热速处理对Al7SiMg合金组织和力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用Al7SiMg合金为研究对象,研究了不同细化、变质工艺和浇注工艺条件下热速处理对Al7SiMg合金组织和力学性能的影响。采用OLYMPUS光学显微镜和S5700扫描电子显微镜观察了合金的晶粒度和显微组织,采用INSTRON1186电子万能拉伸试验机测试了各种工艺浇注条件下合金的力学性能,。
     结果表明,在单一细化条件下,经热速处理后的合金晶粒最细小,抗拉强度最高,达到了164MPa,比正常浇注的合金抗拉强度提高近13MPa;经热速处理后合金延伸率达到了2.3%,与正常浇注的合金延伸率相近。热处理后,经热速处理的合金抗拉强度比空冷至低温浇注的合金提高了8.6%,。
     在单一变质条件下,经热速处理后的合金晶粒最小;经热速处理后的合金抗拉强度最高,达到了168.5MPa,比正常浇注的合金抗拉强度提高了18MPa,比空冷至低温浇注的合金强度提高了近8MPa;正常浇注的合金与经热速处理至低温浇注的合金延伸率都在4.2%左右;热处理后,经热速处理后的合金抗拉强度比空冷至低温浇注的合金提高了5.1%。
     在综合细化变质的条件下,经热速处理的合金共晶硅呈颗粒状,而其它浇注工艺的合金共晶硅还是呈短棒状;经过热处理后合金中的共晶硅都呈了颗粒状,其中热速处理的合金共晶硅还有部分呈短棒状,原因是颗粒状共晶硅开始长大;铸态下合金的抗拉强度,屈服强度和延伸率都达到了最佳,分别达到了181.8MPa,101MPa和4.2%;热处理后,经热速处理后的合金抗拉强度比空冷至低温浇注的合金提高了3.1%。
     经热速处理的合金金属型铸造后,合金的各项性能都达到了最佳,抗拉强度超过了360MPa,延伸率超过了14%,是所有合金中综合力学性能最佳的合金。
In this paper, we investigated the properties of Al7SiMg alloys. we want to find the differences of microstructure and the mechanic properties of the alloys which cast at normal temperature, air cooling to low temperature and thermal rate treatment to low temperature. We use OLYMPUS optical microscope to observe the microstructure of the alloy, use INSTRON1186 to test the mechanical properties of alloy poured of different processes.
     The differences of casting at 720℃,air cooling at 640℃and thermal rate treatment on the mechanical property of refining Al7SiMg alloy has been studied. Research finds out that after thermal rate treatment the alloy refined obviously. Grain size was the smallest by thermal rate treatmented alloy. After thermal rate treatment the tensile strength was the largest, reached 164MPa, it was increased 13MPa comparatively 720℃casting. The elongations was the like to the alloy after thermal rate treatment and air cooling alloys, they reached 2.3%. After heat treatment, the tensile strength by thermal rate treated alloy increased 8.6% than air cooling to low tempetature.
     The difference between casting at 720℃,air cooling at 640℃and thermal rate treatment which casting at 640℃on the mechanical property of modification Al7SiMg alloy also has been studied. The result found out that after thermal rate treatment, the grain was the smallest. After thermal rate treatment the tensile strength was increased 18MPa comparatively by high temperature casting. And it was increased 8MPa comparatively by air cooling casting. The elongations was the the like to the alloy after thermal rate treatment and air cooling alloys, they reached 4.2%. After heat treatment, the tensile strength by thermal rate treated alloy increased 5.1% than air cooling to low tempetature.
     The differences between casting at 720℃, air cooling at 640℃and thermal rate treatment which casting at 640℃on the mechanical property of refining and modification Al7SiMg alloys has also studied. we find that the eutectic silicon became granule after thermal rate treatment while the others still was cosh. After heat treatment ,the eutectic silicon of all the alloys became granule. After hot treatment, the tensile strength by thermal rate treated alloy increased 3.1% than air cooling to low tempetature.
     The thermal rate treated alloy which casting by permamental molding was the best of all the properties, the tensile strength exceeded 360MPa, and the elongation exceeded 14%.
