用户名: 密码: 验证码:
Cu-Ni-Si合金近平衡相变过程与导电机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用熔炼法分别制备了Cu-Ni-Si合金的近平衡凝固试样和普通熔铸试样,并对普通熔铸合金进行了450℃等温时效和轧制+等温时效后处理。采用OM结合SEM分析了Cu-Ni-Si合金的显微组织,利用XRD与EDS分析确定了合金的相组成及合金元素的分布状况,通过DTA分析考察了近平衡凝固条件下合金的相变过程及其对应的相变温度,Cu-Ni-Si合金的电导率采用涡流电导仪(ECA)测量。在上述实验结果的基础上,系统研究了Cu-Ni-Si合金的近平衡相变过程和导电机制,为后续高强高导Cu-Ni-Si合金的制备研究提供了理论基础。本文的主要研究工作和所获得的结论如下:
     1.当Cu含量高于40%时,Cu-Ni-Si合金的近平衡凝固显微组织主要由初生富Cu相α-Cu(Ni,Si)、共晶相α-Cu(Ni,Si)+β1-Ni3Si以及针状组织δ-Ni2Si组成;当Cu含量为40%时,合金的近平衡凝固组织为完全的共晶组织α-Cu(Ni,Si)+β1-Ni3Si。
     2. Cu-Ni-Si合金的近平衡凝固行为与合金中Cu含量密切相关。Cu含量为40%的合金熔体以共晶方式凝固;Cu含量高于40%的合金熔体以亚共晶方式凝固,即α-Cu(Ni,Si)作为初生相以匀晶反应L1→α-Cu(Ni,Si)方式首先从合金熔体中析出,并伴随着Ni、Si原子向残余液相的扩散;当残余液相接近共晶成分时发生共晶反应L2→α-Cu(Ni,Si)+Ni3Si直至凝固过程结束;最后过饱和固溶体α-Cu(Ni,Si)中的Ni、Si原子通过固态相变以沉淀相δ-Ni2Si的形式析出。
     3.普通熔铸法得到的四种Cu-Ni-Si合金显微组织均为初生富Cu相α-Cu(Ni,Si)和共晶相β1-Ni3Si+α-Cu(Ni,Si),但β1-Ni3Si的数量与形貌与合金中Cu含量密切相关。随着Cu含量的降低,合金中β1-Ni3Si的数量增加且逐渐由位于α-Cu(Ni,Si)相晶界交叉处的颗粒向位于晶界上的网状结构过渡;合金中共晶区也随之由离异共晶转变为典型的片层状共晶。
     4.随着等温时效处理的进行,铸态组织中迅速析出δ-Ni2Si相,随后δ-Ni2Si相的数量几乎不再增加直至时效达到2h后又继续增加;Cu含量为95%和90%的两种合金导电率的变化情况与δ-Ni2Si相的析出情况一致,但Cu含量为80%和60%的两种合金导电率几乎不受时效过程的影响。
     5.经轧制+等温时效处理后,合金组织中β1-Ni3Si相形成的网状结构被不同程度地打破,沿垂直于轧制平面的组织中出现了明显的轧制织构,四种合金的导电率均出现了较为明显的提高。
     6. Cu-Ni-Si合金的导电行为受固溶原子浓度和β1-Ni3Si相的数量与形貌的影响。对于Cu含量低于80%的合金,β1-Ni3Si相形成的网状结构成为影响其导电率的主要因素。
Cu-Ni-Si alloys with different components were prepared by the methods of near-equilibrium solidification and traditional fusion casting, and the latter samples were subsequently undergone isothermal aging treatment at the temperature of 450℃for different times and rolling+isothermal aging treatment, respectively. The microstructures of Cu-Ni-Si alloys were observed by the combination of OM with SEM. The phase composition and the distribution of alloy elements were identified by both XRD and EDS. The phase transformation during the process of near-equilibrium solidification was checked by DTA analysis under an Ar atmosphere.7510 eddy-conductivity apparatus (ECA) was taken to measure the electrical conductivity of Cu-Ni-Si alloys. Based on the above experimental results, the phase transformation process under the condition of near-equilibrium and the electric conduction mechanism of Cu-Ni-Si system alloys were discussed systematically. The main reseach work and conclusions of this paper are presented as follows.
