Cu基超弹性合金的冷变形能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu基形状记忆合金的冷加工能力较差,目前多数的研究工作都集中在细化晶粒,使应力集中分散,以改善Cu基合金的延性和疲劳性能。同时也有众多的研究者正试图找到冷变形能力较好的新型Cu基合金以推动其实用化进程。本课题对新型Cu-Al-Mn和Cu-Al-Be合金的冷变形能力进行了研究,并使用热型连铸法定向凝固以得到粗大的柱状晶组织,通过强化织构来提高Cu基合金的力学性能和疲劳性能。同时尝试了增加Ni元素的方法以提高Cu-Al-Mn合金的冷变形能力。
     采用水平式热型连铸装置在拉铸速度为200mm/min时制得Cu-Al-Mn以及Cu-Al-Be超弹性合金丝。在室温下作拉伸试验,以测定Cu-Al-Mn和Cu-Al-Be合金丝的抗拉强度和延伸率;用自制的弯曲疲劳试验机,测定了Cu-Al-Be合金的弯曲疲劳寿命;用DSC法测试了Cu-Al-Be合金的相变温度;用X-射线衍射仪分析了Cu-Al-Mn以及Cu-Al-Be合金;并用金相显微镜观察合金在铸态、热处理后的组织形态。
     研究结果表明:用热型连铸法拉铸的Cu-Al-Mn和Cu-Al-Be合金都能获得柱状晶粒。铸态Cu-Al-Mn合金在800℃固溶15min后再在550℃下保温60min,淬水,这时合金组织发生了有序→无序转变,并由β相基体析出较大的α相颗粒,合金的最大冷轧变形量由铸态的4.2%升高到8%,同时合金的最大拉伸应变量升高为6.3%。变形后合金在250℃、350℃、450℃温度下进行热处理实验,并不能完全消除马氏体,550℃时则出现等轴晶。Ni元素的添加也不能有效提高Cu-Al-Mn合金的冷加工性能。
     Cu-Al-Be合金具有极好的冷变形能力,铸态时最大冷轧变形量可达40%,最大拉伸应变量为47%,并且最大弹性应变量不低于10%;700℃保温5min,空冷后合金的最大拉伸应变量更是超过50%;而750℃保温15min,淬水,200℃保温15h热处理后的合金因为γ_2相的析出,使得最大拉伸应变量下降到19%,并且在约6%的应变量时就已经出现2.5%的残余应变。
     变形量为0.2mm的Cu-Al-Be合金在650℃、700℃保温30s后可以完全消除应力诱发马氏体,并可进行二次变形。
     铸态Cu-Al-Be合金具有良好的疲劳性能,在应变量为6%时的弯曲疲劳寿命可达45283次,经700℃保温5min热处理后合金的弯曲疲劳次数可进一步提高。
The cold-workability ability of Cu based SMA was very low. At present, mostresearches focus on grain refinement, which can disperse the stress concentration, inorder to improve the ductile and fatigue properties. Lots of researcher were trying tolook for alloy that with excellent cold-deformation ability at the same time. Thepurpose of this experiment was to study the new Cu-Al-Mn and Cu-Al-Be alloy'sability of cold-deformation, and improve mechanical properties and super elasticity ofthis two alloy by strengthening texture, obtaining a longitudinal columnar structure byheated mold continuous casting process. The accretion of Ni was tried to improve thecold-deformation ability of Cu-Al-Mn alloys at the same time.
     Cu-Al-Mn and Cu-Al-Be SE alloy wires are cast by heated mold continuouscasting process at 200mm/min casting speeds. The tensile strength, elongation rate oftwo alloy are measured with tensile experiment equipment at room temperature; Therepeat bending fatigue life of Cu-Al-Be alloy wires is determined by a self-designedequipment; The character phase transformation temperatures of Cu-Al-Be alloy weremeasured by Digital Scan Calorimeter (DSC); Cu-Al-Mn and Cu-Al-Be alloy wireswere analyzed with X-ray Diffraction (XRD); The structure of alloy as-cast and afterheat-treated were observed by metallography microscope.
     The result shows that: the Cu-Al-Mn and Cu-Al-Be alloy wires cast by heatedmold continuous casting process can get columnar grain structure. The order-disordertransition was happened, and the massiveαphases precipitated in theβphases, thedeformation rate of alloy increase from 4.2% just at as-cast up to 8%; and theelongation rate up to 6.3% after solution treatment at 800℃for 15min, followed byholding at 550℃for 60min, quenching. The martensite of alloy after deformed can't beremoved fully when being heat-treated at 250℃、350℃、450℃, the alloy appearequl-axle grain at 550℃. The accretion of Ni can't improve alloys' cold-deformationabilities effective yet.
