Al-8.0Zn-2.1Mg-2.3Cu超高强度铝合金铸锭均匀化处理及其板材的三级时效处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-8.0Zn-2.1Mg-2.3Cu类型的超高强度铝合金是我国航空航天工业急需的高强轻质结构材料。但我国在这类超高强度铝合金的工业化生产仅仅是在起步阶段,生产的厚板经常出现达不到国际上发达国家生产的这类合金的性能水平的问题,本文针对上述问题,主要通过力学性能、电导率和抗剥落腐蚀性能的测定以及金相显微镜、扫描电镜和透射电镜组织观察以及微区能谱分析等手段,对该合金普通半连续铸造圆锭和电磁半连续铸造方锭的铸态组织及其均匀化处理,以及普通半连续铸造后轧制的25mm厚热轧板的固溶处理及其预拉伸板的时效处理进行了研究,为开发出最佳的Al-8.0Zn-2.1Mg-2.3Cu超高强度铝合金铸锭均匀化以及最终时效热处理工艺奠定基础。获得的主要实验结果如下:
     (1)Al-8.0Zn-2.1Mg-2.3Cu超高强度铝合金Φ170mm普通半连续铸造圆锭中存在大量的熔点为475℃的非平衡凝固共晶体并形成枝晶网,共晶体中片层状第二相含有AlZnMgCu四种元素,铸锭中还存在条状的Al_7Cu_2Fe相结晶相。该铸锭经过470℃均匀化处理24h后,合金中非平衡凝固共晶体的含量急剧降低,他们在溶于基体的同时转变成S相(Al_2CuMg)。均匀化处理的保温时间增加至48h后,S相(Al_2CuMg)含量有所降低但不能消失。
     (2)低频电磁半连续铸造可显著细化Al-8.0Zn-2.1Mg-2.3Cu超高强度铝合金半连续铸锭的组织,而且使合金中片层状共晶体和Al_7Cu_2Fe相的含量减少。
     (3)25mm厚Al-8.0Zn-2.1Mg-2.3Cu超高强度铝合金热轧板存在熔点为475℃的低熔点产物和熔点为483℃的S相(Al_2CuMg)。在470℃固溶处理3小时之内熔点为475℃的产物显著减少,但熔点为483℃的S相在470℃固溶处理过程变化不大。在470℃固溶处理时间超过3小时没有意义。
     (4)经470℃×3h固溶处理的25mm厚板材进行第二级温度较高的三级时效处理时,第二级时效处理温度即时间是决定合金强度和剥落腐蚀性能的关键因素;合金板材固溶处理并经第一级120℃时效24小时后,第二级在175℃-185℃范围时效时,随第二级时效时间由0.5h延长至3h,合金的强度基本是下降的,但第二级时效温度高,强度下降的更快;当由第一级向第二级加热速度较快而且第二级在较高温度时效时间较短时,三级时效处理后合金的强度可以高于第二级稍低温度时效的结果;第一级时效处理0.5h升温至175℃保温2h或185℃,保温1.5h,均可使合金的强度和抗腐蚀性达到很好的配合。
Ultra-high strength aluminum alloy of Al-8.0Zn-2.1Mg-2.3Cu is an urgent light structure material in airplane industry in our country. The type of ultra-high strength aluminum is just at the very beginning of mass-production in our country. However, there is the problem that the properties of thick plates always can't come up to that of the international developed nations. Homogenization of regular and low-frequency electromagnetic semicontinuous as-cast ingot and treatments of solution and three stage aging of 25mm thick hot rolled plate and pre-drawing plate are investigated by means of tensile test, conductance measurement, exfoliation test, metallographic microscopy, scanning electron microscopy, transmission electron microscopy and the energy spectrum analysis.
     The results as follows:
     (1) There are a lot of non-equilibrium solidified constituents which are in the form of network and of 475℃melting point in 0170mm regular semicontinuous ingot. The non-equilibrium solidified constituents are composed of lamellar phase containing AlZnMgCu and strip Al_7Cu_2Fe. When homogenized at 470℃for 24h, the content of non-equilibrium solidified constituents drops sharply. This non-equilibrium solidified constituents both dissolve into the matrix and transform to S phase (Al_2CuMg). When homogenized at 470℃for 48h, the content of S phase (Al_2CuMg) is a little low but can't dissolve into the matrix.
     (2) Low-frequency electromagnetic casting can significantly refine the microstructure of semicontinuous as-cast ingot. The content of lamellar phase and Al_7Cu_2Fe is lower than regular semicontinuous ingot.
