Al-Ni-Y三元合金定向凝固组织和高温压缩性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取Al-2.8at%Ni-1.53at%Y三元合金,进行下拉式定向凝固实验,研究同一温度梯度下,不同拉伸速率对凝固组织的影响,以及定向凝固后合金的高温压缩性能。
     实验结果表明:Al-Ni-Y三元合金经定向凝固后或得了同一方向(热流反方向)的组织。随拉伸速率的增加,组织逐渐细化,初生相逐渐增多。定向凝固后的合金弹性极限提高了,且获得了对热加工有益的变形机制。高温压缩变形时的流变应力行为,可采用Zener-Hollomon参数的双曲正弦形式来描述;获得的流变应力σp解析表达式中α、n和A值分别为0.014Mpa-1、8.60和1.13×1022s-1;其热变形激活能Q为234.74kJ/mol。
The drawing-directional solidification of the ternary Al alloy with composition of 2.8at%Ni, 1.53at%Y was carried out in this paper. We studied the effects of the same temperature gradient and different growth velocities on the solidified microstructure, and the comstress performance of the alloy in high temperature
     The experimental results shows that the microstructures of the directionally solidified alloy grow in the same direction . The microstructure of the directionally solidified alloy becomes finer and slender gradually and the more primaryα-Al is observed with the increasing of growth velocities. After directionally solidified, the elastic limit were improved. The useful deformation mechanism is observed in directionally solidified alloy. The flow stress of directionally solidified alloy during high temperature deformation can be represented by a Zener - Hollomon parameter in the hyperbolic Arrhenius– type equation.α、n and A in the analytical expressions ofσp are fitted to be 0.014Mpa-1、8.60 and 1.13×1022s-1 respectively. The hot deformation activation energy of directionally solidified alloy during high temperature deformation is 234.74kJ/mol.
引文
[1]彭广威,刘健,李理等.定向凝固理论及技术的研究现状[J].铸造设备研究, 2005, 4 (8): 44~47.
    [2]傅恒志.铸钢和铸造高温合金及其熔炼[M].西安:西北工业大学出版社. 1985, 32~37.
    [3]周振平,李荣德.定向凝固技术的发展[J].中国铸造装备与技术, 2003, 2: 1~3.
    [4]苏彦庆,郭景哲,刘畅等.定向凝固技术与理论研究的发展[J].特种技术铸造, 2006, 26 (1): 25~30.
    [5]胡汉起.金属凝固原理[M].北京:机械工业出版社,1991.
    [6]谢建新,黄继华,康永林等.材料加工新技术与新工艺[M].北京:冶金工业出版社,2004, 61~91
    [7] Versnyder F L, Shank M E. Development of Cloumnar Grain and Single Crystal High Temperature Materials through Directional Solidification [J]. Materials Science and Engineering, 1970, 6 (4): 213~247.
    [8]安阁英.铸件成形理论[M].北京:冶金工业出版社, 2004: 106~108.
    [9] Versnyder F L, Barlow R B, Sink L W, et al. Directional Solidification in the Precision Casting of Gas Turbine Parts. Modern Casting, 1967, 52 (6): 68~75.
    [10] Erickson J S, Owczarski W A, Curran P M. Advances in Fabricating Aerospace Structures. Process Speeds up Directional Solidification [J]. Metal Progress, 1971, 99 (3): 58~60.
    [11] Giamei A F, Tschinkel J G. Liquid Metal Cooling: A New Solidification Technique [J]. Metallurgical Transactions, 1976, 7A (9): 1 427~1 434.
    [12]安金敏,任忠鸣,李伟轩等.连续定向凝固技术研究[J].上海金属, 2005 6: 19~25.
    [13]史正兴.界面问题与超细定向柱晶材料研究[J].西北工业大学学报, 1993 5: 3~7.
    [14]杨爱民,熊玉华,刘林. K5合金高温梯度下快速凝固定向组织的研究[J].材料科学与工程, 1999,17 (3): 71~73.
    [15]李德林,毛协民,傅恒志.动力学深过冷定向凝固的可行性研究[C].第一届全国相变会议,北京,1993: 322~327.
    [16]李双明,傅恒志.液态金属双频电磁约束成形过程研究[J].稀有金属材料与工程, 2001, 30(6).
