megakaryocyte colony formation in chronic idiopathic thrombocytopenic purpura.Br J Haematol, 1993, 85:803-4.
    
    53. Sato T, Morita I, Fujita H, et al. Pharmacological characterization of cepharanthin in chronic idiopathic thrombocytopenic purpura. Platelets, 2001, 12:156-62
    1. Anne-marie M, Ying L, Jacque-Philippe C, et al. Ex vivo expansion of megakaryocytic cells. Int J Hematol. 2000; 71: 203-210.
    
    2. Cheng L, Qasba P, Vanguri P, et al. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+)hematopoietic progenitor cells. J cell Physiol. 2000; 184:58-69
    
    3. Zimmet J, Ravid K. Polyploidy: occurence in nature,mechanisms,and significance for the megakaryocyte-platelet system. Exp Hematol. 2000;28:3-16
    
    4. Vitrat N, Cohen-Solat K, Pique C, et at. Endomitosis of human megakaryocytes are due to abortive mitosis. Blood. 1998;91:3711-3723
    
    5. Behnke O. An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res. 1968;24:412-433
    
    6. Becker RP, De Bruyn PP. The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation. Am J Anat. 1976; 145:183-205
    
    7. Zucker-Franklin D, Petursson S. Thrombocytopoiesis-analysis by membrane tracer and freeze-fracture studies on fresh human and cultured mouse megakaryocytes. J Cell Biol. 1984;99:390-402
    
    8. Jackson CW. Cholinesterase as a possible marker for early cells of the megakaryocytic series. Blood. 1973; 42:413-421
    
    9. Rabellino EM, Levene RB, Leung LLK, et al. Human megakaryocytes. II. Expression of platelet proteins in early marrow megakaryocytes. J Exp Med. 1981; 154:88-100
    
    10. Radley JM, Scurfield G. The mechanism of platelet release. Blood. 1980; 56: 996-999
    
    11. Radley JM. Haller CJ. The demarcation membrane system of the megakaryocyte:a misnomer? Blood. 1982;60:213-219
    12. Radley JM. Ultrastructural aspects of platelet production. Prog Clin Biol Res. 1986;215:387-398
    
    13. Tablin F, Castro M, Leven RM. Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation. J Cell Sci. 1990;97:59-70
    
    14. Italiano JE Jr, Lecine P, Shivdasani RA, et al. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol. 1999;147:1299-1312
    
    15. Hartwig J, Italiano J Jr. The birth of the platelet. J Thromb Haemost. 2003;l:1580-1586
    
    16. Patel SR, Hartwig JH, Italiano JE Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005;115:3348-3354
    
    17. De Botton S, Sabri S, Daugas E, et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood. 2002; 100:1310-1317
    
    18. Li J, Kuter DJ. The end is just the beginning: megakaryocyte apoptosis and platelet release. Int J Hematol. 2001 ;74:365-374
    
    19. Clarke MC, Savill J, Jones DB, et al. Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. J Cell Biol. 2003;160:577-587
    
    20. Falcieri E, Bassini A, Pierpaoli S, et al. Ultrastructural characterization of maturation, platelet release, and senescence of human cultured megakaryocytes. Anat Rec. 2000;258:90-99
    
    21. Gordge MR Megakaryocyte apoptosis: sorting out the signals. Br J Pharmacol. 2005;145:271-273
    
    22. Ogilvy S, Metcalf D, Print CG, et al. Constitutive bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci U S A. 1999;96:14943-14948
    
    23. Kaluzhny Y, Yu G, Sun S, et al. BclxL overexpression in megakaryocytes leads to impaired platelet fragmentation. Blood. 2002;100:1670-1678
    
    24. Nakao S. Immune mechanism of aplastic anemia. Int J Hematol. 1997,66:127-134
    
    25. Kanchan K, Loughran TP Jr. Antigen-driven clonal T cell expansion in disorders of hematopoiesis. Leuk Res.2003,27:291-292
    
    26. Sun L, Hwang WY, Aw SE. Biological characteristics of megakaryocytes: Specific lineage commitment and associated disorders. Int J Biochem Cell Biol. 2006,38:1821-6
    