     Cu-Al-Be alloy have excellent cold-deformation ability just at as-cast. It'smaximum deformation rate was up to 40%, and the elongation rate up to 47%, the elastic strain exceeds 10% also; It's maximum elongation rate exceed 50% after heat-treatment at 700℃for 5min; the elongation rate of alloy was only 19%, and 2.5% ofthem was remained after unloaded in 6% elongation rate, because of the precipitationofγ_2 after heat-treated at 750℃holding for 15min, quenching, aging for 15h at 200℃.
     Cu-Al-Be alloy under 0.2mm deformation rate can remove martensite entirely,and can fulfill secondary deformation.
     Cu-Al-Be alloy have excellent bending fatigue property just at as-cast, thebending fatigue lifetime reaches 45283 cycles in 6% bending stain, and the bendingfatigue lifetime are improve further after heat-treated at 700℃for 5min.
引文
[1] E. Hornbogen, V. Mertinger, 7. Spielfeld. Two types of the first cycle effects on copper based shade memory alloys. Scripta materialia, 1999, 40(12): 1371~1375
    [2] M. Ahlers. Martensite and equilibrium phases in Cu-Zn and Cu-Zn-Al alloys Prog Mater Sci, 1986, 30: 135
    [3] Gui Jianian. The effect of thermal treatment on the structure and fine structure of Cu-Zn-Al martensite. J of Mat Sci, 1990, 25: 1675~1680
    [4] J.V. Hubeeck. The stabilization of step-quenched copper-zinc-alluminium martensitic Metall, 1984, 18(9): 893~898
    [5] 赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002.28~30
    [6] 徐祖耀.形状记忆材料.上海:上海交通大学出版社,2000.177~183
    [7] Lluis Manoso, Zarestky J, Bullock M, Stassis C. Low-lying phonon dispersion curves of DO_3Cu_3Al(+Be). Physical review B, 1999, 59(14): 9239~9242
    [8] 黎沃光,陈先朝,余业球等.热型连铸法制取Cu-Al-Ni形状记忆合金丝[J].功能材料.2000,31(6):605~607
    [9] L.C. Chang, T.A. Read, Trans. AIME, 1951, 191, 47
    [10] 徐祖耀.马氏体相变的分类.金属学报,1997,33(1):47~48
    [11] L. Delay, Humbeeck J Van, M. Chandrasekaran, et al. The Cu-Zn-Al shade memory alloys. Metals Forum, 1981, 4: 163~165
    [12] 王正品,张路,要玉宏.金属功能材料[M].北京:化学工业出版社,2004
    [13] 赵连城,郑玉峰.形状记忆和超弹性镍钛合金的发展和应用[J].中国有色金属学报,2004,14:323~326
    [14] 曹运红,形状记忆合金的发展及其在导弹与航天方面的应用[J],宇航材料工艺,1991,4:62~64
    [15] 刘江,新型形状记忆合金及其应用[J].金属功能材料,1994,4:5~9
    [16] 宫崎修一,Ni-Ti系形状記憶合金研究经过发展.Materia Japan,1996,35(2): 179~184
    [17] 大蒙和弘,Ti-Pd-Ni合金高温形状記憶特性回复.再结晶举動.Materia Japan,1998,37(2):125~132
    [18] 鈴木雄一,Ni-Ti基形状記憶合金超弹性合金实用化状况.Materia Japan,1997,36(12):1132~1138
    [19] 舟久保,熙康.形状記憶合金.東京:產業圖書,1984.94~95
    [20] K. Otsuka, Wayman C M, K. Nkkai, et al. Superelastic effects and stress-induced martensitic transformations in Cu-Al-Ni alloys. Acta metal, 1976, 24: 207
    [21] 杉本孝一,Cu基形状記憶合金裂造应用.日本金属学会会報,1985,24(1):45~50
    [22] J. Pons, M. Masse, R. Portier. Thermomechanical cycling and two-way memory effect induced in Cu-Zn-Al. Materials science & engineering A, 1999, 273-275: 610~615
    [23] Zhang J X, Liu Y X, Cai W, Zhao L C. The mechanisms of two way-shape memory effect in a Cu-Zn-Al alloys. Materials Letters, 1997, 33: 211~214
    [24] Zhang X M, Guilemany J M, Fernandez J, Liu M, Liu L. Study of γ precipitates induced by the stabilized stress-induced martensite (SSIM) training method in Cu-Zn-Al alloys. Intermetallics, 2000, 8: 703~707
