氧化铈/金属倒载模型催化剂的制备和表面吸附反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铈作为金属催化剂载体和助剂在水煤气变换、CO氧化、汽车尾气净化等催化反应过程中有着广泛地应用。其中,金属/氧化铈催化剂的催化活性与氧化铈表面结构(尤其是表面上氧缺陷的浓度和分布)、金属-氧化物相互作用以及金属-氧化铈界面结构等因素密切相关。在超高真空体系中的可控条件下制备的表面结构规整的模型催化剂为微观角度上了解实际多相催化体系提供了较为重要的研究手段。在本论文中,我们通过制备具有不同结构和组成的氧化铈/金属单晶倒载型模型催化剂,在表征其表面结构和电子结构的基础上,考察该模型催化剂上无机探针分子(D2O, CO等)的化学吸附和反应性能,取得了如下主要研究成果:
     (1)Cu(111)表面及CuOx/Cu(111)表面的吸附反应性质
     考察了Cu(111)上NO低温下在Cu(111)表面的解离过程以及表面氧在此过程中的影响,通过调节NO的暴露量和衬底温度,可以在Cu(111)表面获得不同类型的氧物种:亚稳态的吸附氧物种O528(Ols结合能为528.7eV)、表面吸附氧0529(Ols结合能为529.5eV)和化学吸附氧O531(Ols结合能为531.0eV)。实验发现,这些不同的氧物种对NO的吸附和解离行为有着显著的影响。低温下,表面吸附氧O531的存在主要影响NO不同吸附状态的相对分布,同时改变了NO的解离脱附的选择性;而同样条件下,化学吸附氧O529对于表面NO的吸附有着更为显著的抑制作用,同时该吸附氧的存在明显抑制了NO的解离脱附。
     在超高真空中原位制备了CuOx/Cu(111)模型体系,同时考察了原子氘与该模型体系的相互作用及其形成的表面物种的反应行为。研究结果表明,在低温下(115K),原子氘可以与CuOx薄膜中的氧物种发生还原反应,生成表面羟基(D(g)+OL→OD(a))和表面吸附水(OD(a)+D(g)→D2O(a))。同时,实验中观察到与Cu+离子相关的表面吸附氢物种。与Cu(111)相比,氧化后形成的CuOx薄膜对原子氘在体相的吸附有显著的抑制作用。同时,CuOx表面羟基的稳定性与表面的组成和氧化还原状态密切相关。
     (2)CeO2(111)模型表面的制备和表面化学性质:
     以原位制备的CeO2(111)有序薄膜为基础,系统地研究了该模型表面与原子D(g)和D2O的相互作用,D(g)在CeO2表面吸附生成表面羟基(OD(a))和吸附水(D2O(a)),同时将表面Ce4+离子还原成Ce3+离子,而在还原CeO2-x表面上,原子氢在表面的吸附主要生成表面羟基,生成水的反应通道被明显抑制。在化学计量比CeO2(111)表面上,D2O以解离吸附和分子吸附形式存在;而在还原CeO2-x(111)表面上,D2O主要为不可逆解离吸附。在加热过程中,表面羟基经历两个反应途径:(1)羟基饼合生成水,同时生成表面氧缺陷,对应于表面的还原(OD(a)+OD(a)→D2O(g)+Olattice+Ovacancy);(2)羟基发生脱氢反应,对应于表面恢复原状(OD(a)+OD(a)→D2(g)+2Olattice)。在氧化表面上,脱水反应为主要反应通道,而在还原表面上,羟基倾向于发生脱氢反应。表面氧缺陷的存在有利于增加表面羟基的稳定性。
     采用X-射线光电子能谱(XPS)考察了CeO2模型表面与O2的相互作用。结果表明,O2在氧化CeO2(111)表面粘附几率很低,基本观察不到表面吸附。在还原CeO2-x表面上,O2在低温下吸附生成表面超氧物种(O2-)和过氧物种(O22-),其O1s结合能分别位于533.6-534eV和531.7~532eV。进一步地,我们利用原子氢还原和低温氩刻两种不同方法分别得到具有相同还原程度但具有不同氧缺陷结构的CeO2-x薄膜,结果表明吸附氧物种与CeO2-x表面氧缺陷的结构紧密相关,低温氩刻表面上更有利于过氧物种的形成。我们同样利用Au(110)表面蒸镀得到不规整的CeO2多晶薄膜,并对O2的吸附行为做了初步研究。TPD结果表明,在该完全氧化的多晶薄膜表面低温下吸附O2,可观察到位于230K O2的脱附峰。对于原子氘高温还原后的表面,进一步观察到了脱附温度位于250-400K的O2脱附峰。虽然目前还无法对上述O2的脱附峰进行归属,但与CeO2-x(111)表面的结果进行比较,也充分表明了O2的吸附性能与CeO2表面结构之间的密切关系。
     (3)倒载型CeO2/Cu(111)表面的结构和吸附反应性能。
     原位制备了覆盖度为0.5ML的Ce02(111)/CuOx/Cu(111)倒载型模型催化剂,通过控制原子氢的暴露量和衬底温度,可以对表面结构、组成和表面物种进行有效控制,进而考察了CO, D2O和原子氢等吸附分子与模型表面的相互作用。一方面,CeO2的存在对Cu表面的小分子吸附行为没有明显的影响,主要表现为位阻效应;另一方面,CeO2薄膜表面的吸附反应行为与薄膜厚度密切相关,相对于较厚CeO2(111)薄膜(10个单层),厚度为0.5ML的CeO2(111)薄膜的还原性能显著降低;进一步地,对于还原CeO2-x(111)表面,减少薄膜厚度明显抑制了H2O的解离吸附,上述性能的差异可能与Cu-CeO2界面结构以及衬底Cu的电子修饰作用相关。另外,通过制备条件的控制,我们成功制备出Cu上吸附CO,而CeO2表面吸附OD的结构,以考察CO+OD界面反应的可能性,但实验结果并没观察到明显的CO2生成,说明在超高真空实验条件下,该界面反应可能在Cu-CeO2催化体系催化水汽变换反应中不是主要的反应通道。
     上述研究系统考察了CeO2/Cu(111)倒载型模型催化剂的几何电子结构和吸附反应性能之间的相互关联,有利于在微观水平上进一步揭示实际金属/氧化铈催化体系中的结构一性能关系以及相应的微观作用机制。
Ceria-based materials has been widely applied as supporters/promoters in the field of catalysis such as water gas shift (WGS), CO oxidation and three-way catalysis. Generally, the excellent catalytic performances of ceria-based catalysts are closely related to the surface strcuture of ceria (especially the concentration and distribution of oxygen vacancy), the ceria/metal interaction and the composition and structure of ceria/metal interface etc. The well-defined model catalyst, which has been prepared in-situ under Ultra-high Vacuum (UHV) condition, can be used as a model system for a detailed understanding of the reaciton mechanism of heterogeneous catalysis. In this thesis, the inverse ceria/metal model surfaces with various surface composition and structure have been prepared and characterized. Furthermore, the adsorption and reaction behavior of small probe molecules (including D2O CO and atomic D) has been investigated on the above inverse model catalysts. The main results are summarized as follows:
     (1) Adsorption/reaction behavior on Cu(111) and CuOx/Cu(111)
     The adsorption behavior of NO on clean Cu(111) and the effect of pre-covered oxygen species have been investigated. NO adsorbs dissociatively on Cu(111) surface even at low temperature and left NO(a) and O(a) on the surface. By controlling NO exposure and the substrate temperature, several different types of O(a) can be produced: the metastable species O528(O1s BE-528.9eV), chemisorbed species0529(O1s BE-529.5eV), chemisorbed species O531(O1s BE~531.0eV). In the presence of O531species, the relative occupation of different NO adsorption states was largely affected and most of the adsorbed NO(a) underwent dissociative desorption, releasing N2O and N2upon heating. In contrast, in the presence of O529species, the dissociative desorption of NO(a) was largely suppressed. Furthermore, the O529species show a more significant blocking effect on NO adsorption than the chemisorbed O531species.