    27. Dameshek W, Miller EB. The megakaryocytes in idiopathic thrombocytopenic purpura, a form of hypersplenism. Blood. 1946;1: 27-52
    
    28. Diggs LW, Hewlett JS. A study of the bone marrow from thirty-six patients with idiopathic hemorrhagic (thrombopenic) purpura. Blood. 1948;3: 1090-1104
    
    29. Ucar C, Oren H, Irken G, et al. Investigation of megakaryocyte apoptosis in children with acute and chronic idiopathic thrombocytopenic purpura. Eur J Haematol. 2003;70:347-352
    
    30. Ridell B, Branehog I. The ultrastructure of the megakaryocytes in idiopathic thrombocytopenic purpura (ITP) in relation to thrombokinetics. Pathol Eur. 1976;11; 179-187
    
    31. Houwerzijl EJ, Blom NR, van der Want JJ, et al. Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood. 2004; 103:500-506
    
    32. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004; 16: 663-669
    
    33. Kitanaka C, Kuchino Y. Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ. 1999; 6: 508-515
    
    34. Assuncao GC, Linden R. Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem. 2004; 271: 1638-1650
    
    35. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2001 ;2: 589-598
    
    36. Houwerzijl EJ, Blom NR, van der Want JJ, Vellenga E, de Wolf JTM. Megakaryocytic dysfunction in myelodysplastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death. Leukemia. 2006; 20: 1937-1942
    
    37. Norol F, Vitrat N, Cramer E, et al. Effects of cytokines on platelet production from blood and marrow CD34+ cells. Blood. 1998;91:830-843
    
    38. Ballem PJ, Segal GM, Stratton JR, et al. Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance. J Clin Invest. 1987;80:33-40
    
    39. Isaka Y, Kambayashi J, Kimura K, et al. Platelet production, clearance and distribution in patients with idiopathic thrombocytopenic purpura. Thromb Res. 1990;60:121-131
    
    40. Kaluzhny Y, Ravid K. Role of apoptotic processes in platelet biogenesis. Acta Haematol.2004;111:67-77
    
    41. Sanz C, Benet I, Richard C, et al. Antiapoptotic protein Bcl-x(L) is up-regulated during megakaryocytic differentiation of CD34(+) progenitors but is absent from senescent megakaryocytes. Exp Hematol, 2001, 29:728-735.
    
    42. Zhang L, Zhao H, Sun A, et al. Early down-regulation of Bcl-xL expression during megakaryocytic differentiation of thrombopoietin-induced CD34+ bone marrow cells in essential thrombocythemia. Haematologica. 2004;89:1199-1206
    
    43. Coppola S, Narciso L, Feccia T,et al. Enforced expression of KDR receptor promotes proliferation, survival and megakaryocytic differentiation of TF1 progenitor cell line. Cell Death Differ, 2006, 13:61-74.
    
    44. Sach SL,Lotem J. Control of programmed cell death in normal and leukemia cell. New implication for therapy. Blood, 1993,82:15-21
    
    45. Tan EM. Autoimmunity and apoptosis. J Exp Med,1994,179:1083-1086
    
    46. Ju S T,Pomka D,Cui H,et al. Fas (CD95)/FasL interaction required for programmed cell death after T-cell activation. J Nature, 1995,373:444-448
    
    47. Phein J,Walczak H,Kramner PH,et al. Autocine T cell suicide mediated by Apo-l/Fas/CD95.Nature,1995,373:438-441
    
    48. De Maria R, Testi R. Fas-FasL interactions:a common pathogeneic mechanism in organ-specific autoimmunity. Immunology Today, 1998,19:121-125
    
    49. Screaton A,Xu X.Tcell life and death signaling via TNF-receptor family members.Curr Opin Immunol,2000; 12(3):316-322
    
    50. Cheng J,Zhou T,Liu C,et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science, 1994,263:1759-1762
    
    51. Jodo S,Kobayashi S,Kayagaki N,et al.Serum levels of soluble Fas/APO-1 (CD95) and its molecular structure in patients with systemic lupus erythematosus (SLE) and other autoimmune disease. Clin Exp Immunol, 1997, 107:89-95
    
    52. Komada Y,Sakurai M.Fas receptor(CD95)-mediated apoptosis in leukemia cells.Leuk Lymphoma, 1997;25(12):9-21
    
    53. Yoshimura C, Nomura S, Nagahama M, et al. Plasma-soluble Fas (APO-1,CD95)and soluble Fas ligand in immune thrombocytopenic purpura. Eur J Haematol, 2000, 64:219-224.
    