     (3) There is phase whose melting point is 475℃and S phase (Al_2CuMg) whose melting point is 485℃in 25mm thick hot rolled plate. When solution treatment at 470℃for 3h, the content of phase whose melting point is 475℃drops sharply while the content of S phase (Al_2CuMg) changes little. It is not effective that increasing solution treatment time.
     (4) When the second aging temperature of three stage aging treatment is high in the process of 25mm thick hot rolled plate after solution treatment at 470℃for 3h, the second aging treatment temperaure and time are the key to solve the contradiction between strengh and exfoliation; when the first aging treatment at 120℃for 24h and the second aging treatment temperature in the range of 175℃~185℃, with the second aging treatment from 0.5h to 3h, strengh is decreasing, especially the second aging treatment temperature is high; when quickly rising to the second aging treatment temperature and the time of the second aging treatment is short, strengh is high while the second aging treatment temperature is high.
引文
1.David A L, Ray M H. Aluminum alloy development efforts for compression dominated structure of aircraft [J]. Light Metal Age, 1991, 2(9):11-18.
    2.邹景下,潘清林,彭志辉.Al-Mg-Si-Mn-Cr合金的显微组织与拉伸性能[J],轻合金加工技术,2001,29(5):47-49.
    3.Polmear I J, Ringer S P. Evolution and control of microstructure in aged aluminum alloy [J].Journal of Japan Institute of Light Metals, 2000, 50(12): 633-642.
    4.谷亦杰,林建国,张永刚.回归再时效(RRA)处理对7050铝合金的影响[J],金属热处理,2001,10:31-27.
    5.陈康华,刘红卫,刘允中.强化固溶对7075铝合金组织与性能的影响[J],金属热处理,2000,9:16-19.
    6.Mukhopadhyay A K. Development of reproducible and increased strength properties in Al-Cu-Mg-Ag based AA7075 [J], Metallurgical and Materials Transaction A, 1997, 28A:2429-2435.
    7.杨磊,潘青林,尹志民.微量Sc和Zr对Al-Zn-Mg合金组织与性能的影响[J],材料工程,2001,70:29-33.
    8.陈康华,刘红卫,刘允中.强化固溶对Al-Zn-Mg-Cu合金力学性能和断裂行为的影响[J],金属学报,2001,37(1):30-37.
    9.钟崛.提高铝材质量基础研究的进展[A],铝加工高新技术文集[C],北京:中国有色金属加工工业协会,2001,16-33.
    10.张茁,陈康华,黄兰萍等.高温预析出对7055铝合金组织和力学性能的影响[J],中国有色金属学报,2000,13(6):1477-1483.
    11.秦凤香,张宝金,曾梅光.7055超高强铝合金时效硬化特性与应力腐蚀性能研究[J],轻合金加工技术,2001,29(10):36-39.
    12.吴一雷,李永伟,强俊等.超高强度铝合金的发展与应用[J],航空材料学报,1994,14(1):49-55.
    13.张茁.高温预析出对7055铝合金组织与性能的影响[D],中南大学,2003.
    14.冯云祥,刘静安.超高强铝合金的发展与研制开发方向[J],材料导报,2004,18(8A): 196-197.
    15.Heinz A, Haszler A, Keidel C. Recent development in Aluminum alloy for aerospace applications [J], Materials Science and Engineering A, 2000, 280: 102-107.
    16.弗里德良杰尔.高强度变形铝合金[M],上海科学技术出版社,吴学译,1963,7.
    17.马场义雄.超硬铝(EDS)及飞机铝合金发展动向[J],铝加工,孙本良译,1990,4:21-31.
    18.周鸿章.高强铝合金的研究进展[J],稀有金属材料与工程,2001,30(6):87-92.
    19.张永安,韦强.喷射成形制备高性能铝合金材料[J],机械工程材料,2001,6(4):22-25.
    20.Plies J B, Grant N J. Structure and properties of spray formed 7150 containing Fe and Si [J], The International Journal of Powder Metallurgy, 1994, 30(3): 335-343.
    21.张君尧.航空结构用高纯高韧性铝合金的进展(2)[J],轻金属,1994,6:59-63.
    22.罗兵辉,柏振海.高性能铝合金研究进展[J],兵器材料科学与工程,2002,25(3):59-62.
    23.张君尧.航空结构用高纯高韧性铝合金的进展(2)[J],轻金属,1994,(6):54-58.
    24.吴一雷,李永伟.超高强度铝合金的发展和应用[J],航空材料学报,1994,2(1):49-55.