     The CuOx/Cu(111) surface was prepared by the oxidation of Cu(111) under UHV condition and the adsorption behavior of atomic deuterium (D(g)) on the CuOx/Cu(111) was studied. Exposure of CuOx/Cu(111) to atomic D(g) even at low temperature (115K) can produce surface hydroxyl groups (D(g)+OL→OD(a))and leads to the formation of the adsorbed water(OD(a)+D(g)→D2O(a))at higher D(g) exposure. The adsorption of D(a) on the Cu+sites of CuOx was also observed. Compared to Cu(111), the diffusion of D(a) into the bulk phase was significantly suppressed for D(a) adsorption on CuOx/Cu(111). The stability of surface hydroxyl species was found to depend largely on the surface composition and oxidation/reduction state of CuOx/Cu(111).
     (2) The preparation and chemical properties of CeO2(111) model surface
     The adsorption behavior of D2O and atomic D was investigated on the well-defined CeO2(111) thin film, which was prepared on Cu(111) substrate by physical vapor deposition. On the stoichiometric CeO2(111) surface, the adsorption of atomic D leads to the formation of surface hydroxyl and D2O as well as the reduction of Ce4+into Ce3+. For D(g) adsorption on the reduced CeO2-x(111), surface hydroxyls are the main adsorption products while the formation of D2O(a) is largely suppressed. Moreover, D2O adsorbs both molecularly and dissociatively on the stoichiometric CeO2(111) surface while dissociative adsorption is much preferred on the reduced CeO2-x(111). Furthermore, on reduced CeO2-x(111) surfaces, the stability of OD(a) was enhanced by the presence of oxygen vacancies. Upon heating, surface hydroxyls undergo two competing reaction pathways:one is the associative desorption of OD(a) releasing D2O and creating oxygen vacancies (OD(a)+OD(a)→D20(g)+Olattice+Ovacancy), and the other one is to produce D2via OD(a)+OD(a)→D2(g)+2Oiattice. The presence of oxygen vacancies in CeO2favors the reaction pathway of D2formation.
     The interaction between oxygen and CeO2(111) thin film was also investigated by X-ray Photoelectron Spectroscopy(XPS). O2hardly adsorbs on the stoichiometric CeO2(111) surface even at a low temperature of115K. In contrast, on reduced CeO2-x(111) film, two kinds of adsorbed oxygen species are formed:peroxide species(O22-) and superoxide species (O2-), which exhibit the O1s feature with the binding energy of531.7~532eV and533.6~534eV, respectively. By using atomic Dreduction and low-temperature Ar-sputtering, two types of reduced ceria films with different vacancies structure were prepared and the related oxygen adsorption behavior were compared. After O2adsorption on the D(g) reduced CeO2-x(111) film, the amount of superoxide(O2-) and peroxide(O22-) species are comparable while peroxide(O22-) species are predominant on the low-temperature Ar-sputtered ceria films. Furthermore, We also prepared a disorder polycrystalline CeO2thick layer(about28ML) on Au(110)-(1×2) substrate and some preliminary results of O2 adsorption behavior were obtained. Surprisingly, O2desorption was observed in TPD results with the desorption temperature of~230K upon O2exposure on CeO2/Au(110) at100K. In the case of D(g)-reduced CeO2-x film, additional O2desorption peaks were detected in the temperature range of250-400K. Although a clear assignment of these O2desorption peaks are not possible at moment, the TPD results may provide some evidences for the structure-dependent O2adsorption behavior on ceria film.
     (3)The preparation and surface chemistry of inverse CeO2/Cu(111) model surface
     The inverse CeO2/Cu(111) model surface was firstly prepared with the ceria coverage of0.5ML. It was found that, by choosing the D(g) exposure and substrate temperature, the surface structure, composition and surface species of the inverse model surface can be controlled to some extent, on which the adsorption and reaction of CO, D2O and atomic D was studied. The partly-covered ceria layer mostly shows a "site-blocking" effect on the adsorption properties of Cu substrate. The adsorption behavior on the ceria layer is largely dependent on the thickness. Compared to the thick CeO2(111) film(10ML), the removal of the lattice oxygen (the reduction ability) is much more difficult on the thin CeO2(111) layer (0.5ML) upon D(g) exposure at higher temperature. Furthermore, the dissociative adsorption of D2O was largely suppressed on the reduced thin CeO2-x(111) layer(θ=0.5ML). The above thickness-dependent properties of ceria layer was ascribed to the structure of Cu-CeO2interface and the electronic modification of Cu substrate. In addition, by tuning the D(g) exposure and substrate temperature, a model system was successfully prepared, in which CO adsorbs on Cu substrate and OD on ceria layer, and the possibility of the interfacial CO+OD reaction was further examined. No CO2formation was found via the interfacial CO+OD reaction, which suggests that such reaction mechanism is not likely on the inverse CeO2/Cu(111) model catalyst under the studied experimental condition.