    [25] L. Delaey, A. Deruyttere, E. Aernoudt, et al. Shape memory effect, superelasticity and damping in Copper-Zinc-Aluminium alloys, INCRA Research Report, PRJ 238, Report78R1, 1978
    [26] M. Franz, E. Hornbogen. Martensitic transformation of a Cu-Zn-Al-shape memory alloy strengthened by hot-rolling. Materials science & engineering A, 1998, 252: 157~165
    [27] Ruan Feng, Zeng Rong, Lin Fayu. Influence of superplasticity of Cu-based shape memory alloy on its memory effect. Chinese Journal of Mechanical Engineering, 1994, 7(4): 251~256
    [28] Bai Yu-Jun, Geng Gui-li, Bian Xiu-Fang, Sun Dong-Sheng, et al. Influence of initial heating temperature on the reverse martensite transformation of the Cu-Zn-Al-Mn-Ni alloy. Materials science & engineering A, 2000, 281: 25~28
    [29] Cederstrom Jan,Kolomytsev Victor,Kozlov Alexandr,Pavel Titov,et al.Evalution of the shape memory parameters during multiple transformation cycles under load in Cu-Zn-Al alloys.Materials science & engineering A,1999,273-275:804~808
    [30] Longauer S,Makroczy P,Janak G,Longauerova M.Shape memory effect in a Cu-Zn-Al alloy with dual α/β phase microstructure.Materials science & engineering A,1999,273-275:415~419
    [31] Larochette P Arneodo,E.Cingolani,M.Ahlers.Stabilization and the two way shape memory effect(TWME)in Cu-Zn-Al polycrystals.Materials science & engineering A,1999,273-275:600~604
    [32] Garcia J R.Stabilization of martensite in Cu-Zn-Al shape memory alloys:effects of γ precipitates and thermal cycling.Scripta materialia,2000,42:531~536
    [33] Wei Z G,Sandstrom R.Characterzation of the phase transformations in shape memory alloys by modulated differential scanning calorimetry.Materials science & engineering A,1999,273-275:352~356
    [34] V.Nova,P.Sittner,N.Zarubova.Anisotropy of transformation characteristics of Cu-based shape memory alloys.Materials science & engineering A,1997,234-236:414 plied fracture mechanics,2000,33:49~55
    [35] Fang D N,Liu J,Xu G,Dai F L.Micromechanical study of formation and evolution of martensite for Cu-Al-Ni single crystal by moire interferometry.Theoretical and applied fracture mechanics,2000,33:49~55
    [36] Recarte V,Perez-Saez R B,Bocanegra E H,et al.Dependence of the martensitic transformation characteristics on concentration in Cu-Al-Ni shape memory alloys.Materials science & engineering A,1999,273-275:380~384
    [37] 徐祖耀.形状记忆材料.上海:上海交通大学出版社,2000. 177~183
    [38] Lluis Manoso,Zarestky J,Bullock M,Stassis C.Low-lying phonon dispersion curves of DO_3Cu_3Al(+Be).Physical review B,1999,59(14) :9239~9242
    [39] T.Tadaki.Shape memory materials.ed.K Otsuka,C M Wayman,Cambridge University Press, 1998: 106
    [40] 祝向运,唐远明,曹明盛,Cu-Zn-Al合金热弹性马氏体稳定化.中南矿冶学院学报,1981,12(3):1~5
    [41] T. Tadaki. Aging behavior of some shape memory alloys and its origin, in Chu Y Y ed. SMM'94, Proof the Iut. Sym. On SMM. Beijing: Int. Acad. Publ. 1994: 31~38
    [42] Hsu T Y. The shape memory effect of Cu-Zn-Al alloys, in Chu Y Y ed. SMA'86, Proof the Iut. Sym. On SMA. Beijing: China Acad. Publ. 1986: 207~214
    [43] Hubeeck J Van. The stabilization of step-quenched copper-zinc-aluminium martensite. Scr Metall, 1984, 18(9): 893~898