     1. The microstructure of Cu-Ni-Si alloys with higher than 40% Cu content under near-equilibrium solidification condition is consisted of primary Cu-rich phaseα-Cu(Ni,Si), eutectic phase (β1-Ni3Si+α-Cu(Ni,Si)) and acicularδ-Ni2Si phase, while there is only eutectic phase (β1-Ni3Si+α-Cu(Ni,Si) in the alloys with 40% Cu content.
     2. When Cu content is higher than 40%, the Cu-rich phaseα-Cu(Ni,Si) firstly formed as primary phase by the reaction L1→α-Cu(Ni,Si) accompanying with Ni and Si atoms diffusing into residual liquid. The eutectic reaction occurred subsequently by L2→α-Cu(Ni,Si)+Ni3Si when the component of the residual liquid came close to the eutectic point. Cu-Ni-Si alloys with higher than 40% Cu content solidified as the mode of hypoeutectic reaction while the alloys with 40% Cu content solidified as eutectic reaction. Finally, after liquid/solid transition had been finished, Ni and Si atoms in Cu-rich phaseα-Cu(Ni,Si) were supersaturated and trended to precipitate as 8-Ni2Si phases by solid-state phase transforming.
     3. The microstructure of Cu-Ni-Si alloys fabricated by traditional fusion casting is consisted of both Cu-rich phase a-Cu(Ni,Si) and eutectic phase (β1-Ni3Si+a-Cu(Ni,Si)). With the decrease of Cu content, the amount ofβ1-Ni3Si increased and its morphology transformed from the particles on the junction of grain boundary of a-Cu(Ni,Si) phase to the netted texture on the grain boundary. The eutectic zones also became to the typical lamellar eutectic structure from the separated eutectic microstructure.
     4.δ-Ni2Si phase precipitated rapidly from Cu-Ni-Si alloys fabricated by traditional fusion casting with the progress of isothermal aging treatment, and then did not increase until ageing for more than 2 hours. The electrical conductivity of the alloys with 95% and 90% Cu content increased synchronously with the precipitation ofδ-Ni2Si phase, while that of the alloys with 80% and 60% Cu content wasn't affected by isothermal aging treatment.
     5. The netted texture ofβ1-Ni3Si phase was destroyed, and there was rolling texture in the Cu-Ni-Si alloys after rolling+isothermal aging treatment. The electrical conductivity of four researched alloys all increased obviously after rolling+isothermal aging treatment.
     6. The electrical conductivity of Cu-Ni-Si alloys is controlled by the combined action of both netted texture ofβ1-Ni3Si and solid solution of Ni and Si atoms, and the former is the major factor for the lower conductivity of the alloys with lower than 80% Cu content.
引文
[1]赵冬梅,董企铭,刘平,金志浩,黄金亮.铜合金引线框架材料的发展[J].材料导报,2001,15(5):25-27.
    [2]D.Bozic, O.Dimcic,B.Dimcic, I.Cvijovic, V.Rajkovic. The Combination of Precipitation and Dispersion Hardening in Powder Metallurgy Produced Cu-Ti-Si Alloy[J]. Materials Characterization,2008,59:1122-1126.
    [3]Jeong-Keun Lee. On The Effect of Substituting Copper Powder With Cupric Salt For The Sintering Process of W-Cu MIM Parts[J]. International Journal of Refractory Metals and Hard Materials, 2008,26(4):290-294.
    [4]J.H.Su, P.Liu, Q.M.Dong, H.J.Li, F.Z.Ren. Aging Study of Rapidly Cu-Cr-Sn-Zn Alloy [J]. Materials Processing Technology,2008,205:366-369.
    [5]张生龙,尹志民.高强高导铜合金设计思路及其应用[J].材料导报,2003,17(11):26-29.
    [6]Z. Sun, C. Laitem, A.Vincent. Dynamic Embrittlement at Intermediate Temperature in a Cu-Ni-Si Alloy[J]. Materials Science and Engineering A,2008,477:145-152.
    [7]Ryoichi Monzen, Chihiro Watanabe. Microstructure and Mechanical Properties of Cu-Ni-Si Alloys [J]. Materials Science and Engineering A,2008,483-484:117-119.
