Fe-Mn-Si形状记忆合金设计及其试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形状记忆合金利用应力诱发马氏体相变或温度诱发马氏体相变实现形状记忆效应,是一种新兴的功能材料。Fe-Mn-Si合金是一种实用性能优良、造价低廉的形状记忆合金材料,近年来成为人们研究的热点。尽管该合金研究起步较晚,但其在紧固件等方面应用的优越性使得对其研究进展迅速。
     本文对Fe-Mn-Si合金进行了化学成分设计与分析、显微结构观察与分析、硬度测试、不同回复退火温度下形状记忆回复率测试、不同预变形量下形状记忆回复率测试以及形状记忆训练等试验研究。Mn、Si含量对合金的尼耳转变点、奥氏体转变终了温度、马氏体转变开始温度等参数有很强烈的影响,且由此影响合金的形状记忆效应。另外,Si的固溶强化作用提高了合金硬度。因此,合金成分选择至关重要。要产生应力诱发马氏体相变及逆相变,避免全位错滑移的引入,实现优良的形状记忆效应,合金中Mn的含量要控制在20%~30%,Si的含量要控制在4%~6%。本文采用工业纯铁、电解锰及纯硅通过真空熔炼制备得到Fe-22.72Mn-5.01Si合金。
     Fe-22.72Mn-5.01Si合金高温淬火后得到单一奥氏体相。在外加应力作用下合金从面心立方结构奥氏体转变为密排六方结构马氏体。卸去外应力,对其进行回复退火,合金发生逆转变,从马氏体转变为奥氏体。合金的马氏体相变是层错形核机制,由Shockley不全位错的运动产生。同时由于层错能较低,两个Shockley不全位错和一片层错产生的新组态不易滑移,决定了其可逆运动途径的唯一性,从而实现形状回复。
     在一定的变形范围内,Fe-22.72Mn-5.01Si合金的形状记忆回复率随着预变形量的增大而提高;随着回复退火温度升高而增加,且在600℃附近获得峰值。在训练过程中,合金的记忆回复率先逐渐上升,然后稳定。训练合金的显微组织为奥氏体和马氏体,可以观察到较清晰的奥氏体晶界;马氏体分布比较均匀,相互平行,交叉现象较少,有利于合金中马氏体逆转变的发生。
Shape memory effect of alloy is obtained by making use of martensitic phase transformation induced by stress or temperature. Shape memory alloy is a new kind of function materials. And Fe-Mn-Si alloy is developed as shape memory alloy for its better practicability, lower cost and superiority when used as fastening pieces. As focus of recent research, Fe-Mn-Si alloy is researched widely and is progressed rapidly.In this dissertation, Fe-22.72Mn-5.01Si alloy was designed; its chemical constitution was anglicized, related microstructures were observed, its hardness was tested and shape memory restoring ratio of samples with same deformation annealed at different temperature and samples with different deformation annealed at the same temperature were measured based on experiments.. Some parameters such as Neel transition temperature, finishing temperature of austenitic phase transformation and starting temperature of martenstic phase transformation of the alloy are affected intensively by the content of Mn, Si. Hardness of the alloy is increased through solution strengthening. Thus, shape memory effect of the alloy is affected intensively by the content of Mn, Si, too. For these reasons, design of the alloy's chemical constitution is critical. To gain stress induced martensitic phase transformation , martensitic reverse phase transformation and abstain slipping of perfect dislocation to obtain better shape memory effect, the content of Mn should be fixed in 20%~30% and the content of Si should be fixed in 4%~6%. Fe-22.72Mn-5.01Si alloy was obtained in this dissertation by vacuum melting industrial pure iron, electrolytic Manganese and pure Silicon.Fe-22.72Mn-5.01Si alloy is simple austenite after hot quenched. Austenite to martensite transformation takes place in the alloy when it is applied to external stress and the microstructure of predeformed samples is lath-shaped martensite distributed on austenite base. Martensite to austenite reverse transformation takes place when the alloy is annealed after the external stress is unloaded and the microstructure of annealed samples is austenite with relict martensite. Compared with the corresponding microstructure of predeformed samples, martensite is decreased, which
    authenticates martensitic reverse phase transformation has taken place. The alloy's martensitic phase transformation is based on fault nucleation system and induced by the moving of Shockley imperfect dislocations. At the same time, the new formed configuration made up of two Shockley imperfect dislocations and a piece of fault can't be slid easily because of low fault energy of the alloy, so the way of reverse transformation is determined exclusively.shape memory restoring ratio of Fe-22.72Mn-5.01Si is decreased when the predeformation of samples is increased in certain extent and increased when the annealing temperature is increased, better shape memory restoring ratio of the alloy can be obtained when the alloy is annealed at 600°C. In course of being trained, shape memory restoring ratio of the alloy is increased gradually at first, then stabilized slowly. The microstructure of trained samples is austenite and martensite, distinct grain boundary of austenite can be observed and martensite is distributed evenly, paralleled with each other except for fewer intercrossing.