    54. Olsson B, Andersson PO, Jacobsson S, et al. Disturbed apoptosis of T-cells in patients with active idiopathic thrombocytopenic purura. Thromb Haemost, 2005, 93:139-144.
    
    55. Fang Liu, Changlin Wu, Xiaomeng Yang, et al. Polarization and apoptosis of T cell subsets in idiopathic thrombocytopenic purura. Cell Mol Immunol, 2005, 2:387-392.
    
    56. Schwartzman RA,Cidlowski JA.Glucocorticoid-induced apoptosis of lymphoid cells.Int Arch Allergy Immunol, 1994; 105(4):347-354
    
    57. Wang D, Muller N, McPherson KG,et al. Glucocorticoids engage different signal transduction pathways to induce apoptosis in thymocytes and mature T cells. J Immunol,2006,176:1695-702
    
    58. Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci,2006,63:60-72
    
    59. British Committee for Standerds in Haematology General Haematology Task Force. Guidelines for the investigation and management of idiopathic thrombocytopenic purpura in adults, children and in pregnancy. Br J Haematol.2003,120:574-596
    
    60. Arruda VR and Annichino-Bizzacchi JM. High-dose dexamethasone therapy in chronic idiopathic thrombocytopenic purpura. Ann Hematol 1996; 73:175-177
    
    61. Borst F, Keuning JJ, van Hulsteijn H, Sinnige H, Vreugdenhil G. High-dose dexamethasone as a first- and second-line treatment of idiopathic thrombocytopenic purpura in adults. Ann Hematol 2004; 83:764-768.
    62. Mazzucconi MG, Fazi P, Bernasconi S,et al. Therapy with high-dose dexamethasone (HD-DXM) in previously untreated patients affected by idiopathic thrombocytopenic purpura: a GIMEMA experience. Blood, 2007,109:1401-7.
    1.Edinger AL,Thompson CB.Death by design:apoptosis,necrosis and autophagy.Curr Opin Cell Biol.2004:16:663-669.
    2.Kitanaka C,Kuchino Y.Caspase-independent programmed cell death with necrotic morphology.Cell Death Differ.1999:6:508-515.
    3.Assuncao GC,Linden R.Programmed cell deaths.Apoptosis and alternative deathstyles.Eur J Biochem.2004:271:1638-1650.
    4.Otsuki Y,Li Z,Shibata MA.Apoptotic detection methods-from morphology to gene.Prog Histochem Cytochem.2003:38:275-339.
    5.Kroemer G,E1-Deiry WS,Golstein P,et al.Nomenclature committee on cell death.Classification of cell death.Cell Death Differ.2005:12:1463-1467.
    6.Leist M,Jaattela M.Four deaths and a funeral:from caspases to alternative mechanisms.Nat Rev Mol Cell Biol.2001:2:589-598.
    7.Gozuacik D,Kinchi A.Autophagy as a cell death and tumor suppressor mechanism.Oncogene.2004:23:2891-2906.
    8.Levine B,Yuan J.Autophagy in cell death:an innocent convict? J Clin Invest.2005:115:2679-2688.
    9.Lemasters J J,Nieminen AL,Qian T,et al.The mitochondrial permeability transition in cell death:a common mechanism in necrosis,apoptosis and autophagy.Biochim Biophys Acta.1998:1366:177-196.
    10.Anne-marie M,Ying L,Jacque-Philippe C,et al.Ex vivo expansion of megakaryocytic cells.Int J Hematol.2000:71:203-210.
    11.Jackson CW.Cholinesterase as a possible marker for early cells of the megakaryocytic series.Blood.1973:42:413-421.
    12.Rabellino EM,Levene RB,Leung LLK,et al.Human megakaryocytes.II.Expression of platelet proteins in early marrow megakaryocytes.J Exp Med.1981:154:88-100
    13. Mostafa SS, Papoutsakis ET, Miller WM. Oxygen tension modulates the expression of cytokine receptors, transcription factors, and lineage-specific marker in human megakaryocytes. Exp Hematol, 2001; 29: 873-883.
    