    25.谢优华,杨守杰.含锆超高强铝合金的研究及发展概况[J],中国有色金属学报,2003,3(2):87-92.
    26.张勤,崔建忠.CREM7075铝合金的微观组织和性能[J],材料导报,2002,3(1):61-65.
    27.刘晓涛,董杰,崔建忠.高强铝合金均匀化热处理[J],中国有色金属学报,2003,13(4):909-913.
    28.王祝堂,田荣璋.合金及其加工手册[M],长沙:中南工业大学出版社,2000,64-66.
    29.宁爱林,曾苏民,蒋寿生等.7A04铝合金高温固溶的微观组织和力学性能[J],轻金属加工技术,2005,33(5):48-51.
    30.周鸿章,李念奎.超高强铝合金强韧化的发展过程及方向[C],铝-21世纪基础研究与技术发展研讨会论文集(第一分册),2003,56-67.
    31.Cina.B, Ranish B. New technology for reducing susceptibility to stress corrosion of high strength aluminum alloys[P], U. S. Patent No.3, 856.584, 1974.12. 24.
    32.Cantrell. Method of making AA7000 series aluminum wrought product having a modified solution heat treating process for improved exfoliation corrosion resistance[P], U. S.Patent. 5785777. 1998.7. 28.
    33.莫志民,郑子樵,黄碧萍.7000系高强铝合金的RRA处理[J],铝加工,1996,19(1):28-34.
    34.何振波.7055铝合金的三级时效处理[J],轻合金加工技术,2006,34(5):40-43.
    35.陈康华,张茁,刘红卫等.近固溶度高温析出对7055铝合金时效强化和应力腐蚀的影响[J],中南工业大学学报(自然科学版),2003,34(2):114-118.
    36.张茁,陈康华,刘红卫等.高温预析出对Al-Zn-Mg-Cu铝合金显微组织、强度和应力腐蚀抗力的影响[J],金属热处理,2003,28(7):13-16.
    37.Mondal Chandan, Mukhopadhyay A K. On the nature of T (Al_2Mg_3Zn_3) and S (Al_2CuMg) phases present in as-cast and annealed 7055 aluminum alloy[J], Materials Science and Engineering A, 2005, 391: 367-376.
    38.Dumont D, Deschamps A, Brechet Y. On the relationship between microstructure strength and toughness in AA 7050 aluminum alloy[J], Materials Science and Engineering A, 2003,356: 326-336.
    39.Hahn G T, Rosenfield A R. Metallurgical factors affecting fracture toughness of aluminum[J], Metallurgical Transaction A, 1975, 6A: 653-668.
    40.Gurbuz R, Alpay S P. Effect of coarse second phase particles on fatigue crack propagation of an Al-Zn-Mg-Cu alloy[J], Scripta Metallurgica and Materialia, 1994, 1: 1373-1376.
    41.尚勇,张立武.高强铝合金的热处理技术[J],上海有色金属,2005,26(2):97-102.
    42.Mondolfo L F. Aluminum alloys: structure and properties[M], London: Butter-Worths, 1976,808.
    43.Li X M, Starink M J. Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminum alloys[J], Materials Science and Technology, 2001, 17, 1324-1328.
    44.Fan X G, Jiang D M, Meng Q C, et al. The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization[J], Materials Letters, 2006, 60(12): 1475-1479.
    45.Zuo Y B, Cui J Z, Dong J, et al. Effect of low frequency electromagnetic field on the as-cast microstructures and mechanical properties of superhigh strength aluminum alloy[J]. Materials Science and Engineering A, 2005, 408: 176-181.
    46.Dong J, Cui J Z, Yu F X, et al. Effect of low-frequency electromagnetic casting on the castability, microstructure and tensile properties of direct-chill cast Al-Zn-Mg-Cu alloy[J].Metallurgical and Materials Transactions A, 2004, 35: 2487-2494.
    47.Zuo Y B, Cui J Z, Zhao Z H, et al. Effect of low frequency electromagnetic field on casting crack during DC casting superhigh strength aluminum alloy ingots [J]. Materials Science and Engineering A, 2005, 406: 286-292.
    48.Li X M, Starink M J. Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminum alloys[J], Materials Science and Technology, 2001, 17: 1324-1328.
    49.《有色金属及其热处理》编写组.有色金属及其热处理[M],北京:国防工业出版社,1981,47.
    50.曹明盛.物理冶金基础[M].北京:冶金工业出版社,1985:158-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700