引文
[1] Greninger A.B, Moonradian V G. Strain transformation in metastable beta copper-zinc and beta copper-tin alloys. MME Transactions, 1938, 128: 337~368
    [2] Kurdjumov V G, Khandros L G. SSR, 1949:66~211
    [3] 杨大智.智能材料与智能系统.天津:天津大学出版社,2000:1~37,104~141.
    [4] 朱敏.功能材料.北京:机械工业出版社,2002:100~118.
    [5] 姜德生.智能材料器件结构与应用.武汉:武汉工业大学出版社,2000:1~14,22~43.
    [6] 郭卫红,汪济奎.现代功能材料及其应用.北京:化学工业出版社,2002:1~4,301~321.
    [7] 张联盟,程晓敏,陈文.材料学.北京:高等教育出版社,2005:45~65.
    [8] 徐祖耀.马氏体相变与马氏体.北京:科学出版社,1999:1~70,83~138,556~623,630~672.690~790.
    [9] Ellis, D. E, Benescb, G. A., Byrom, E., Self-consistent embedded-cluster model for magnetic impurities: Fe, Co and Ni in β'—NiAl, Phys. Rev. B, 1979, 20: 1198~1207.
    [10] 徐祖耀.相变原理.北京:科学出版社,1988
    [11] 周达飞.材料慨论.北京:化学工业出版社,2001
    [12] 马如璋,蒋民华,徐祖雄.功能材料概论.北京:冶金工业出版社,1999
    [13] 姚康德,许美萱.智能材料.天津:天津大学出版社,1996
    [14] QI X, JIANG B and Hsu T Y(XU Zu yao). The effect of martensite ordering on shape memory effect in a copperzinCaluminium alloy[J].mater Sci Eng, 1987, 93:205.
    [15] 陆震,黄维刚.Fe-Mn-Si形状记忆合金的记忆性能分析.重庆工业高等专科学校学报,2003,18(4):47-49
    [16] 王丽凤,王永生,姜华等.Fe-Mn-Si-Ni合金的形状记忆效应.机械工程师,1996:18
    [17] 刘庆锁,林成新,谷南驹.应力应变状态对FeMnSi系形状记忆合金形状记忆效应的影响.兵器材料科学与工程,2001,(6):9-12
    [18] 林成新,葛艳玲,谷南驹等.FeMnSi形状记忆合金成形加工性分析.功能材料,2000,31(5):503-504
    [19] 刘晓山,崔田华,贾国光等.Fe16Mn5Si形状记忆合金力学及耐腐蚀性能研究.建筑材料学报,2004,9(3):342~345
    [20] 焦正音.铁基形状记忆合金.山西机械,1994,(4):27~30
    [21] 孙广平,贾树盛.不同变形方式对铁锰硅合金形状记忆效应的影响.功能材料,2000,31(4):377~379
    [22] 李建忱,蒋青,沈平.合金元素对铁锰硅系形状记忆合金层错能的影响.功能材料,1999,30(2):164~165
    [23] 夏瑞东,刘冠威.Fe-Mn-Si合金热马氏体和应力诱发马氏体相变与形状记忆效应的关系.金属热处理,1997,6:12~15
    [24] 陶振兴.Fe-30Mn-6Si形状记忆合金马氏体转变的研究.上海刚研,1996,4:56~57
    [25] 徐祖耀.金属学原理.上海:上海科技出版社,1964
    [26] 李建忱,蒋青,沈平.铁锰硅系形状记忆合金的成分设计,功能材料,1999,30(2):162~163.
    [27] 何开元.功能材料导论.北京:冶金工业出版社,2000.
    [28] 金学军,张玉龙,徐祖耀,S.M.Allen,R.C.O’Handley.形状记忆材料的热力学设计,上海交通大学学报,2003,37(12):1817~1820.
    [29] 贡长生,张克立.新型功能材料.北京:化学工业出版社,材料科学与工程出版中心,2001.