     In summary, the geometric/electronic structure and the adsorption/reaction properties of various CeO2/Cu(111) model surface were investigated in the thesis. The obtained results will deepen our understanding on the structure-activity relationship as well as the related reaction mechanism in the ceria-based catalytic systems.
引文
1. Goodman, D.W., Model catalysts:from imagining to imaging a working surface. Journal of Catalysis,2003.216(1-2):p.213-222.
    2. Sinfelt, J.H., Role of surface science in catalysis. Surface Science,2002.500(1-3):p.923-946.
    3. Collins, D.M. and W.E. Spicer, The adsorption of CO,O2, and H2 on Pt:Ⅱ. Thermal desorption spectroscopy studies. Surface Science,1977.69(1):p.85-113.
    4. Askgaard, T.S., J.K. Norskov, C.V. Ovesen, et al., A Kinetic Model of Methanol Synthesis. Journal of Catalysis,1995.156(2):p.229-242.
    5. King, D.A., Thermal desorption from metal surfaces:A review. Surface Science,1975.47(1):p. 384-402.
    6. Jiang, Z., W. Zhang, L. Jin, et al., Direct XPS Evidence for Charge Transfer from a Reduced Rutile TiO2(110) Surface to Au Clusters. The Journal of Physical Chemistry C,2007.111(33):p. 12434-12439.
    7. Wang, Y.-G., Y. Yoon, V.-A. Glezakou, et al., The Role of Reducible Oxide-Metal Cluster Charge Transfer in Catalytic Processes:New Insights on the Catalytic Mechanism of CO Oxidation on Au/TiO2 from ab Initio Molecular Dynamics. Journal of the American Chemical Society,2013. 135(29):p.10673-10683.
    8. Liu, X., K. Zhou, L. Wang, et al., Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods. Journal of the American Chemical Society,2009.131(9):p.3140-3141.
    9. Che, M. and C.O. Bennett, The Influence of Particle Size on the Catalytic Properties of Supported Metals, in Advances in Catalysis, H.P. D.D. Eley and B.W. Paul, Editors.1989, Academic Press. p. 55-172.
    10. Wilkinson, G., M. Rosenblum, M.C. Whiting, et al., THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL. Journal of the American Chemical Society,1952.74(8):p. 2125-2126.
    11. Rodriguez, J.A. and J. Hrbek, Inverse oxide/metal catalysts:A versatile approach for activity tests and mechanistic studies. Surface Science,2010.604(3-4):p.241-244.
    12. Rodriguez, J.A., S. Ma, P. Liu, et al., Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science,2007.318(5857):p.1757-1760.
    13. Haruta, M., T. Kobayashi, H. Sano, et al., NOVEL GOLD CATALYSTS FOR THE OXIDATION OF CARBON-MONOXIDE AT A TEMPERATURE FAR BELOW 0-DEGREES-C. Chemistry Letters,1987.16(2):p.405-408.
    14. Haruta, M., N. Yamada, T. Kobayashi, et al., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis,1989. 115(2):p.301-309.
    15. Sakurai, H. and M. Haruta, Carbon dioxide and carbon monoxide hydrogenation over gold supported on titanium, iron, and zinc oxides. Applied Catalysis A:General,1995.127(1-2):p. 93-105.
    16. Peters, K.F., P. Steadman, H. Isern, et al., Elevated-pressure chemical reactivity of carbon monoxide over Au(111). surface science,2000.467(1-3):p.10-22.
    17. Piccolo, L., D. Loffreda, F.J. Cadete Santos Aires, et al., The adsorption of CO on Au(111) at elevated pressures studied by STM, RAIRS and DFT calculations. surface science,2004. 566-568(Part 2):p.995-1000.
    18. Gottfried, J.M., K.J. Schmidt, S.L.M. Schroeder, et al., Adsorption of carbon monoxide on Au(110)-(1×2). surface science,2003.536(1-3):p.206-224.
    19. Meier, D.C., V. Bukhtiyarov, and D.W. Goodman, CO Adsorption on Au(110)-(1×2):An IRAS Investigation. The Journal of Physical Chemistry B,2003.107(46):p.12668-12671.
    20. Michael Gottfried, J. and K. Christmann, Oxidation of carbon monoxide over Au(110)-(1×2). surface science,2004.566-568(Part 2):p.1112-1117.
    21. McElhiney, G. and J. Pritchard, The adsorption of Xe and CO on Au(100). Surface Science,1976. 60(2):p.397-410.
    22. Liu, Z.-P., P. Hu, and A. Alavi, Catalytic Role of Gold in Gold-Based Catalysts:A Density Functional Theory Study on the CO Oxidation on Gold. Journal of the American Chemical Society,2002.124(49):p.14770-14779.
    23. Mavrikakis, M., P. Stoltze, and J.K. N(?)rskov, Making gold less noble. Catalysis Letters,2000. 64(2):p.101-106.
    24. Kim, J., E. Samano, and B.E. Koel, CO Adsorption and Reaction on Clean and Oxygen-Covered Au(211) Surfaces. The Journal of Physical Chemistry B,2006.110(35):p.17512-17517.
    25. Weststrate, C.J., E. Lundgren, J.N. Andersen, et al., CO adsorption on Au(310) and Au(321): 6-Fold coordinated gold atoms. Surface Science,2009.603(13):p.2152-2157.
    26. Ruggiero, C. and P. Hollins, Adsorption of carbon monoxide on the gold(332) surface. Journal of the Chemical Society, Faraday Transactions,1996.92(23):p.4829-4834.
    27. Ruggiero, C. and P. Hollins, Interaction of CO molecules with the Au(332) surface. Surface Science,1997.377-379:p.583-586.
    28. Norton, P.R., R.L. Tapping, and J.W. Goodale, High resolution photoemission study of the physisorption and chemisorption of CO on copper and gold. Surface Science,1978.72(1):p. 33-44.