引文
1罗启全.铝合金熔炼与铸造[M].广东科技出版社, 2002:95~96.
    2廖恒成,方信贤,孙国雄.铸造Al2Si合金熔体处理细化[J].特种铸造及有色合金, 1999, 3: 49~53.
    3王汝耀,鲁薇华.钛对Al7Si0.3Mg合金力学性能[J].特种铸造及有色合金, 1999, (增1) : 16~17.
    4陈忠伟,何志,介万奇. Al25Ti细化剂和Al10Sr变质剂对A357合金微观组织和力学性能的影响[J] .铸造,2005, 54: 129~133.
    5 Lu Shu-zu, Hellawell A. Growth mechanisms of silicon inAl2Si alloys[J]. J Crystal Growth , 1985, (73): 316~328.
    6陈光,颜银标,催鹏等.熔体过热对SbBi合金凝固组织的影响.材料科学与工艺, 2001, 9: 1131~16.
    7 Sutton T L. Alumnium casting-a step forward into the next century. Foundry man 1997, vol. 90: 210~228.
    8 Hansen P N, Sahm P R. How to Select and Use Criterion Functions in Solidification Simulation. A FS Transaction. 1993, 51: 443~446.
    9开道,郑来苏.造合金及熔炼[M].北京:国防工业出版社, 1983, 185~218.
    10王英杰,姚惟斌,熊艳才,等.ZL205A热壳精密铸造工艺研究.材料科学与工艺. 1999, 7(增刊):170~172.
    11边秀房,刘相法.铸造金属遗传学.山东科学技术出版社, 1999: 1~95.
    12刘相法,边秀房,李辉,马家骥. AlTiB中间合金细化效果的组织遗传效应.金属学报. 1996,17: 149.
    13邹新国,边秀房,刘相法,马家骥.铝熔体热经历与自身晶粒细化.铸造. 1997, 4: 5.
    14 Mohanty P S, GruZLeski J E. Grain Refinement Mechanism of Hypo-Eutectic Al-SiAlloys, ActaMater. 1996, 44: 3749~3760.
    15姚书芳,毛卫民,赵爱民,钟雪友.铸造铝硅合金细化变质处理的研究进展.铸造. 2001, 9: 149.
    16张承甫等.液态金属的净化与变质.上海科学技术出版社. 1980: 30~52.
    17 Miras, Melelley T R. Temperature dependence of strain hardening in a dispersionstrengthened AlFeVSi alloy[J]. Metallurgical Transaction A. 1993, 24: 2589~2592.
    18 Stbage S J. Production of rapidly solidified metals and alloy [J]. Journal of Metals, 1984, 36: 20~33.
    19弗莱明兹.凝固过程.北京:机械工业出版社,1987:55~57.
    20徐国庆.锶变质及凝固条件对A357合金组织的影响.哈尔滨工业大学硕士学位论文. 2000: 37~46.
    21 Houghton M E. Murray M T. An introduction to zine alloys. Met Forum spring. 2003, 6: 1~4.
    22 Savage S J. Production of rapidly solidified metals and alloy[J]. Journal of Metals. 2004, 36: 20~33.
    23苏学常.国产Al-Ti-B细化剂的冶金质量[J].轻金属. 1996, 1:50~51.
    24张作贵,刘相法,边秀房,等. Al-Ti-B中间合金的遗传性研究与推广应用[J].铸造. 2000, 10: 758.
    25高泽生,世界铝晶粒细化剂供应工业[J].轻金属.1999 , 9: 50-53: 10:53-55.
    26 Crossley. F. A. Mondolfo. L. F. [J], Trans Aime. 1951, 191: 114-320.
    27于亚鑫,邱竹贤,张明杰,等.铝硼及铝钛硼中间合金的研制(上).轻金属,1988, 4: 31~34.
    28于亚鑫,邱竹贤,张明杰,等.铝硼及铝钛硼中间合金的研制(下).轻金属,1988, 5: 30~347.