    [17]沈军,傅恒志.合金电磁约束成形及凝固组织控制研究[J].材料导报, 2003, 17(7).
    [18]李金山,张军,李建国等.钢的电磁约束成型定向凝固工艺研究[J].西北工业大学学报, 1998, 16(1): 133~137.
    [19]彭广威,刘健,李理等.定向凝固理论与技术的研究现状[J].铸造设备研究,2005, 4(8): 44~47.
    [20]金俊泽.电磁搅拌对灰铸铁宏观偏析的影响[J].金属学报, 1992, 28B(2): 80~83.
    [21]杨森,超高温度梯度快速定向凝固的Cu Mn合金胞晶间距[J].中国有色金属学报, 2001, 2(11).
    [22]陈亚军,田军花,陈琦等.真空熔炼、氩气保护连续定向凝固技术[J].北京科技大学学报, 2004, 16 (5): 482~484.
    [23]陈琦,陈亚军,王自东.真空熔化氩气保护连续定向凝固设备的研究[J].铸造设备研究, 2004, (2): 6~8.
    [24]刘峰.博士学位论文[A]. 2001.
    [25] Cline H E. Interlamellar spacing in directionally solidified eutectic thin films [J]. Metallurgical Transactions A, 1983, 15A(6): 1013~1017.
    [26]陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望[J].航空材料学报, 2000, 20(1): 55~61.
    [27]傅恒志,沈军,郝启堂等,镍基高温合金真空电磁约束成形与定向凝固[J].中国有色金属学报, 2002, 12 (6): 1 081~1 086.
    [28] Seiki S, Hayashi A, Okamoto H, Izumi T, Shiohara Y.Critical currentproperties in magnetic fields of YBCO superconductingrods preparedby unidirectional solidification method [J]. Physica C, 2004, 412-414: 963~966.
    [29] Hayashi A, Kurachi K, Seiki S, Izumi T, Shiohara Y.Fabrication ofSm- Ba- Cu- O superconducting rods for current leads by unidirec-tional solidification [J]. Physica C, 2003, 392-396: 970~974.
    [30]王评初,孙士文,潘晓明等.高性能铌镁酸铅-钛酸铅定向压电陶瓷的研究[J].无机材料学报, 2004, 19(5): 1 195~1 198.
    [31]李扩社,徐静,杨红川等.稀土超磁致伸缩材料发展概况[J].稀土, 2004, 25(4): 51~56.
    [32]毕晓勤,李金山,耿兴国等.定向凝固Cu-Cr自生复合材料显微组织和力学、电学性能研究[J].材料科学与工程学报, 2004, 22(4): 498~501.
    [33] Hassel A W. Electrochemical production of nanopore arrays in a nickel aluminium [J]. Electrochimica Acta, 2005(50): 3 003~3 039.
    [34] Hassel A W. Fabrication of rhenium nanowires by selective etching of eutectic alloys [J]. Electrochimica Acta, 2005(51): 795~801.
    [35]杨少锋.兰州理工大学硕士论文.柱状组织CuAlNi形状记忆合金制备及组织和性能的研究, 2005: 5~10.
    [36] Suresh N, Ramamurty U. Effect of aging on mechanical behavior of single crystal Cu-Al-Ni shape memory alloys [J]. Materials Science and Engineering A: 2007,454-455: 492~499.
    [37] Hyun S K, Nakajima H.Anisotropic compressive properties of porouscopper produced by unidirectional solidification [J]. Materials Scienceand EngineeringA, 2003, 340: 258~264.
    [38] Nakahata T, Nakajima H. Fabrication of lotus- type porous silicon by unidirectional solidification in hydrogen [J]. Materials Science and Engineering A, 2004, 384: 373~376.
    [39]刘源,李言祥,张华伟等.金属-气体共晶定向凝固工艺参数对藕状多孔金属镁结构的影响[J].稀有金属材料与工程, 2005,134 (7): 1 128~1 130.
    [40] Zhuang Y X, Zhang X M. Eutectic spacing and faults of directionally solidified Al-Al3Ni eutectic [J].Science and Technology of Advance Materials, 2001,(2): 37~39.
    [41] Ratke L, Alkemper J. Ordering of the fibrous eutectic microstructure of Al-Al3Ni due to accelerated solidification conditions [J]. Acta mater., 2000, 48: 1 939~1 948.