    14. Bruno E, Murray LJ, DiGiusto R, et al. Detection of a primitive megakaryocyte progenitor cell in human fetal bone marrow. Exp Hematol. 1996; 24: 552-558.
    
    15. Briddell RA, Brandt JE, Straneva JE, et al. Characterization of the human burst-forming unit-megakaryocyte. Blood. 1989; 74: 145-151.
    
    16. Hogge D, Fanning S, Bockhold K, et al. Quantitation and characterization of human megakaryocyte colony-forming cells using a standardized serum-free agarose assay. Br J Haematol. 1997; 96: 790-800.
    
    17. Maurer AM, Liu Y, Caen JP, et al. Ex vivo expansion of megakaryocytic cells. Int J Hematol. 2000; 71: 203-210.
    
    18. Cheng L, Qasba P, Vanguri P, et al. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+)hematopoietic progenitor cells. J cell Physiol. 2000; 184: 58-69.
    
    19. Zimmet J, Ravid K. Polyploidy: occurence in nature, mechanisms, and significance for the megakaryocyte-platelet system. Exp Hematol. 2000; 28: 3-16.
    
    20. Vitrat N, Cohen-Solat K, Pique C, et at. Endomitosis of human megakaryocytes are due to abortive mitosis. Blood. 1998; 91: 3711-3723.
    
    21. Behnke O. An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res. 1968; 24: 412-433.
    
    22. Zucker-Franklin D, Petursson S. Thrombocytopoiesis-analysis by membrane tracer and freeze-fracture studies on fresh human and cultured mouse megakaryocytes. J Cell Biol. 1984; 99: 390-402.
    
    23. Becker RP, De Bruyn PP. The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation. Am J Anat. 1976; 145: 183-205.
    
    24. Radley JM, Scurfield G. The mechanism of platelet release. Blood. 1980; 56: 996-999.
    25. 24. Radley JM, Haller CJ. The demarcation membrane system of the megakaryocyte:a misnomer? Blood. 1982; 60: 213-219.
    
    26. 25. Radley JM. Ultrastructural aspects of platelet production. Prog Clin Biol Res. 1986; 215: 387-398.
    
    27. 26. Tablin F, Castro M, Leven RM. Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation. J Cell Sci. 1990; 97: 59-70.
    
    28. Italiano JE Jr, Lecine P, Shivdasani RA, et al. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol. 1999; 147: 1299-1312.
    
    29. Hartwig J, Italiano J Jr. The birth of the platelet. J Thromb Haemost. 2003; 1: 1580-1586.
    
    30. Patel SR, Hartwig JH, Italiano JE Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005; 115: 3348-3354.
    
    31. De Botton S, Sabri S, Daugas E, et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood. 2002; 100: 1310-1317.
    
    32. Li J, Kuter DJ. The end is just the beginning: megakaryocyte apoptosis and platelet release. Int J Hematol. 2001; 74: 365-374.
    
    33. Clarke MC, Savill J, Jones DB, et al. Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. J Cell Biol. 2003; 160:577-587.
    
    34. Falcieri E, Bassini A, Pierpaoli S, et al. Ultrastructural characterization of maturation, platelet release, and senescence of human cultured megakaryocytes. Anat Rec. 2000; 258: 90-99.
    
    35. Gordge MR Megakaryocyte apoptosis: sorting out the signals. Br J Pharmacol. 2005; 145:271-273.
    
    36. Ogilvy S, Metcalf D, Print CG, et al. Constitutive bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci U S A. 1999; 96: 14943-14948.
    
    37. Kaluzhny Y, Yu G, Sun S, et al. BclxL overexpression in megakaryocytes leads to impaired platelet fragmentation. Blood. 2002; 100: 1670-1678.
    38. Harrington WJ, Sprague CC, Minnich V, et al. Immunologic mechanisms in idiopathic and neonatal thrombocytopenic purpura. Ann Intern Med. 1953; 38: 433-469.
    