    29 Burty B S,Kori SA. Manufacture of Al-Ti-B Master Alloys by the Reaction of Complex Halide Saltswith Molten Aluminum. Material Processing Technology, 1999, 89-90: 152~158.
    30 Nikitin V I,.Wanqi JL E. Preparation ofAl-Ti-B Grain Refiner by SHS Technology. ScriptaMater, 2000, 42: 561~566.
    31陈辉煌,陈本孝,林立杰.电解法制取铝钛硼中间合金.江西有色金属. 2001: 12.
    32陈亚军,许庆彦,黄天佑,冀树军,梁再枝.氟盐法制备Al-Ti-B中间合金的研究.铸造技术. 2006,601~604.
    33 Lee Cheng-Te, Chen Sinn-Wen. Quantities of grains of aluminum and those of TiB2 and Al3Ti particles added in the grain-refining processes [J]. MaterialsScience and Engineering,2002, 325: 242~248.
    34 Jellctedt J, Jarfors A E W, Svendsen L. Experimental analysis of the intermediary phases AlB2,AlB12 and TiBB2 in the Al-B and Al-Ti-B systems [J]. Journal of Alloys and Compounds,1999,283:192~197.
    35张作贵,刘相法,边秀房.TiB2分布形态对AlTi5B合金细化特性的影响[J].特种铸造及有色合金, 1999, 5: 12~13.
    36李喜珍,边秀房,李秀军. Al-Ti-B合金中TiB2和AlB2的从头算研究[J].金属学报, 2001, 37: 235~238.
    37 Whitehead A J,Danilak S A. The development of commercial Al-3%Ti-0.15%C grain refining master alloy [J]. Light Metals,1997: 785~793.
    38高泽生.世界铝晶粒细化剂供应工业[J].轻金属, 1999, 9: 50~53.
    39 Greer A L. The mechanism of grain refinement of aluminum[A]. Third International Conferenceon Solidification and Gravity[C].Miskolc, Hungary: 1999, 4: 26~29.
    40 Murty B S, Kori S A, Venkateswarlu K. Manufacture of Al-Ti-B master alloys by the reaction of complex halide salts with molten aluminum[J].Journal of Materials Processing Technology (Netherlands), 1999, 90: 152~158.
    41廖恒成,方信贤,孙国雄.铸造Al-Si合金熔体处理-晶粒细化[J].特种铸造及有色合金, 1999, 3: 49~53.
    42陈晶阳,王利国,关绍康,林敦文.热速处理对AZ70镁合金显微组织和力学性能的影响.铸造, 2005, 54: 963~966.
    43 Banerji A, Reif W. Metallographic investigation of TiC nucleants in the newly developed Al-Ti-C grain refiner[J]. J Mater Sci, 1994, 29:19~58.
    44刘相法,边秀房,李辉. AlTiB中间合金细化效果的组织遗传效应[J].金属学报, 1996, 32: 149~153.
    45 QI Xiaogang, LIU Xiangfa, BIAN Xiufan. The effects of solid deformation and melt vibration on refining performance of Al5Ti1B master alloy[J]. Journal of Chinese Non-Ferrous Metal, 1999, 1: 80~83.
    46刘相法. AlTiB中间合金的遗传性研究[D].山东工业大学博士学位论文, 1997,12:5~7.
    47杨阳,刘相法,边秀房.AlTiB中间合金中TiAl3形态的遗传与变异[J].铸造, 1997, 4: 9~12.
    48 LIU Xiangfa, BIAN Xiufang. Structural heredity between Al5Ti1B and AlTi ,AlB master alloys [J]. Journal of Chinese Non-Ferrous Metals,1999, 94: 806~809.
    49陈忠伟,何志,介万奇. Al-5Ti细化剂和Al-10Sr变质剂对A357合金微观组织和力学性能的影响[J].铸造, 2005, 54: 129~133.
    50周振平,李荣德. Al-5%Fe合金的热速处理研究[J].铸造技术,2004,25: 427~429.
    51陈光,俞建成,孙彦臣,等.熔体热历史对AlCu合金定向凝固界面稳定性的影响[J].材料研究学报, 1999, 13: 497~500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700