新型高强铝合金锻造工艺实验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Zn-Mg-Cu高强铝合金厚板是现代航空、航天及武器装备等领域必不可少的关键结构材料。但是我国在大规格高强铝合金厚板锻件的加工理论及技术方面的基础研究相对薄弱,高性能铝合金厚板大部分依赖进口,严重制约了我国航空、航天及国防技术的发展。因此,深入研究高性能铝合金厚板锻造技术,对我国航空、航天及国防事业的发展具有重要的意义。
     本文针对一种新型Al-Zn-Mg-Cu超高强铝合金,系统研究了该合金的热变形特性及厚板的多向锻造工艺,具体研究内容及结果有:
     1.采用Gleeble-1500D热力模拟试验机,研究了变形温度250℃~450℃,变形速率0.001s-1~0.1s-1的条件下,Al-Zn-Mg-Cu合金的热压缩流变应力行为;分析了变形温度、变形速率对材料流变应力的影响规律,并建立了该合金高温变形时的流变应力本构方程;通过热拉伸实验,研究了变形温度250℃~450℃,变形速率0.1s-1条件下合金的拉伸性能。获得材料在250℃~450℃的拉伸强度、延伸率及断面收缩率,在此基础上建立了材料的热加工塑性图,并确定合金的锻造温度范围为420℃~350℃。
     2.采用热力模拟试验和金相实验方法,分析了该合金热压缩变形的组织演变规律。结果表明,Al-Zn-Mg-Cu合金是一种动态回复型金属,动态软化机制以动态回复为主。
     3.采用Deform-3D模拟了多向锻造工艺中的镦粗、拔长等工序,优化了髙径比、砧宽比及压下量等控制参数。制定了三镦两拔(方案一)和四镦三拔(方案二)两种多向锻造工艺方案,并对两种方案缩比件的多工序多向锻造过程进行了数值模拟。模拟结果表明,方案二总锻比为17.86,锻件内部等效应变达到12.6,方案一总锻比为13.34,锻件内部等效应变达到9.23。两套工艺方案缩比件的工艺实验检测结果表明:两种工艺方案锻件的拉伸强度都超过了500MPa,延伸率、断面收缩率等都达到使用要求。因此,采用三镦两拔的工艺方案,不仅可以生产合格的Al-Zn-Mg-Cu合金厚板锻件,而且可以简化锻造工序,降低生产成本。
     4.生产尺寸铝合金厚板锻造过程模拟结果表明,采用三镦两拔的锻造工艺进行厚板锻件的生产,设计总锻比在13~15时,锻件内部大部分区域等效应变达到9.96。实际尺寸铝合金厚板在西南铝成功试制,各项性能均达到使用要求。
The thick plates of Al-Zn-Mg-Cu aluminum alloys with high strength are of indispensable structural materials in the industry of aerospace and armors. However, given the condition of relatively scant basic research on the theory and technology for processing the specifically thick-plate forgings of aluminum alloy, mostly causing the massive importation in high-performance thick plates of aluminum alloy, which restrains the technical development of aerospace and defense in our country definitely. Therefore, it is provident in the more accurate research on forging technology of aluminum alloy thick plates with high performance, which will facilitate our nation defense including aerospace industry and make sense totally.
     Concerning a new aluminum alloy of Al-Zn-Mg-Cu with high performance, this present thesis involves a scientifically research on the alloy’s property of thermal deflection and multi-forging technology of thick plates. The procedures and results in the research are represented following:
     1.The flow stress behavior of hot compression in Al-Zn-Mg-Cu alloy was investigated with Gleeble-1500D Thermal simulator under a temperature range of 250℃~450℃and a rate of deformation from 0.001s-1 to 0.1s-1; the regular influence resulted from the change of flow stress conducted by temperature and stain rates was concluded and then help form the flow stress constitutive equations when thermal deflection occurred in this alloy; through the hot tensile test, alloy’s tensile property was measured on the temperature from 250℃to 450℃and rate in 0.1s-1 of deformation. Hence, the material tensile strength, elongation and area reduction rate when worked from 250℃to 450℃founded the material thermal processing plasticity chart and ensured the forging temperature range in the real of 420℃~350℃.
     2.Microstructure revolution of hot compression in this alloy was deduced by means of thermal simulation and metallographic test. The conclusion indicates that the alloy of Al-Zn-Mg-Cu belongs to dynamic recovery metal, and that dynamic recovery is optimal in dynamic restoration mechanism.
     3.The optimization of control parameters such as H0/D0, tool width ratio and reduction, as well as the simulation of multi-directional forging process containing upsetting and stretching were performed by Deform-3D. Multi-process multi-directional forging process of scale-down stock in two proposals embracing the first of threetimes-upstting with twice-stretching and the second of fourtimes-upstting with threetimes-stretching was simulated numerically. The results of simulation shows that: the total forging ratio is 17.86, equivalent strain in the forging reaches up to 12.6 in the first proposal; while the figure emerges at 13.34 and 9.23 respectively in the second one. The test results of experiment focused in scale-down stock in both technical proposals suggest that: tensile strength of forging surpasses 500 Mpa, elongations and reductions of cross section satisfy the application. Thus, the technical proposal of threetimes-upstting with twice-stretching not only enables the generation of Al-Zn-Mg-Cu alloy thick plate forging, but also simplifies the forging process and decreases the cost.