    29. Bonicke, I., W. Kirstein, S. Spinzig, et al., CO adsorption studies on a stepped Cu(111) surface. Surface Science,1994.313(3):p.231-238.
    30. Bao, H., W. Zhang, D. Shang, et al., Shape-Dependent Reducibility of Cuprous Oxide Nanocrystals. The Journal of Physical Chemistry C,2010.114(14):p.6676-6680.
    31. Zhaksibaev, M., S. Malykhin, Y. Larichev, et al., Stereoselective hydrogenation of acetylene on copper catalysts:A quantum-chemical study. Kinetics and Catalysis,2008.49(4):p.527-530.
    32. Usov, O.M., Y. Sun, V.M. Grigoryants, et al., EPR-ENDOR of the Cu(I)NO Complex of Nitrite Reductase. Journal of the American Chemical Society,2006.128(40):p.13102-13111.
    33. Bridier, B. and J. Perez-Ramirez, Cooperative Effects in Ternary Cu-Ni-Fe Catalysts Lead to Enhanced Alkene Selectivity in Alkyne Hydrogenation. Journal of the American Chemical Society,2010.132(12):p.4321-4327.
    34. Kim, S.K., J.H. Lee, I.Y. Ahn, et al., Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. Applied Catalysis A: General,2011.401(1-2):p.12-19.
    35. Hua, Q., F. Shi, K. Chen, et al., Cu2O-Au nanocomposites with novel structures and remarkable chemisorption capacity and photocatalytic activity. Nano Research,2011.4(10):p.948-962.
    36. Zhang, R., B. Wang, L. Ling, et al., Adsorption and dissociation of H2 on the Cu2O(111) surface: A density functional theory study. Applied Surface Science,2010.257(4):p.1175-1180.
    37. Hollins, P. and J. Pritchard, Interactions of CO molecules adsorbed on Cu(111). Surface Science, 1979.89(1-3):p.486-495.
    38. Hollins, P. and J. Pritchard, Isotopic mixing for the determination of relative coverages in overlayer structures:CO on Cu(111). Surface Science,1980.99(2):p. L389-L394.
    39. Kirstein, W., B. Kruger, and F. Thieme, CO adsorption studies on pure and Ni-covered Cu(111) surfaces. Surface Science,1986.176(3):p.505-529.
    40. Hayden, B.E., K. Kretzschmar, and A.M. Bradshaw, An infrared spectroscopic study of CO on Cu(111):The linear, bridging and physisorbed species. Surface Science,1985.155(2-3):p. 553-566.
    41. Raval, R., S.F. Parker, M.E. Pemble, et al., FT-rairs, eels and leed studies of the adsorption of carbon monoxide on Cu(111). Surface Science,1988.203(3):p.353-377.
    42. Hadenfeldt, S. and C. Benndorf, Coadsorption of K and CO on Cu(111) surfaces. Surface Science, 1995.331-333(Part 1):p.110-115.
    43. Lahtinen, J., J. Vaari, and K. Kauraala, Adsorption and structure dependent desorption of CO on Co(0001). Surface Science,1998.418(3):p.502-510.
    44. Greuter, F., D. Heskett, E.W. Plummer, et al., Chemisorption of CO on Co(0001). Structure and electronic properties. Physical Review B,1983.27(12):p.7117.
    45. Cabeza, G.F., P. L间ar, and N.J. Castellani, Adsorption of CO on Co(0001) and Pt-Co(0001) surfaces:an experimental and theoretical study. Surface Science,2000.465(3):p.286-300.
    46. Toomes, R.L. and D.A. King, The adsorption of CO on Co{100}. Surface Science,1996.349(1): p.1-18.
    47. Campbell, C.T. and M.T. Paffett, The interactions of 02, CO and CO2 with Ag(110). surface science,1984.143(2-3):p.517-535.
    48. Hansen, W., M. Bertolo, and K. Jacobi, Physisorption of CO on Ag(111):investigation of the monolayer and the multilayer through HREELS, ARUPS, and TDS. Surface Science,1991. 253(1-3):p.1-12.
    49. Lee, J., J.-G. Lee, and J.J.T. Yates, CO adsorption on the stepped Ag(221) surface. Surface Science,2005.594(1-3):p.20-26.
    50. Steininger, H., S. Lehwald, and H. Ibach, On the adsorption of CO on Pt(111). Surface Science, 1982.123(2-3):p.264-282.
    51. Friedrich, K.A., K.P. Geyzers, U. Linke, et al., CO adsorption and oxidation on a Pt(111) electrode modified by ruthenium deposition:an IR spectroscopic study. Journal of Electroanalytical Chemistry,1996.402(1-2):p.123-128.
    52. Ertl, G., M. Neumann, and K.M. Streit, Chemisorption of CO on the Pt(111) surface. Surface Science,1977.64(2):p.393-410.
    53. Engel, T. and G. Ertl, A molecular beam investigation of the catalytic oxidation of CO on Pd (111). The Journal of Chemical Physics,1978.69(3):p.1267-1281.
    54. Ohtani, H., M.A.V. Hove, and GA. Somorjai, Leed intensity analysis of the surface structures of Pd(111) and of CO adsorbed on Pd(111) in a (3×3)R30° arrangement. Surface Science, 1987.187(2-3):p.372-386.
    55. Szanyi, J., W.K. Kuhn, and D.W. Goodman, CO adsorption on Pd(111) and Pd(100):Low and high pressure correlations. Journal of Vacuum Science & Technology A,1993.11(4):p. 1969-1974.
    56. Ma, Y., J. Bansmann, T. Diemant, et al., Formation, stability and CO adsorption properties of PdAg/Pd(111) surface alloys. Surface Science,2009.603(7):p.1046-1054.
    57. Jaatinen, S., P. Salo, M. Alatalo, et al., Effect of the electronic structure on CO oxidation on Pd doped Ag(111). Surface Science,2004.566-568(Part 2):p.1063-1066.
    58. Venezia, A.M., L.F. Liotta, G. Deganello, et al., Catalytic CO oxidation over pumice supported Pd-Ag catalysts. Applied Catalysis A:General,2001.211 (2):p.167-174.