    [30] 郭正洪,戎咏华,陈世朴等.Fe-Mn-Si系形状记忆合金中热诱发ε马氏体的形成机制,上海交通大学学报,1998,32(2):41~44.
    [31] 李建萍.Fe-Mn-Si合金的形状记忆效应及工程运用,江西冶金,1997,12(6):18.
    [32] 张春才,苏佳灿.形状记忆材料.上海:第二军医大学出版社,2003.
    [33] 李建萍,高俊.新型Fe基形状记忆合金的研究与进展,南昌航空工业学学报,1997(18):90~91.
    [34] N.C. Si, Z.H. Jia and L.B. Qi. Influence of processing on shape memory effect of Fe-Mn-Si-Ni-C-Re shape memory alloy, Acta metallurgica sinica(English letters),2003,16(5):385~394.
    [35] Hsu T. Y. (Xu Zuyao) Martensitic Transformation and Martensite (in Chinese), Beijing: Science Press, 1999: 690~700.
    [36] 戴品强,刘声恒,戚怡群.Fe-Mn-Si基形状记忆合金的记忆性能,福州大学学报,1997,25(6):56~59.
    [37] 谷铁军.ZGLJ0.1-160-2.5真空感应熔炼炉液压系统,工业加热,1995,2:30.
    [38] 高上品.电火花加工过程的物理本质,机电一体化,1996,
    [39] 孙国光,刘文西.Fe-Mn-Si基形状记忆合金及其应用,天津城市建设学院学报,2001,259~261.
    [40] WAN Jianfeng, CHEN Shipu and XU Zuyao. Electronic structure of FCC phase in Fe-Mn-Si based shape memory alloys and its stability, Science in China(Series E),2001,44(5):486~492.
    [41] 戴品强,刘声橡.含碳Fe-Mn-Si记忆合金的记忆性能研究,功能材料,1998,29(5):499~501.
    [42] 陶宝祺.智能材料结构.北京:国防工业出版社,1997
    [43] 王四根,王绪,花礼先,张建福,杨永泉.热处理工艺对Fe-Mn-Si合金形状记忆效应的影响,北京科技大学学报,1997,19(1):101~108.
    [44] 文玉华,李宁,席华萍,涂铭旌,李平全,刘迎来,马颖丽.时效时间对Fe-Mn-Si-Cr-Ni-C合金形状记忆效应的影响,金属热处理,2000(6):7~9.
    [45] 李丹,程晓农.形状记忆合金的功能动力学特性,江苏大学学报(自然科学版),2002,23(4):4~7.
    [46] 雷竹芳,刘志超.铁基形状记忆合金相变规律的研究,舰船科学技术,2002,24(增刊):42~44.
    [47] JIN Xuejun, XU Zuyao. Critical driving force for martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si shape memory alloys, Science in China(Series E),1999,42(3):266~274.
    [48] Hsu, T. Y. (Xu Zuyao), Fcc (γ)-hcp (ε) martensitic transformation, Science in China (in Chinese) Ser. E, 1997, 27:289~293.
    [49] Li, J., Wayman, C. M., On the mechanism of the shape memory effect As sociated with y (fcc)-e(hcp) martensitic transformation in Fe-Mn-Si alloys, Scr. Metall. Mater., 1992, 27:279~294.
    [50] Shabalovskaya, S., Lotkov, h. l., Nermoney, A. G. et al., Valence band evolution and structure in stability nature of intermetallic compounds of Ti-Ni-TiPd system, Solid State Commun., 1987, 62: 93~95.
    [51] Zbao, G. L., Harmon, B. N., Electron-phonon interactions and the phonon anomaly in β'-phase NiTi, Phys. Rev. B, 1993, 49: 2031~2036.
    [52] Lapin, V. B., Egorushkin, V. E., Electronic structure of Ni-Ti, TiPd and Ti alloys, Soild State Commun. 1990, 73(?): 471~475.
    [53] Watson, R. E., Bennett, L. H., Model predications of valume contractions in transition-metal a11oys and implications for Laves phase formation (Ⅱ). Acta metall 1984. 32: 491~502.
    [54] Deiley, B. , Ellis, D. E. , Freeman, A. J. et al. , Binding energy and electronic structure of small copper particles, Phys. Rev. B, 1983, 27: 2132~2144
    [55] Feng, D. , Physical of Metal, Vol. 1 Structure and Defects (in Chinese) , Beijing: Science Press, 1998:128—133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700