     4. The simulation of forging process of aluminum alloy thick plate within real sizes implicates that, during the generation of thick plate forgings by the forging technology of threetimes-upstting with twice-stretching when the total forging ratio designed in the scope of 13~15, forging effective strain within most regions stains to 9.96. Aluminum alloy thick plate within real sizes was successfully fabricated in Southwestern Aluminum Fabrication Plant, of which all the properties are available in application.
引文
[1]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004:50-51
    [2]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006:57-59
    [3]刘静安.铝及铝加工行业发展新动态与技术创新、产品开发新趋向[J].四川有色金属,2000,4:1-6
    [4]宋仁国.高强度铝合金的研究现状及发展趋势[J].材料导报,2000,14(1):20-21
    [5] FRIDLYANDERJ N, SENATOROVA O G. Development and application of high-strength Al-Zn-Mg-Cu alloys [J].Materials Science Forum,1996,216-231
    [6]陈昌麒.超高强铝合金的发展[J].中国有色金属学报,2002,12(S1):22-27
    [7]张君尧.航空结构用高纯高韧性铝合金的进展[J].轻金属,1994,8:59-63
    [8] HEINZ A, HASZLER A, etal. Recent development in Aluminum alloys for aerospace applications [J]. Materials Science and Engineering A,2000,280(1): 102-107
    [9] DixE H. Develop of cross-wind undercarriages for airplanes [J].Trans .ASM,1950,42:1057-1062
    [10]马场义雄,孙本良译.超硬铝(ESD)及飞机铝合金发展动向[J]. Aluminum Fabrication Technology(铝加工技术),1990,(4):21-31.
    [11] LUKASAK D A, HART R M. Aluminum alloy development efforts for compression dominated structure of aircraft [J]. Light Metal Age,1991,2(9):11-15
    [12]张君尧.航空结构用高纯高韧性铝合金的进展(l)[J].轻金属,1994,(6):54-58
    [13]李成功,巫世杰,戴圣龙,杨守杰.先进铝合金在航空航天工业中的应用与发展[J].中国有色金属学报, 2002,3, Vol.12, Al Special
    [14]孙洪军,杨兴玲.超高强铝合金的发展[J].机械工程师,2007,9:41-43
    [15]甘卫平,范洪涛,许可勤.Al-Zn-Mg-Cu系高强铝合金研究进展[J].铝加工2003,3:6-11
    [16]张君尧.航空结构用高纯高韧性铝合金的进展(2)[J].轻金属,1994,(6):59-63
    [17] OSAMURA K, KOHON K, etal. Mesoscopic structure of super-high strength P/M Al-Zn-Mg-Cu P/M alloys[J]. Materials Science Forum.1996, 217-222(3): 1829-1834.
    [18] ADACHI H, OSAMULA K, OCHIAI S. Mechanical property of nanoscale precipitate hardening aluminum alloys[J]. Scripta Materialia. 2001,44(8-9):1489-1492.
    [19]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,2000
    [20]张辉,林高用,杨立斌等.高性能铝合金超厚板制备技术及理论[J],材料导报,2002,16(3):23-27
    [21]周鸿章,李念奎.超高强铝合金强韧化的发展过程及方向[C].铝-2 1世纪基础研究与技术发展研讨会论文集(第一分册) ,湖南张家界,2002,11:15-50
    [22]西北工业大学有色金属锻造编写组.有色金属锻造[M].北京:国防工业出版社,1979 :9-11
    [23]刘静安.铝合金锻压生产现状及锻件应用前景[J].轻合金加工技术,2005,33(6):1-4
    [24]刘静安.国内外铝加工技术的发展特点与趋势[J].轻合金加工技术,2000,28(9):1-3
    [25]杨玲玲.AZ镁合金锻造性能研究[D].沈阳:沈阳理工大学,2007
    [26]赵润华译.铝合金锻造.Forging&Metalforming[J].2009,2:69-72
    [27] P.Dadras,J.F.Thomas Jr. Compressive plastic instability and flow localization in Ti-6242[J].Res Mechanica Letters, 1981, vol.1(3): 97-103
    [28]韩冰.7075铝合金高温塑性变形行为研究[D].广州:广东工业大学,2003
    [29]刘建生,刘志颖,陈慧琴,等.模拟技术的集成及在大型锻造工艺研发中的应用[J].大型铸锻件,2009,(1):2-5
    [30]李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社,1986:52-63
    [31] Prasad Y V R K, Gegel H L, etc.Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J].Metallurgical and materials transaction. 1984. (15): 56-58
    [32] Yada H, Senuma T. Resistance to hot deformation of steel. JSTP.1986.(27):33