    [42]丁宇涛,龙思远,蒋德平.凝固速率对Al-Ni合金组织特征的影响[J].材料导报, 2006, 11(20): 458~459.
    [43]李喜,任忠鸣,王晖等.强磁场下Al2Ni合金凝固初生相Al3Ni的取向行为[J].中国有所金属报, 2006, 16(3): 476~481.
    [44]庄艳欲,张修睦等.控制参数对Al-A13Ni共晶合金间距的影响[J].金属学报,1999, 35(4): 353~356.
    [45]庄艳欲,张修睦等.生长速度对A1-A13Ni定向共晶微观组织的影响[J].材料研究学报,1999, 13(3): 284~288.
    [46] Yan X Y, Xie F Y, Chu M. Microsegregation in Al-4.5wtCu% alloy experimental investigation and numerical modeling [J]. Materials Science and Engineering A, 2005, 302: 268~272.
    [47]李达云. Al-Cu合金定向凝固一次枝晶间距的研究.镇江:江苏大学硕士论文, 2006.
    [48]孙克庆.熔体过热处理对Al-Cu合金熔体结构和定向凝固组织性能的影响.江苏大学论文, 2005.
    [49]陈光,俞建威等.熔体热历史对AI-Cu合金定向凝固界面稳定性的影响[J].材料研究学报, 1999,13(5): 497.
    [50]林鑫,黄卫东等. A1-4.5%Cu单晶定向凝固一次枝晶间距研究[J].金属学报, 1997, 33(11): 1 140.
    [51]徐达鸣,曹福祥,李庆春等.变速生长条件下Al-Cu合金的定向凝固枝晶组织[J].金属学报, 1995,31(11): 501~507.
    [52]冯坚,黄卫东,林鑫等. Al-Zn合金定向凝固过程中的组织形态选择[J].西北工业大学学报, 2000, 18(1): 52~54.
    [53]彭德林,闵光辉等.二元Al-Li合金共晶复合材料的定向生长[J].金属学报,1996, 32(9): 993~997.
    [54] Chen M, Kattamis T Z. Dendrite coarsening during directional solidification of Al-Cu-Mn alloys [J]. Materials Science and Engineering A,1998, 247:239~247.
    [55] Kovacova K, Dille J. Unidirectional solidification of ternary eutectic Al-Ni-Si alloys [J]. Composites,1976,7(4): 249~255.
    [56] Bei H, George E P. Directional solidification and microstructures of near-eutectic Cr-Cr3Si alloys [J].Acta Materialia, 2003, 51: 6 241~6 252
    [57] Rios C T, Milenkovica S. Influence of the growth rate on the microstructure of a Nb-Al-Ni ternary eutectic [J]. Journal of Crystal Growth, 2002, 90: 237~329.
    [58] Trive?o R, Oliveira M F. Directionall and rapid solidification of Al-Nb-Ni ternary eutectic alloy [J]. Materials Science and Engineering A, 2004, 375: 565~570.
    [59] Ferrandini P L. Growth and characterization of the NiAl-NiAlNb eutectic structure [J]. Journal of Crystal Growth, 2005, 275:147~152.
    [60] Milenkovic S, Coelho. Directional solidification processing of eutectic alloys in the Al-Ni-V system [J]. Journal of Crystal Growth. 2000, 211: 485~490.
    [61] Inoue A, Kita K, Ohtera K, et al. Al-Ni-Y amorphous powders prepared by high-pressure gas.atomization [J]. Journal of Materials Science Letters, 1988(7): 1 287~1 290.
    [62] Tsai A P, Inoue A, Masumoto T. Aluminum-Lithium powder metallurgy alloys with improved toughness [J]. Metallurgical Transactions A, 1988, 19(3): 603~615.
    [63] Ko BC, Wesseling P, Vatamanu OL, Shiflet GJ, Lewan dowski JJ. Intermetallics 2002;10:1 099.
    [64] Shuhong Liu, Yong Du, Hailin Chen.A thermodynamic reassessment of the Al–Y system [J]. Calphad 2006, 30: 334~340.
    [65] D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, E. Ma, Appl. Phys. Lett. 2004, 84: 4 029.