    [8]张瑞丰,沈宁福.快速凝固高强高导铜合金的研究现状及展望[J].材料科学与工程,2000,18(4):140-144.
    [9]D.P.Lu, J.Wang, WJ.Zeng, Y.Liu, L.Lu and B.D.Sun. Study on High-Strength and High-Conductivity Cu-Fe-P Alloys[J]. Materials Science and Engineering:A,2006,421(1-2):254-259.
    [10]刘平.快速凝固Cu-Cr-Zr-Mg合金的时效析出与再结晶[J].中国有色金属学报,1999,9(2):241-246.
    [11]湛永钟,张国定,蔡宏伟.高导电耐磨铜基复合材料的研究[J].机械工程材料,2003,27(11):18-21.
    [12]贾淑果,刘平.高强高导Cu-20.1Ag-20.11Cr合金的强化机制[J].中国有色金属学报,2004,14(2):1144-1148.
    [13]H. I. Choi, K. Y. Lee, S. I. Kwun. Fabrication of High Strength and High Conductivity Copper Alloys by Rod Milling[J]. Journal of Materials Science Letters,1997,16:1600-1602.
    [14]尹志民,张生龙.高强高导铜合金研究热点及发展趋势[J].矿冶工程,2002,22(2):1-6.
    [15]郑雁军,姚家鑫,李国俊.高强高导铜合金的研究现状及展望[J].材料导报,1997,11(6):52-55.
    [16]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2000:176-189.
    [17]Petukhov B.V. Effect of The Crystal Relief on the Solid-solution Strengthening in The Mott-Nabarro Model[J]. Physics of metals and metallography,1999,88(4):337-342.
    [18]G.Ghosh, J.Miyake and M.E.Fine. The Systems-Based Design of High-Strength, High-Conductivity Alloys[J]. JOM,1997(3):56-60.
    [19]胡赓祥,蔡殉.材料科学基础[M].上海:上海交通大学出版社,2000:172-175.
    [20]李银华,刘平,田保红,贾淑果,任凤章,张毅.引线框架用Cu-Ni-Si合金的发展[J].材料研究与应用,2007,1(4):260-264
    [21]P.Liu, B.X.Kang, X.G.Cao, J.L.Huang, B.Yen, H.C.Gu. Aging Precipitation and Recrystallization of Rapidly Solidified Cu-Cr-Zr-Mg Alloy [J]. Materials Science and Engineering A,1999,265(1): 262-267.
    [22]Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E. Al-Mg Alloy Engineered With Bimodal Grain Size for High Strength and Increased Ductility [J]. Scripta Materialia,2003,49:297-302.
    [23]JEON W.S, SHUR C.C, KIM J.G, HAN S.Z, KIM Y.S. Effect of Cr on the Corrosion Resistance of Cu-6Ni-4Sn Alloys[J]. Journal of Alloys and Compounds,2008,455(1-2):358-363.
    [24]杨春秀,郭富安,慕思国,曹兴民,朱雯,向朝建.引线框架用Cu-Cr-Zr合金的研究现状[J].金属功能材料2006,13(3):24-28
    [25]J.A.van Beek, A.A.Kodentsov and F.J.J.van Loo. Phase Equilibria in the Cu-Fe-Ti System at 1123K [J]. Journal of Alloys and Compounds,1995,217(1):97-103.
    [26]苏娟华,董企铭,刘平,李贺军,康布熙.Cu-Cr-Zr-Mg合金时效组织与性能[J].材料科学与工艺,2004,12(3):
    [27]刘六法,丁汉林,鎌土重晴,丁文江,小岛阳.AZ91镁合金的热压缩行为(Ⅱ)——元胞自动机模拟[J].中国有色金属学报,2008,18(2):243-249.
    [28]Z.b.Sun, J.Guo, Y.Li, Y.M.Zhu, Q.Li and X.P.Song. Effects of Ti Addition on the Liquid-Phase Separation of Cu71Cr29 Alloy during Rapid Cooling[J]. Metallurgical and Materials Transactions A,2008,39(5):1054-1059.