    59. Abbott, H.L., A. Aumer, Y. Lei, et al., CO Adsorption on Monometallic and Bimetallic Au-Pd Nanoparticles Supported on Oxide Thin Films(?). The Journal of Physical Chemistry C,2010. 114(40):p.17099-17104.
    60. Ruff, M., S. Frey, B. Gleich, et al., Au-step atoms as active sites for CO adsorption on Au and bimetallic Au/Pd(111) surfaces. Applied Physics A,1998.66(1):p. S513-S517.
    61. Gleich, B., M. Ruff, and R.J. Behm, Correlation between local substrate structure and local chemical properties:CO adsorption on well-defined bimetallic AuPd(111) surfaces. Surface Science,1997.386(1-3):p.48-55.
    62. Lederman, D., Hydrogen Absorption in Pd-based Nanostructures-Final Report,2012. p. Medium: ED; Size:094432.
    63. Greuter, F. and E. Ward Plummer, Chemisorption of atomic hydrogen on Cu(111). Solid State Communications,1983.48(1):p.37-41.
    64. Iwai, H., K. Fukutani, and Y. Murata, Behavior of atomic hydrogen on Au(001). surface science, 1996.357-358(0):p.663-666.
    65. Zhou, X.L., J.M. White, and B.E. Koel, Chemisorption of atomic hydrogen on clean and Cl-covered Ag(111). Surface Science,1989.218(1):p.201-210.
    66. Eberhardt, W., F. Greuter, and E.W. Plummer, Bonding of H to Ni, Pd, and Pt Surfaces. Physical Review Letters,1981.46(16):p.1085-1088.
    67. Rye;, R.R., Flash desorption and equilibration of H2 and D2 on single crystal surfaces of platinum. Surf. Sci.,1974.45:p.19.
    68. Christmann;, K., Interaction of hydrogen with Pt(111):the role of atomic steps. Surf. Sci.,1976. 60:p.20.
    69. Baro, A.M., Vibrational modes of hydrogen adsorbed on Pt(111):adsorption site and excitation mechanism. Surf. Sci.,1979.88:p.15.
    70. Bernasek, S.L. and G.A. Somorjai, Molecular beam study of the mechanism of catalyzed hydrogen-deuterium exchange on platinum single crystal surfaces. The Journal of Chemical Physics,1975.62(8):p.3149-3161.
    71. Williams, M.D., Molecular beam studies of H2 and D2 dissociative chemisorption on Pt(111). J. Chem. Phys.,1990.93:p.7.
    72. He, H., Y. Okawa, and K.-i. Tanaka, Hydrogenation of carbidic carbon on the Ni(100) surface. Surface Science,1997.376(1-3):p.310-318.
    73. Finetti, P., R.G. Agostino, A. Derossi, et al., Hydrogenation of carbidic carbon on Ni(111). Surface Science,1992.262(1-2):p.1-7.
    74. Stacchiola, D., S. Azad, L. Burkholder, et al., An Investigation of the Reaction Pathway for Ethylene Hydrogenation on Pd(111). The Journal of Physical Chemistry B,2001.105(45):p. 11233-11239.
    75. Sault, A.G., R.J. Madix, and C.T. Campbell, Adsorption of oxygen and hydrogen on Au(110)-(1× 2). surface science,1986.169(2-3):p.347-356.
    76. Stobinski, L., Molecular and atomic deuterium chemisorption on thin gold films at 78 K:an isotope effect. Applied Surface Science,1996.103(4):p.503-508.
    77. Kammler, T. and J. Kuppers, Interaction of H atoms with Cu(111) surfaces:Adsorption, absorption, and abstraction. The Journal of Chemical Physics,1999.111(17):p.8115-8123.
    78. Pan, M., D.W. Flaherty, and C.B. Mullins, Low-Temperature Hydrogenation of Acetaldehyde to Ethanol on H-Precovered Au(111). The Journal of Physical Chemistry Letters,2011.2(12):p. 1363-1367.
    79. Luo, M.F., D.A. MacLaren, I.G. Shuttleworth, et al., Preferential sub-surface occupation of atomic hydrogen on Cu(111). Chemical Physics Letters,2003.381(5-6):p.654-659.
    80. Luo, M.F., D.A. MacLaren, and W. Allison, Migration and abstraction of H-atoms from the Cu(1;1;1) surface. Surface Science,2005.586(1-3):p.109-114.
    81. Yang, M.X. and B.E. Bent, H and D Atom Addition to Ethylene on Cu(100):Absence of Ethyl H/D Shift and Decomposition. The Journal of Physical Chemistry,1996.100(2):p.822-832.
    82. Kolovos-Vellianitis, D., T. Kammler, and J. Kuppers, Interaction of gaseous hydrogen atoms with oxygen covered Cu(100) surfaces. Surface Science,2001.482-485, Part 1(0):p.166-170.
    83. Yang, Y, J. Evans, J.A. Rodriguez, et al., Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(000[combining macron]). Physical Chemistry Chemical Physics,2010.12(33):p.9909-9917.
    84. Taylor, K.C., Nitric Oxide Catalysis in Automotive Exhaust Systems. Catalysis Reviews:Science and Engineering,1993.35(4):p.457-481.
    85. Comrie, C.M., W.H. Weinberg, and R.M. Lambert, The adsorption of nitric oxide on Pt(111) and Pt(110) surfaces. Surface Science,1976.57(2):p.619-631.
    86. Lambert, R.M. and C.M. Comrie, The oxidation of CO by NO on Pt(111) and Pt(110). surface science,1974.46(1):p.61-80.
    87. Bonzel, H.P. and T.E. Fischer, An UV photoemission study of NO and CO adsorption on Pt (100) and Ru (0001) surfaces. Surface Science,1975.51(1):p.213-227.
    88. Thiel, P.A., W.H. Weinberg, and J.T. Yates, A determination of adsite symmetry on surfaces via electron energy loss spectroscopy:Coadsorption of CO and NO on Ru(001). The Journal of Chemical Physics,1979.71(4):p.1643-1646.
    89. Campbell, C.T. and J.M. White, Chemisorption and reactions of nitric oxide on rhodium. Applications of Surface Science,1978.1(3):p.347-359.
    90. J.F, W., A study of nitric oxide adsorption on copper (100) and (110). Applications of Surface Science,1982.11-12(0):p.172-185.