    [33] Kopp.R, Karnhausen.K, Souza M M. Numerical simulation mimulation method for designing thermo mechanical treatment illustrated by Bar Rolling[J]. Scand.J.Metal. 1991.(20):351
    [34]王本一,石伟,刘庄.数值模拟技术在大型锻造生产中的应用[J].大型铸锻件,1999(1):15-20
    [35]江雄心,万平荣,扶名福,等.温锻精密成形技术及其有限元模拟[J].锻压技术,2000(2):55-59
    [36]王连生,曹起骧,许思广.三维热耦合刚粘塑性有限元数值模拟技术的开发和应用[J].塑性工程学报, 1994,1(3)
    [37]房贵如.材料热加工工艺模拟的研究现状及技术发展趋势[J].中国机械工程.1998, 9(11):71-72
    [38] J.Jabra,M.Romios,J.Lai,et al.The effect of exposure on the mechanical properties of 2099-T6 die forgings,2099-T83 extrusions,7075-T7561 plate,7085-T7452 die forgings,7085-T7651 plate,and 2397-T87 plate aluminum alloys[J].Journal of Materials Engineering and Performance,2006,15(5):601-607
    [39]石岩.7050铝合金热压缩变形行为与组织演化研究[D].长沙:中南大学,2007
    [40]朱宗季.Gleeble-1500热/力模拟试验机高速压缩系统功能的改善[J].钢铁钒钛,1997,18(1):47-50
    [41] R.T.SHUEY,F.BARLAT,M.E.KARABIN,D.J.CHAKRABARTI. Experimental and Analytical Investigations on Plane Strain Toughness for 7085 Aluminum Alloy [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2009,40A:365-376
    [42]王学书,聂波,谢廷翠,热处理制度对7075铝合金电导率的影响[J].轻合金加工技术,2001,29(7):40-42
    [43]王仲仁,郭殿俭,汪涛.塑性成形力学[M].哈尔滨:哈尔滨工业大学出版社,1989:10-28
    [44]陈永禄,陈文哲,洪丽华,等.铝及其合金高温流变应力模型的研究现状[J].铸造技术. 2008, 29(9):1223-1226.
    [45] Z.J. Gronostajski. Development of constitutive equations of copper-silicon alloys [J]. Journal of Materials Processing Technology, 1996, 60(5):621-627.
    [46] E. Cerri, E. Evangelista, A. Forcellese, H.J.McQueen. Comparative hot workability of 7012 and 7075 alloys after different pretreatments [J]. Materials Science and Engineering A. 1995, 197: 181-198.
    [47] F. Bardi, M. Cabibbo, E. Evangelista. An analysis of hot deformation of an Al-Cu-Mg alloy produced by powder metallurgy [J]. Materials Science and Engineering A. 2003, 339 :43-52.
    [48] Doherty R D,Hughes D A, Humphreys F J,etal. Current Issues in recrystallization:A Review[J].Material Sciecne Engineering, 1997,A238:219-274
    [49]林高用,张胜华,胡泽豪.2024铝合金挤压过程动态再结晶问题的研究[J].兵器材料科学与工程,2000,23(1):40-45
    [50]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994
    [51]沈健.2091铝锂合金高温塑性变形行为研究[D].长沙:中南工业大学博士论文,1996
    [52] Sheppard T, Parson N C, Zaidi M A. Dynamic recrystallization in Al-Mg alloy [J].Material Science,1983,17(10):484-490
    [53]林均品,安希墉,雷廷权.铝合金的动态再结晶[J].金属科学与工艺.1988,7(2):107-116
    [54]吕炎.锻造工艺学[M].机械工业出版社:1995.10-14
    [55]王子亮.大型锻件镦粗侧面开裂研究[D].秦皇岛:燕山大学,2007
    [56] Shiro W.Development of a New Forging Process to Manufacture Sound Heavy Forging[J].International Forging Conference,1981,May:4-9
    [57] P.M.Cook .Dependence of mechanical properties of forgings on local strain[J].Journal of the iron and steel institute.1969:250-252
    [58]越谷哲郎.自由锻方法及其锻造效果[C].大型铸锻件文集.1991(4):89-99
    [59]刘助柏.平砧拔长矩形截面毛坯的新理论[J].机械工程学报,1994,30(5):47-49
    [60]刘助柏,李纬民.新FM锻造法.机械工程学报[J],1994,30(4):79-82
    [61]梁晨.大型模块锻造工艺模拟与CAPP专家系统研究[D].秦皇岛:燕山大学,2003
    [62]任猛,金锡钢,王祖堂.拔长锻造时的展宽值计算[J].锻压技术,1989,2:8-10
    [63]金锡钢,任猛,王祖堂.平砧拔长过程中坯料的展宽规律及计算机程序控制[J].大型铸锻件,1992,1:10-16
    [64]李雪.2124铝合金板材断裂韧性和高周疲劳特性研究[D].长沙:中南大学,2007
    [65]宁爱林,刘志义,冯春,曾苏民. Al-Zn-Mg-Cu合金组织和电导率及抗应力腐蚀性能研究[J].材料热处理学报,2008,29(2):108-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700