    39. Shulman NR, Marder VJ, Weinrach RS. Similarities between known antiplatelet antibodies and the factor responsible for thrombocytopenia in idiopathic purpura: physiologic, serologic, and isotopic studies. Ann NY Acad Sci. 1965; 124: 499-542.
    
    40. Fujsawa K, Tani P, O'Toole TE, et al. Different spacifities of platelet-associated and plasma autoantibodies to platelet GP II b/IIIa in patients with chronic immune thrombocytopenic purpura. Blood.1992; 79: 1441-1446.
    
    41. Kiefel V, Santoso S, Kaufmann E, et al. Autoantibodies against platelet glycoprotein I b/K: a frequent finding in autoimmune thrombocytopenic purpura. Br J Haematol. 1991; 79: 256-262.
    
    42. Ballem PJ, Segal GM, Stratton JR, et al. Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance. J Clin Invest. 1987; 80: 33-40.
    
    43. Isaka Y, Kambayashi J, Kimura K, et al. Platelet production, clearance and distribution in patients with idiopathic thrombocytopenic purpura. Thromb Res. 1990; 60: 121-131.
    
    44. Dameshek W, Miller EB. The megakaryocytes in idiopathic thrombocytopenic purpura, a form of hypersplenism. Blood. 1946; 1: 27-52.
    
    45. Diggs LW, Hewlett JS. A study of the bone marrow from thirty-six patients with idiopathic hemorrhagic (thrombopenic) purpura. Blood. 1948; 3: 1090-1104.
    
    46. Ucar C, Oren H, Irken G, et al. Investigation of megakaryocyte apoptosis in children with acute and chronic idiopathic thrombocytopenic purpura. Eur J Haematol. 2003; 70: 347-352.
    
    47. Stahl CP, Zucker-Franklin D, McDonald TP. Incomplete antigenic cross-reactivity between platelets and megakaryocytes: relevance to ITP. Blood. 1986; 67: 421-428.
    48. Houwerzijl EJ, Blom NR, van der Want JJ, et al. Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood. 2004; 103: 500-506.
    
    49. Centurione L, Di Baldassarre A, Zingariello M, et al. Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1 (low) mice. Blood. 2004; 104: 3573-3580.
    
    50. Houwerzijl EJ, Blom NR, van der Want JJ, et al. Megakaryocytic dysfunction in myelodysplastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death. Leukemia. 2006; 20: 1937-1942.
    
    51. Sun L, Hwang WY, Aw SE. Biological characteristics of megakaryocytes: specific lineage commitment and associated disorders. Int J Biochem Cell Biol. 2006; 38: 1821-1826.
    
    52. McMillan R, Wang L, Tomer A, et al. Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patients with chronic ITP. Blood. 2004; 103: 1364-1369.
    Ballem, P.J., Segal, G.M., Stratton, J.R., Gernsheimer, T., Adamson, J.W. & Slichter, S.J. (1987) Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance. The Journal of Clinical Investigation, 80, 33-40.
    Benedetti, F., de Sabata, D. & Perona, G. (1994) T suppressor activated lymphocytes (CD8+/DR+) inhibit megakaryocyte progenitor cell differentiation in a case of acquired amegakaryocytic thrombocytopenic purpura. Stem Cells, 12,205-213.
    Chang, M., Nakagawa, P.A., Williams, S.A., Schwartz, M.R., Imfeld, K.L., Buzby, J.S. & Nugent, D.J. (2003) Immune thrombocytopenic purpura (ITP) plasma and purified ITP monoclonal autoantibodies inhibit megakaryocytopoiesis in vitro. Blood, 102, 887-895.
    
    Cines, D.B. & Blanchette, V.S. (2002) Immune thrombocytopenic purpura. New England Journal of Medicine, 346,995-1008.
    
    Clarke, M.C., Savill, J., Jones, D.B., Noble, B.S. & Brown, S.B. (2003)
    Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. The Journal of Cell Biology, 160, 577-587.
    Coppola, S., Narciso, L., Feccia, T., Bonci, D., Calabro, L., Morsilli, O., Gabbianelli, M., Maria, R.D., Testa, U. & Peschle, C. (2006) Enforced expression of KDR receptor promotes proliferation, survival and megakaryocytic differentiation of TFl progenitor cell line. Cell Death and Differentiation, 13,61-74.
    