    [66] Y. Wang et al., J. Alloys Compd. The best glass-forming compositions in Al-Co (or Ni)–Y ternary systems [J]. Journal of Alloys and Compounds.2006, 8: 182.
    [67] G. Borzone , R. Raggio , S. Delsante , R. Ferro Chemical and thermodynamic properties of several Al–Ni–R systems [J]. Intermetallics 2003, 11: 1 217~1 222.
    [68] Guo F Q, Poon S J, Shiflet G J. Scripta Mater 2000, 43: 1 089.
    [69] Gao M C, Shiflet G J. Mater Sci Forum 2003, 426-432: 245.
    [70] Gao M C. PhD Dissertation, Charlottesville, VA: University of Virginia. 2002.
    [71] Gao M C, Shiflet G J. Intermetallics 2002,10: 1 131.
    [72] Gao M C, Hackenberg R E, Shiflet G J. J Alloys Compd 2003, 353: 114.
    [73] A.L. Vasilieva , M. Aindowa , M.J. Blackburna , T.J. Watsonb The structure of ternary compounds in a devitrified Al - rich Al–Ni–Gd alloy [J]. Intermetallics 2005, 13: 741~748.
    [74] Inoue A, Gschneidner Jr KA, Eyring L, editors. Handbook on the physics and chemistry of rare earths, vol. 24. Amsterdam [J]. The Netherlands: Elsevier, 1997, p. 83.
    [75] Raggior.R, Borzone G, Ferro R, Intermetallics. 2000, 8: 247~257.
    [76] Vasiliev A.L, Aindow M, Blackburn M.J, Intermetallics. 2004, 12: 349~362.
    [77] R.M. Rykhal, O.S. Zarechnyuk, Y.P. Yarmolyuk, Kristallografiya. 1972, 17 (3): 521~524.
    [78] R.E. Gladyshevskii, E. Parth′e, Acta Crystallogr. Sect. C: Cryst. Struct.Commun. C. 1992, 48 (2): 229~232.
    [79] R.E. Gladyshevskii, K. Cenzual, E. Parth′e, J. Solid State Chem. 1992, 100 (1): 9~15.
    [80] R.E. Gladyshevskii, E. Parth′e, Z. Kristallogr. 1992,198 (1/2): 171~172.
    [81] O.S. Zarechnyuk, R.M. Rykhal,Vestn. L’vov. Un-ta. Ser. Khim. 1981,23: 45~47.
    [82] D. Shin, J. G William. First-principles study of Al–Ni–Y ternary compounds for crystal structure validation [J]. Journal of Alloys and Compounds. 2007, 08: 16755~16760.
    [83] Hunt J D.Dynamical patterns in direnctional solidification [J]. Metall Mater Trans ,1996,A27: 611.
    [84]黄卫东,商宝禄,周尧和.凝固技术的发展[M].北京:机械工业出版社, 1991, 40: 38.
    [85]刘芳.热变形参数对LD7铝合金流变应力的影响[J].材料科学与工艺, 2003, 11: 55.
    [86]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学, 1986.
    [87]林立杰.热压缩铝合金LY12流变应力的影响因素[J].南方冶金学院学报, 2000, 21: 282.
    [88]张大辉.变形速率对半固态AlSi7Mg合金变形性的影响[J].中国有色金属学报, 2000, 10: 132.
    [89]林高用,张辉. 7075铝合金热压缩变形流变应力[J].中国有色金属学报, 2001, 11: 412.
    [90]林启权,张辉,彭大暑等. 2519铝合金热压缩变形流变应力行为[J].热加工工艺, 2002, 3: 3~5.
    [91]王孟君,杨立斌,甘春雷等. 6063铝合金高温流变本构方程[J].华中科技大学学报, 2003, 31 (6): 20~22.
    [92] Sheppard T, Parson N C, Zaidi M A. Dynamic Recrystallization in Al-7Mg Alloy [J]. Metal Science, 1983, 17 (10): 481~490.
    [93] Jonas J J,Sellars C M,Tegart W J Mc G.Strength and Structure under Hot.working Conditions [J]. International Metallurgical Reviews,1969,14 (130): 1~24.
    [94] Rao K P,Hawboh E B.Development of Constitutive Relationships Using Compression Testing of a Medium Carbon Steel [J]. Joumal ofEngineering Materials and Technology, 1992, 114: 116~123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700