    91. Torres, D., S. Gonzalez, K.M. Neyman, et al., Adsorption and oxidation of NO on Au(111) surface:Density functional studies. Chemical Physics Letters,2006.422(4-6):p.412-416.
    92. Vinod, C.P., J. W.N. Hans, and B.E. Nieuwenhuys, Interaction of small molecules with Au(310): Decomposition of NO. Applied Catalysis A:General,2005.291(1-2):p.93-97.
    93. Wu, Z., Y. Ma, Y. Zhang, et al, Adsorption and Surface Reaction of NO2 on a Stepped Au(997) Surface:Enhanced Reactivity of Low-Coordinated Au Atoms. The Journal of Physical Chemistry C,2012.116(5):p.3608-3617.
    94. Lu, H., C.M. Pradier, and A.S. Flodstrom, Catalytic reduction of nitric oxide on copper. Part Ⅰ. Journal of Molecular Catalysis A:Chemical,1996.112(3):p.447-457.
    95. Rodriguez, J.A. and J. Hrbek. Decomposition of NO2 on metal surfaces:Oxidation of Ag, Zn, and Cu films.1994. Orlando, Florida (USA):AVS.
    96. So, S.K., R. Franchy, and W. Ho, Photodesorption of NO from Ag(111) and Cu(111). The Journal of Chemical Physics,1991.95(2):p.1385-1399.
    97. Hinch, B.J. and L.H. Dubois, Water adsorption on Cu(111):evidence for Volmer--Weber film growth. Chemical Physics Letters,1991.181(1):p.10-15.
    98. Hinch, B.J. and L.H. Dubois, Stable and metastable phases of water adsorbed on Cu(111). The Journal of Chemical Physics,1992.96(4):p.3262-3268.
    99. Pache, T., H.P. Steinriick, W. Huber, et al., The adsorption of H2O on clean and oxygen precovered Ni(111) studied by ARUPS and TPD. Surface Science,1989.224(1-3):p.195-214.
    100. Spitzer, A. and H. Liith, The adsorption of water on clean and oxygen covered Cu(110). Surface Science,1982.120(2):p.376-388.
    101. Xu, L., Y. Ma, Y. Zhang, et al., Water Adsorption on a Co(0001) Surface(?). The Journal of Physical Chemistry C,2010.114(40):p.17023-17029.
    102. Bumajdad, A., J. Eastoe, and A. Mathew, Cerium oxide nanoparticles prepared in self-assembled systems. Advances in Colloid and Interface Science.147-148:p.56-66.
    103. Trovarelli, A., Catalytic Properties of Ceria and CeO2-Containing Materials. Catalysis Reviews, 1996.38(4):p.439-520.
    104. Yao, H.C. and Y.F.Y. Yao, Ceria in automotive exhaust catalysts:Ⅰ. Oxygen storage. Journal of Catalysis,1984.86(2):p.254-265.
    105. Bhattacharyya, A.A., G.M. Woltermann, J.S. Yoo, et al., Catalytic SOx abatement:the role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas. Industrial & Engineering Chemistry Research,1988.27(8):p.1356-1360.
    106. Yeung, C.M.Y. and S.C. Tsang, Noble Metal Core-Ceria Shell Catalysts For Water-Gas Shift Reaction. The Journal of Physical Chemistry C,2009.113(15):p.6074-6087.
    107. Han, W.-Q., W. Wen, J.C. Hanson, et al., One-Dimensional Ceria as Catalyst for the Low-Temperature Water-Gas Shift Reaction. The Journal of Physical Chemistry C,2009.113(52): p.21949-21955.
    108. Camellone, M.F. and S. Fabris, Reaction Mechanisms for the CO Oxidation on Au/CeO2 Catalysts:Activity of Substitutional Au3+/Au+Cations and Deactivation of Supported Au+ Adatoms. Journal of the American Chemical Society,2009.131(30):p.10473-10483.
    109. Venezia, A.M., G. Pantaleo, A. Longo, et al., Relationship between structure and CO oxidation activity of ceria-supported gold catalysts. Journal of Physical Chemistry B,2005.109(7):p. 2821-2827.
    110. Yi, N., R. Si, H. Saltsburg, et al., Steam reforming of methanol over ceria and gold-ceria nanoshapes. Applied Catalysis B:Environmental,2010.95(1-2):p.87-92.
    111. Liu, Y., T. Hayakawa, K. Suzuki, et al., Highly active copper/ceria catalysts for steam reforming of methanol. Applied Catalysis A:General,2002.223(1-2):p.137-145.
    112. Otsuka, K., Y. Wang, E. Sunada, et al., Direct Partial Oxidation of Methane to Synthesis Gas by Cerium Oxide. Journal of Catalysis,1998.175(2):p.152-160.
    113. Mai, H.-X., L.-D. Sun, Y.-W. Zhang, et al., Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. The Journal of Physical Chemistry B,2005.109(51):p.24380-24385.
    114. Aneggi, E., C. de Leitenburg, and A. Trovarelli, On the role of lattice/surface oxygen in ceria-zirconia catalysts for diesel soot combustion. Catalysis Today,2012.181(1):p.108-115.
    115. Ricken, M., J. Nolting, and I. Riess, Specific heat and phase diagram of nonstoichiometric ceria (CeO2-x). Journal of Solid State Chemistry,1984.54(1):p.89-99.
    116. Laachir, A., V. Perrichon, A. Badri, et al., Reduction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. Journal of the Chemical Society, Faraday Transactions,1991.87(10):p. 1601-1609.
    117. Fu, Q., H. Saltsburg, and M. Flytzani-Stephanopoulos, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science,2003.301(5635):p.935-938.
    118. Singhania, N., E.A. Anumol, N. Ravishankar, et al., Influence of CeO2 morphology on the catalytic activity of CeO2-Pt hybrids for CO oxidation. Dalton Transactions,2013.42(43):p. 15343-15354.
    119. Soykal, I.I., B. Bayram, H. Sohn, et al., Ethanol steam reforming over Co/CeO2 catalysts: Investigation of the effect of ceria morphology. Applied Catalysis A:General,2012.449:p. 47-58.