    Dameshek, W. & Miller, E.B. (1946) The megakaryocytes in idiopathic thrombocytopenic purpura, a form of hypersplenism. Blood, 1, 27-52.
    
    De Botton, S., Sabri, S., Daugas, E., Zermati, Y., Guidotti, J.E., Hermine, O., Kroemer, G., Vainchenker, W. & Debili, N. (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood, 100,1310-1317.
    
    Fujisawa, K., Tani, P., O'Toole, T.E., Ginsberg, M.H. & McMillan, R. (1992) Different specificities of platelet-associated and plasma autoantibodies to platelet GPIIb-IIIa in patients with chronic immune thrombocytopenic purpura. Blood, 79, 1441-1446.
    
    Gewirtz, A.M., Sacchetti, M.K., Bien, R. & Barry, W.E. (1986) Cell-mediated suppression of megakaryocytopoiesis in acquired amegakaryocytic thrombocytopenic purpura. Blood, 68, 619-626.
    
    Hedlund-Treutiger, I., Elinder, G, Wigzell, H., Grunewald, J. & Wahlstrom J. (2004) T cell receptor V gene usage by CD4+ and CD8+ peripheral blood T lymphocytes in immune thrombocytopenic purpura. Acta Paediatrica, 93, 633-637.
    
    Houwerzijl, E.J., Blom, N.R., van der Want, J.J., Esselink, M.T., Koornstra, J.J. & Smit, J.W. (2004) Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood, 103, 500-506.
    
    Houwerzijl, E.J., Blom, N.R., van der Want, J.J.,Vellenga, E. & de Wolf, J.T. (2006) Megakaryocytic dysfunction in myelodysplastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death. Leukemia, 20, 1937-1942.
    
    Isaka, Y., Kambayashi, J., Kimura, K., Matsumoto, M., Uehara, A., Hashikawa, K., Kamada, T., Imaizumi, M., Ashida, K. & Nakayama, H. (1990) Platelet production, clearance and distribution in patients with idiopathic thrombocytopenic purpura. Thrombosis Research, 60, 121-131.
    
    Kaluzhny, Y., Yu, G., Sun, S., Toselli, P.A., Nieswandt, B., Jackson, C.W. & Ravid,
    K. (2002) BclxL overexpression in megakaryocytes leads to impaired platelet fragmentation. Blood, 100,1670-1678.
    
    Kappers-Klunne, M.C., de Haan, M., Struijk, P.C. & van Vliet, H.H. (2001) Serum thrombopoietin levels in relation to disease status in patients with immune thrombocytopenic purpura. British Journal of Haematology, 115,1004-1006.
    
    Kiefel, V., Santoso, S., Kaufmann, E. & Mueller, E.C. (1991) Autoantibodies against platelet glycoprotein GPIb/IX: a frequent finding in autoimmune thrombocytopenic purpura. British Journal of Haematology, 19, 256-262.
    
    Mattia, G, Vulcano, F., Milazzo, L., Barca, A., Macioce, G., Giampaolo, A. & Hassan, H.J. (2002) Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34~+ cells are correlated with different levels of platelet release. Blood, 99, 888-897.
    
    McMillan, R. (2000) The pathogenesis of chronic immune (idiopathic) thrombocytopenic purpura. Seminars in Hematology, 37, 5-9.
    
    McMillan, R., Wang, L., Tomer, A., Nichol, J. & Pistillo, J. (2004) Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patients with chronic ITP. Blood, 103,1364-1369.
    
    Olsson, B., Andersson, P.O., Jernas, M., Jacobsson, S., Carlsson, B., Carlsson, L. & Wadenvik, H. (2003) T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nature Medicine, 9, 1123-1124.
    
    Olsson, B., Andersson, P.O., Jacobsson, S., Carlsson, L. & Wadenvik, H. (2005) Disturbed apoptosis of T-cells in patients with active idiopathic thrombocytopenic purura. Thrombosis and Haemostasis, 93,139-144.
    