    [29]Y.H.Wang, X.P.Song, Z.B.Sun, X.Zhou and J.Guo. Effects of Ti Addition on Microstructures of Melt-spun Cu-Cr Ribbons[J]. Transactions of Nonferrous Metals Society of China,2007,17(1): 72-76.
    [30]B.Q.H, E.J.Lavernia and F.A.Mohamed. Tension and Compression Behaviors of Bulk Ultrafine-grained Al-7.5 wt.% Mg Alloy[J]. Philosophical Magazine Letters,2003,83(2):89-96.
    [31]谢春生,翟启明,徐文清,王冀恒.高强度高导电性铜合金强化理论的研究与应用发展[J].金属热处理,2007,32(1):12-20.
    [32]K.L.Lee, A.F.Whitehouse, S.I.Hong And A.M.Russell. Creep Behavior of CopperChromium In-Situ Composite [J]. Metallurgical and Materials Transactions A,2004,35A:695-705.
    [33][美]肯尼斯编.金属基复合材料[M].温仲元译.北京:国防工业出版社,1982:7-15.
    [34]Z.Y.Shi, M.F.Yan. The Preparation of Al2O3-Cu Composite by Internal Oxidation[J]. Applied Surface Science,1998,134(1):103-106.
    [35]A. Inoue, T. Masumoto, L. Arnberg and N. Backstrom. Production of SuperConducting Cu-Nb-Sn Alloy by Hot Extrusion of Rapidly Solidified Powder[J]. Journal of Materials Science,1991,26(14): 3951-3954.
    [36]Bevk.J, Harbison.J P, Bell.J.L. Anomalous Increase in Strength of In-situ Formed Cu-Nb Multi-filamentary Composite[J]. Journal of Applied Physics,1978,49(12):6031-6037.
    [37]张俊超,刘平,田保红,任凤章.形变原位铜基复合材料的研究进展[J].材料导报2006,8,20(8);80-83.
    [38]姚再起,葛继平,刘书华.形变Cu-11.5%Fe原位复合材料的强度和导电性[J].复合材料学报,2005,22(3):121-125.
    [39]美国金属学会.金属手册[M].第九版.北京:机械工业出版社,1979:404-406.
    [40]D.W.Yao, L Meng. Effects of Solute, Temperature and Strain on the Electrical Resistivity of Cu-Ag Filamentary Composites[J]. Physica B,2008,403:3384-3388.
    [41]Sun Ig Hong and Mary Ann Hill. Mechanical Stability and Electrical Conductivity of Cu-Ag Filamentary Microcomposites[J]. Materials Science and Engineering A,1999,264(2):151-158.
    [42]陆文华,李隆盛,黄良余.铸造合金及其熔炼[M].北京:机械工业出版社,1996:361-368.
    [43]黄培云.粉末冶金原理[M].第二版.北京:冶金工业出版社,1997:1-2.
    [44]A. A. Flisl, R.V. Minakoval, O. K. Teodorovichl, D. S. Voronaland R. I. Antoshinal. Tungsten Carbide Pseudo Alloys and Ttheir Potential Applications[J]. Powder Metallurgy and Metal Ceramics,1980,19(2):112-117
    [45]S.I.Hong. Copper-Iron Filamentary Microcomposites[J]. Advanced Engineering Materials,2001, 3(7):475-479.
    [46]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998:227.
    [47]李金富,杨根仓,周尧和.深过冷Ni-50%Cu合金的晶粒细化[J].金属学报,1998,34(2):113-118.
    [48]Leonhardt M, Loser W, Lindenkreuz H G Metastable Phase Formation in Undercooled Eutectic Ni78.6Si21.4Melts[J]. Materials Science and Engineering A,1999,271(1):31-37.
    [49]Loser W, Hermann R, Leonhardt M, Stephan D, Bormann R. Metastable Phase Formation in Undercooled Near-eutectic Nb-Al Alloys[J]. Materials Science and Engineering A,1997,224 (1); 53-60.
    [50]朱定一,杨晓华,韩秀君,魏炳波.Fe-Sn偏晶合金的深过冷快速凝固组织[J].中国有色金属学报,2003,13(2):328-334.
    [51]Yi-ping Lu, Gen-cang Yang, Zeng-zhe Xi, Hai-peng Wang, Yao-he Zhou. Directional Solidification of Highly Undercooled Eutectic Ni78.6Si21.4 Alloy[J]. Materials Letters,2005,59:1558-1562.