    120. Du, X., D. Zhang, L. Shi, et al., Morphology Dependence of Catalytic Properties of Ni/CeO2Nanostructures for Carbon Dioxide Reforming of Methane. The Journal of Physical Chemistry C,2012.116(18):p.10009-10016.
    121. Guan, Y., D.A.J.M. Ligthart, O. Pirgon-Galin, et al., Gold Stabilized by Nanostructured Ceria Supports:Nature of the Active Sites and Catalytic Performance. Topics in Catalysis,2011. 54(5-7):p.424-438.
    122. Bernal, S., J.J. Calvino, M.A. Cauqui, et al., Some recent results on metal/support interaction effects in NM/CeO2 (NM:noble metal) catalysts. Catalysis Today,1999.50(2):p.175-206.
    123. Yuan, Q., H.-H. Duan, L.-L. Li, et al., Controlled synthesis and assembly of ceria-based nanomaterials. Journal of Colloid and Interface Science,2009.335(2):p.151-167.
    124. Wang, Z., Z. Quan, and J. Lin, Remarkable Changes in the Optical Properties of CeO2 Nanocrystals Induced by Lanthanide Ions Doping. Inorganic Chemistry,2007.46(13):p. 5237-5242.
    125. Bai, W., K.L. Choy, N.H.J. Stelzer, et al., Thermophoresis-assisted vapour phase synthesis of CeO2 and CexYl-xO2-δ nanoparticles. Solid State Ionics,1999.116(3-4):p.225-228.
    126. Wang, D.Y. and A.S. Nowick, The "grain-boundary effect" in doped ceria solid electrolytes. Journal of Solid State Chemistry,1980.35(3):p.325-333.
    127. Yamashita, K., K.V. Ramanujachary, and M. Greenblatt, Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics. Solid State Ionics,1995.81(1-2): p.53-60.
    128. Huang, K., M. Feng, and J.B. Goodenough, Synthesis and Electrical Properties of Dense Ce0.9Gd0.1O1.95 Ceramics. Journal of the American Ceramic Society,1998.81(2):p.357-362.
    129. Yeste, M.P., J.C. Hernandez, S. Bernal, et al., Redox Behavior of Thermally Aged Ceria-Zirconia Mixed Oxides. Role of Their Surface and Bulk Structural Properties. Chemistry of Materials, 2006.18(11):p.2750-2757.
    130. Wang, X., J.A. Rodriguez, J.C. Hanson, et al., Unusual Physical and Chemical Properties of Cu in Cel-xCuxO2 Oxides. The Journal of Physical Chemistry B,2005.109(42):p.19595-19603.
    131. Avgouropoulos, G. and T. Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Applied Catalysis A:General,2003.244(1):p.155-167.
    132. Yang, H., K. Zhang, R. Shi, et al., Sol-Gel Synthesis and Photocatalytic Activity of CeO2/TiO2 Nanocomposites. Journal of the American Ceramic Society,2007.90(5):p.1370-1374.
    133. Li, C., K. Domen, K. Maruya, et al., Dioxygen adsorption on well-outgassed and partially reduced cerium oxide studied by FT-IR. Journal of the American Chemical Society,1989.111(20):p. 7683-7687.
    134. Creaser, D., P. Harrison, M.A. Morris, et al., X-ray photoelectron spectroscopic study of the oxidation and reduction of a cerium(III) oxide/cerium foil substrate. Catalysis Letters,1994. 23(1-2):p.13-24.
    135. Soria, J., A. Martinez-Arias, and J.C. Conesa, Spectroscopic study of oxygen adsorption as a method to study surface defects on CeO2. Journal of the Chemical Society, Faraday Transactions, 1995.91(11):p.1669-1678.
    136. Zhao, Y, B.-T. Teng, X.-D. Wen, et al., Superoxide and Peroxide Species on CeO2(111), and Their Oxidation Roles. The Journal of Physical Chemistry C,2012.
    137. Wu, Z., M. Li, J. Howe, et al., Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption. Langmuir,2010.26(21):p. 16595-16606.
    138. Wang, S., Z. Qiao, W. Wang, et al., XPS studies of nanometer CeO2 thin films deposited by pulse ultrasonic spray pyrolysis. Journal Of Alloys And Compounds,2000.305(1-2):p.121-124.
    139. Overbury, S.H., D.R. Huntley, D.R. Mullins, et al. Surface studies of model supported catalysts: NO adsorption on Rh/CeO2(001).1997. Philadelphia, Pennsylvania (USA):AVS.
    140. Paivasaari, J., M. Putkonen, and L. Niinisto, Cerium dioxide buffer layers at low temperature by atomic layer deposition. Journal of Materials Chemistry,2002.12(6):p.1828-1832.
    141. Kunsagi-Mate, S. and J.C. Nie, Entropy-driven adsorption of carbon nanotubes on (001) and (111) surfaces of CeO2 islands grown on sapphire substrate. Surface Science,2010.604(7-8):p. 654-659.
    142. Mullins, D.R., P.M. Albrecht, T.-L. Chen, et al., Water Dissociation on CeO2(100) and CeO2(111) Thin Films. The Journal of Physical Chemistry C,2012.116(36):p.19419.
    143. Inoue, T., Y. Yamamoto, and M. Satoh, Low-temperature epitaxial growth of CeO2(110)/Si(100) structure by evaporation under substrate bias. Japanese Journal of Applied Physics Part 2-Letters, 1996.35(12B):p. L1685-L1688.
    144. Herman, G.S., Characterization of surface defects on epitaxial CeO2(001) films. Surface Science, 1999.437(1-2):p.207-214.
    145. Baudin, M., M. Wojcik, and K. Hermansson, Dynamics, structure and energetics of the (111), (Oil) and (001) surfaces of ceria. Surface Science,2000.468(1-3):p.51-61.
    146. Hardacre, C., GM. Roe, and R.M. Lambert, Structure, composition and thermal properties of cerium oxide films on platinum{111}. Surface Science,1995.326(1-2):p.1-10.
    147. Lu, J.L., H.J. Gao, S. Shaikhutdinov, et al., Morphology and defect structure of the CeO2(111) films grown on Ru(0001) as studied by scanning tunneling microscopy. Surface Science,2006. 600(22):p.5004-5010.