    Panitsas, F.P., Theodoropoulou, M., Kouraklis, A., Karakantza, M., Theodorou, G.L., Zoumbos, N.C., Maniatis, A. & Mouzaki, A. (2004) Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood, 103,2645-2647.
    Patel, S.R., Hartwig, J.H. & Italiano, J.E. (2005) The biogenesis of platelets from megakaryocyte proplatelets. The Journal of Clinical Investigation, 115, 3348-3354.
    Porcelijn, L., Folman, C.C., Bossers, B., Huiskes, E., Overbeeke, M.A., v d Schoot, C.E., de Haas, M. & von dem Borne, A.E. (1998) The diagnostic value of thrombopoietin level measurements in thrombocytopenia. Thrombosis and Haemostasis, 79,1101-1105.
    
    Sanz, C., Benet, I., Richard, C, Badia, B., Andreu, E.J., Prosper, F. & Fernandez-Luna, J.L. (2001) Antiapoptotic protein Bcl-x(L) is up-regulated during megakaryocytic differentiation of CD34(+) progenitors but is absent from senescent megakaryocytes. Experimental Hematology, 29,728-735.
    
    Sun, L., Hwang, W.Y. & Aw, S.E. (2006) Biological characteristics of megakaryocytes: specific lineage commitment and associated disorders. The International Journal of Biochemistry & Cell Biology, 38,1821-1826.
    Ware, R.E. & Howard, T.A. (1993) Phenotypic and clonal analysis of T lymphocytes in childhood immune thrombocytopenic purpura. Blood, 82, 2137-2142.
    
    Yoshimura, C, Nomura, S., Nagahama, M., Ozaki, Y., Kagawa, H. & Fukuhara, S. (2000) Plasma-soluble Fas (APO-1, CD95) and soluble Fas ligand in immune thrombocytopenic purpura. European Journal of Haematology, 64,219-224.
    Zhang, Y, Loire, K., de Boer, M. & Ceuppens JL. (1997) B7-blocking agents, alone or in combination with cyclosporin A, induce antigen-specific anergy of human memory T cells. Journal of Immunology, 158,4734-4740.
    
    Zhang, L., Zhao, H., Sun, A., Lu, S., Liu, B., Tang, F., Feng, Y., Zhao, L., Yang, R. & Han, Z.C. (2004) Early down-regulation of Bcl-xL expression during megakaryocytic differentiation of thrombopoietin-induced CD34+ bone marrow cells in essential thrombocythemia. Haematologica, 89,1199-1206.
    Zhang, F., Chu, X., Wang, L., Zhu, Y, Li, L, Ma, D, Peng, J. & Hou, M. (2006) Cell-mediated lysis of autologous platelets in chronic idiopathic thrombocytopenic purpura.European Journal of Haematology,76,427-431.
    1. Saleh MN, Moore DL, Lee JY, LoBuglio AF. Monocyte-platelet interaction in immune and nonimmune thrombocytopenia. Blood. 1989;74:1328-1331.
    
    2. George JN, el-Harake MA, Raskob GE. Chronic idiopathic thrombocytopenic purpura. N Engl J Med.l994;331:1207-1211.
    
    3. Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med. 2002; 346: 995-1008.
    
    4. McMillan R. The pathogenesis of chronic immune (idiopathic) thrombocytopenic purpura. Semin Hematol. 2000; 37: 5-9.
    
    5. Ballem PJ, Segal GM, Stratton JR, Gernsheimer T, Adamson JW, Slichter SJ. Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance. J Clin Invest. 1987;80:33-40.
    
    6. Chang M, Nakagawa PA, Williams SA, et al. Immune thrombocytopenic purpura (ITP) plasma and purified ITP monoclonal autoantibodies inhibit megakaryocytopoiesis in vitro. Blood. 2003;102:887-895.
    
    7. McMillan R, Wang L, Tomer A, Nichol J, Pistillo J. Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patients with chronic ITP. Blood. 2004;103:1364-1369.
    