    [44] Yang D Z, Wei Z G. Aging effects of Cu-base shape memory alloys, in Chu Y Y ed. SMM'94, Proof the Iut. Sym. On SMM. Belling: Int. Acad. Publ. 1994: 319~323
    [45] 汪明朴,刘锦文.Cu-Zn-Al合金热弹性马氏体稳定化及其单向记忆寿命估计.中南矿冶学院学报,1988,19(2):179~184
    [46] L. Delaey. The stabilization of step-quenched-copper-zinc-aluminium martensite. Scr Metall, 1984, 18(9): 899~903
    [47] Graef M D. The stabilization of step-quenched-copper-zinc-aluminium martensite. Scr Metall, 1985, 19(5): 643~646
    [48] Scrasbrook G. The stabilization of martensite in Cu-Zn-Al shape memory alloys. Metall Trans, 1984, 15A: 1977~1984
    [49] Humbeeck J V,韩明.铜基形状合金的研究现状与存在问题.材料科学与工程,1992,3:2~6
    [50] T. Tadaki. Shape memory materials, ed. K Otsuka, C M Wayman, Cambridge University Press, 1998: 108
    [51] 郭海英,司乃潮.铜基形状记忆合金的品粒细化方法及机理探讨.兵器材料科学与工程,1997,20(6):58~63
    [52] 宫崎修一,形状記憶合金粒界破壤.日本金属学会会报,1983,22(1):140-141
    [53] 施文英。添加元素对Cu-Al-Ni形状记忆合金性能的影响[J].宁夏工学院学报,1998, 10(1):82~85
    [54] 胡飞,朱胜利,杨贤金.用粉末冶金法制备医用多孔Ti-Ni合金的研究[J].金属热处理,2002,27(7):6~9
    [55] 李在先,郭士文,段发来.快速凝固Cu-Al-Ni合金的记忆性能及时效稳定性[J].1993,14(3):261~264
    [56] AOhno.Casting of Near Net Shape Products. The Metallurgical Society, 1988, 177~184
    [57] 黎沃光.热型连铸造法的原理及应用[J].铸造,1996(12):39~44
    [58] H. Soda, G. Motoyasu, A. Mclean. Continuous casting of unidirectionally solidified copper rod[J]. Cast Metals Res., 1996, 9: 37~44
    [59] H Soda, F Chabchoub, S A Argyropoulos. Experiment Study of the Horizontal Ohno Continuous Casting System[J]. Canadian Metallurgical Quarterly, 1992, 31(3): 231~239
    [60] 黎沃光,余业球,王德芳.铅锡合金的热型连铸[J].铸造技术,1997,5:42~44.
    [61] 岳留振,倪锋,张永振,龙锐.热型连铸的技术的发展与应用.铸造设备研究,2004,1:16
    [62] 黎沃光,陈先朝,余业球,王德芳.热型连铸法制取Cu-Al-Ni形状记忆合金丝.功能材料,2000,31(6):605~607
    [63] H. Soda, G. Motoyasu, A Ohno, et al. Alloy Casting by the Horizontal Ohno Continuous Casting System[J]. Cast Metals, 1993, 6 (2): 76~86
    [64] Y.Sutou, T. Omori, K. Yamauchi, et al. Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire[J]. Acta Materialia, 2005, 53: 4121~4133
    [65] Y. Sutou, R. Kainuma, K. Ishida. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys. Materials science & engineering A, 1999, 273-275: 375~379
    [66] Hiroyuki Kato, Toshihisa Ozu, Satoshi Hashimoto, et al. Cyclic stress-strain response of superelastic Cu-Al-Mn alloy single crystals. Material Science and Engineering A, 1999, 264: 245~253
    [67] 李周,汪明朴,徐根应,陈九磅,周汉义,束德林.Cu-18.4Al-8.7Mn-3.4Zn-0.1Zr 记忆合金冷加工性能.矿冶工程,2002,22(1):90~95
    [68] 王永跃.铍在高科技中的应用和发展.稀有金属材料与工程,1995,24(6):29-30
    [69] 铃木喜久男.机械性能优良形状记憶合金.日本,公开特許公报(A),昭60-75542,1985,4.27
    [70] 芦笙.Cu-Al-Be形状记忆合金的的性能及组织研究.东南大学博士论文
    [71] Antoni Planes, Lluis Manosa, david Rios-Jara, Jordi Ortin. Martensitic transformation of Cu-based shape memory alloys: Elastic anisotropy and entropy change. Physical review B, 1992, 45(14): 7633~7639
    [72] S.N. Balo, M. Ceylan, M. Aksoy. Effects of deformation on the microstructure of a Cu-Al-Be shape memory alloy. Materials science and engineering A, 2001, A311: 151~156
    [73] N. Siredey, A. Hautcoeur, A. Eberhardt. Lifetime of superelastie Cu-Al-Be single crystal wires under bending fatigue. Materials Science and Engineering A 396 (2005) 296~301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700