    [52]Ping Liu, Juanhua Su, Qiming Dong, Hejun Li. Microstructure and Properties of Cu-Cr-Zr Alloy after Rapidly Solidified Aging and Solid Solution Aging[J]. Journal of Materials Science and Technology,2005,21(4):475-478.
    [53]刘平,顾海澄,曹兴国.铜基集成电路引线框架材料的发展概况[J].材料开发与应用,1998,13(3):37-41.
    [54]马邦娟.引线框架用铜带的生产及市场分析[J].世界有色金属,1998,(8):24-26.
    [551 D.M.Zhao, Q.M.Dong, P.Liu, B.X.Kang, J.L.Huang, Z.H.Jin. Structure and Strength of the Age Hardened Cu-Ni-Si Alloy[J]. Materials Chemistry and Physics 2003,79:81-86.
    [56]曹育文,马莒生,唐祥云,王碧文等.Cu-Ni-Si系引线框架用铜合金成分设计[J].中国有色金属学报,1999,9(4):723-727.
    [57]刘平,贾淑果等.高速电气化铁路用铜合金接触线的研究[J].材料导报,2004,18(6):32-38.
    [58]潘志勇,汪明朴,李周,邓楚平,黎三华,贾延琳.超高强度Cu-Ni-Si合金的研究进展[J].金属热处理,2007,32(7):55-57.
    [59]Srivastava V C, SchneiderA, UhlenwinkelV. Age-hardening Characteristics of Cu-2.4Ni-0.6Si Alloy Produced By the Spray Forming Process[J]. Journal of Materials Processing Technology,2004,147: 174-180.
    [60]Rdzawski Z, Stobrawa J. Thermo-mechanical Pproceeding of Cu-Ni-Si-Cr-Mg Aalloy[J]. Materials Science and Technoloty,1993,9(2):142-148
    [61]W.F.Gale and T.C.Totemeier. Smithells Metal Reference Book,8th Ed[M]. Burlington:Elsevier Butterworth-Heinemann,2004:11-259,11-264,11-439.
    [62]Jyrki Miettinen. Thermodynamic Description of the Cu-Ni-Si System in the Copper-rich Corner above 700℃[J]. Computer Coupling of Phase Diagrams and Thermochemistry,2005,29:212-221.
    [63]M Lindholm and B Sundman. A Thermodynamic Evaluation of the Nickel-Silicon System[J]. Metal Mater Trans A,1996,27A:2897-2903.
    [64]龙永强,刘平,贾淑果,刘勇,陈乃录.Cu-2.32Ni-0.57Si-0.05P合金的时效行为[J].特种铸造及有色合金,2008,28(2):96-98.
    [65]陈树江,田凤仁,李国华,张云.相图分析及应用[M].北京:冶金工业出版社,2007:9-20.
    [66]董福伟,李湘海,路俊攀,张敬华,孟慧娟,蒋长乐.YS/T 478-2005铜及铜合金导电率涡流检测方法[S].北京.国家发展和改革委员会,2005.
    [67]王东锋,杨后川,孔立堵,康布熙,刘平.Cu-Ni-Si合金的时效析出贯序研究[J].兵器材料科学与工程,2005,28(5):25-28.
    [68]D.M.Zhao, Q.M.Dong, P.Liu, B.X.Kang, J.L.Huang, Z.H.JIN. Aging Behavior of Cu-Ni-Si Alloy[J]. Materials Science and Engineering A,2003,361:93-99
    [69]S.V.Prikhodko, D.GIsaak, J.D.Carnes, S.Moser, Y.Ma and A.J.Ardell. Elastic Constants of Face-Centered Cubic and L12 Ni-Si Alloys:Composition and Temperature Dependence[J].Metallurgical And Materials Transact Ions A,2003,34 A:1863-1868.
    [70]Y. Himuro, Y.Tanaka, I.Ohnuma, R.Kainuma, K.Ishida. Phase Equilibria and γ'-L12 Phase Stability in the Ni-rich Portion of Ni-Fe-Si and Ni-Fe-Al Systems[J]. Intermetallics,2005,13:620-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700