    8. Italiano JE Jr, Lecine P, Shivdasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol. 1999;147:1299-1312.
    
    9. Hartwig J, Italiano JE Jr. The birth of the platelet. J Thromb Haemost. 2003;l:1580-1586.
    
    10. Patel SR, Hartwig JH, Italiano JE Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005; 115:3348-3354.
    
    11. De Botton S, Sabri S, Daugas E, et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood. 2002; 100:1310-1317.
    
    12. Hou M, Peng J, Shi Y, et al. Mycophenolate mofetil (MMF) for the treatment of steroid-resistant idiopathic thrombocytopenic purpura. Eur J Haematol. 2003;70:353-357.
    
    13. Norol F, Vitrat N, Cramer E, et al. Effects of Cytokines on Platelet Production From Blood and Marrow CD34+ Cells. Blood.l998;91:830-843.
    
    14. Yang H, Miller WM, Papoutsakis ET. Higher pH promotes megakaryocytic maturation and apoptosis. Stem Cells. 2002;20:320-328.
    
    15. Anthony RS, McKelvie ND, Cunningham AJ, Craig JI, Rogers SY, Parker AC. Flow cytometry using annexin V can detect early apoptosis in peripheral blood stem cell harvests from patients with leukaemia and lymphoma. Bone Marrow Transplant. 1998;21:441-446.
    
    16. Tajika K, Nakamura H, Nakayama K, Dan K. Thrombopoietin can influence mature megakaryocytes to undergo further nuclear and cytoplasmic maturation. Exp Hematol. 2000;28:203-209.
    
    17. Broudy VC, Lin NL, Kaushansky K. Thrombopoietin (c-mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood. 1995;85:1719-1726.
    
    18. Faulhaber M, Wormann B, Ganser A, Verbeek W. In vitro response of myelodysplastic megakaryocytopoiesis to megakaryocyte growth and development factor(MGDF). Ann Hematol. 2002;81:695-700.
    
    19. Hou M, Andersson PO, Stockelberg D, Mellqvist UH, Ridell B, Wadenvik H. Plasma thrombopoietin levels in thrombocytopenic states: implication for a regulatory role of bone marrow megakaryocytes. Br J Haematol. 1998; 101: 420-424.
    
    20. Kappers-Klunne MC, de Haan M, Struijk PC, van Vliet HH. Serum thrombopoietin levels in relation to disease status in patients with immune thrombocytopenic purpura. Br J Haematol. 2001 ;115:1004-1006.
    
    21. Chang M, Suen Y, Meng G, et al. Differential mechanisms in the regulation of endogenous levels of thrombopoietin and interleukin-11 during thrombocytopenia: insight into the regulation of platelet production. Blood. 1996; 88:3354-3362.
    
    22. Asher E, Payne CM, Bernstein C. Evaluation of cell death in EBV-transformed lymphocytes using agarose gel electrophoresis, light microscopy and electron microscopy. II. Induction of non-classic apoptosis ("para-apoptosis") by tritiated thymidine. Leuk Lymphoma. 1995;19:107-119.
    
    23. Sperandio S, de Belle I, Bredesen DE.An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A. 2000;97:14376-14381.
    
    24. Van den Oudenrijn S, Von dem Borne AE, De Haas M. Differences in megakaryocyte expansion potential between CD34(+)stem cells derived from cord blood,peripheral blood,and bone marrow from adults and children. Exp Hematol. 2000;28:1054-1060.
    
    25. Hoffman R, Mazur E, Bruno E, Floyd V. Assay of an activity in the serum of patients with disorders of thrombopoiesis that stimulates formation of megakaryocytic colonies. N Engl J Med. 1981;305:533-538.
    
    26. Zauli G, Vitale M, Falcieri E, et al. In vitro senescence and apoptotic cell death of human megakaryocytes. Blood. 1997;90:2234-2243.
    
    27. Ogilvy S, Metcalf D, Print CG, Bath ML, Harris AW, Adams JM. Constitutive bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci U S A. 1999;96:14943-14948.
    
    28. Kaluzhny Y, Yu G, Sun S, et al. BclxL overexpression in megakaryocytes leads to impaired platelet fragmentation. Blood. 2002;100:1670-1678.
    
    29. Houwerzijl EJ, Blom NR, van der Want JJ, et al. Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood. 2004; 103:500-506.
    
    30. Sperandio S, Poksay K, de Belle I, et al. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ. 2004;11:1066-1075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700