    148. Eck, S., C. Castellarin-Cudia, S. Surnev, et al., Growth and thermal properties of ultrathin cerium oxide layers on Rh(111). Surface Science,2002.520(3):p.173-185.
    149. Matolin, V., J. Libra, I. Matolinova, et al., Growth of ultra-thin cerium oxide layers on Cu(111). Applied Surface Science,2007.254(1):p.153-155.
    150. Staudt, T., Y. Lykhach, L. Hammer, et al., A route to continuous ultra-thin cerium oxide films on Cu(111). Surface Science,2009.603(23):p.3382-3388.
    151. Matolin, V., I. Matolinova, F. Dvorak, et al., Water interaction with CeO2(111)/Cu(111) model catalyst surface. Catalysis Today. In Press, Corrected Proof.
    152. Dvorak, F., O. Stetsovych, M. Steger, et al., Adjusting Morphology and Surface Reduction of CeO2(111) Thin Films on Cu(111). The Journal of Physical Chemistry C,2011:p. null-null.
    153. Torbrugge, S., M. Cranney, and M. Reichling, Morphology of step structures on CeO2(111). Applied Physics Letters,2008.93(7).
    154. Yang, F., Y. Choi, S. Agnoli, et al., CeO2←→CuOx Interactions and the Controlled Assembly of CeO2(111) and CeO2(100) Nanoparticles on an Oxidized Cu(111) Substrate. The Journal of Physical Chemistry C,2011.
    155. Baron, M., O. Bondarchuk, D. Stacchiola, et al., Interaction of Gold with Cerium Oxide Supports: CeO2(111) Thin Films vs CeOx Nanoparticles. Journal of Physical Chemistry C,2009.113(15):p. 6042-6049.
    156. Ma, S., J. Rodriguez, and J. Hrbek, STM study of the growth of cerium oxide nanoparticles on Au(111). Surface Science,2008.602(21):p.3272-3278.
    157. Weststrate, C.J., A. Resta, R. Westerstrom, et al., CO adsorption on a Au/CeO2 (111) model catalyst. Journal of Physical Chemistry C,2008.112(17):p.6900-6906.
    158. Zhao, X., S. Ma, J. Hrbek, et al., Reaction of water with Ce-Au(111) and CeOx/Au(111) surfaces:Photoemission and STM studies. Surface Science,2007.601(12):p.2445-2452.
    159. Berner, U. and K. Schierbaum, Cerium oxide layers on Pt(111):a scanning tunneling microscopy study. Thin Solid Films,2001.400(1-2):p.46-49.
    160. Berner, U. and K.-D. Schierbaum, Cerium oxides and cerium-platinum surface alloys on Pt(111) single-crystal surfaces studied by scanning tunneling microscopy. Physical Review B,2002. 65(23):p.235404.
    161. Matharu, J., G. Cabailh, R. Lindsay, et al., Reduction of thin-film ceria on Pt(111) by supported Pd nanoparticles probed with resonant photoemission. Surface Science,2011.605(11-12):p. 1062-1066.
    162. Mullins, D.R., P.V. Radulovic, and S.H. Overbury, Ordered cerium oxide thin films grown on Ru(0001) and Ni(111). Surface Science,1999.429(1-3):p.186-198.
    163. Matolin, V., L. Sedlacek, I. Matolinova, et al., Photoemission spectroscopy study of Cu/CeO2 systems:Cu/CeO2 nanosized catalyst and CeO2(111)/CU(111) inverse model catalyst. Journal of Physical Chemistry C,2008.112(10):p.3751-3758.
    164. Alexandrou, M. and R.M. Nix, The growth, structure and stability of ceria overlayers on Pd(111). Surface Science,1994.321(1-2):p.47-57.
    165. Herman, G.S., Y.J. Kim, S.A. Chambers, et al., Interaction of D2O with CeO2(001) investigated by temperature-programmed desorption and X-ray photoelectron spectroscopy. Langmuir,1999. 15(11):p.3993-3997.
    166. Kundakovic, L., D.R. Mullins, and S.H. Overbury, Adsorption and reaction of H2O and CO on oxidized and reduced Rh/CeOx(111) surfaces. Surface Science,2000.457(1-2):p.51-62.
    167. Mullins, D.R. and T.S. McDonald, Adsorption and reaction of hydrogen sulfide on thin-film cerium oxide. Surface Science,2007.601(21):p.4931-4938.
    168. Overbury, S.H., D.R. Mullins, D.R. Huntley, et al., Chemisorption and reaction of NO and N2O on oxidized and reduced ceria surfaces studied by soft X-ray photoemission spectroscopy and desorption spectroscopy. Journal of Catalysis,1999.186(2):p.296-309.
    169.Yoshimichi, N. and et al., The dynamic behaviour of CH 3 OH and NO 2 adsorbed on CeO 2 (111) studied by noncontact atomic force microscopy. Nanotechnology,2004.15(2):p. S49.
    170. Siokou, A. and R.M. Nix, Interaction of methanol with well-defined ceria surfaces: Reflection/absorption infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption study. Journal of Physical Chemistry B,1999.103(33):p. 6984-6997.
    171. Albrecht, P.M. and D.R. Mullins, Adsorption and Reaction of Methanol over CeOX(100) Thin Films. Langmuir,2013.
    172. Zhou, J. and D.R. Mullins, Adsorption and reaction of formaldehyde on thin-film cerium oxide. Surface Science,2006.600(7):p.1540-1546.
    173. Calaza, F.C., Y. Xu, D.R. Mullins, et al., Oxygen Vacancy-Assisted Coupling and Enolization of Acetaldehyde on CeO2(111). Journal of the American Chemical Society,2012.134(43):p. 18034-18045.
    174. Chen, T.L. and D.R. Mullins, Adsorption and Reaction of Acetaldehyde over CeOX(111) Thin Films. The Journal of Physical Chemistry C,2011:p. null-null.
    175. Esch, F., S. Fabris, L. Zhou, et al., Electron localization determines defect formation on ceria substrates. Science,2005.309(5735):p.752-755.
    176. Fukui, K.-i., Y. Namai, and Y. Iwasawa, Imaging of surface oxygen atoms and their defect structures on CeO2(111) by noncontact atomic force microscopy. Applied Surface Science,2002. 188(3-4):p.252-256.
    177. Namai, Y, K.-I. Fukui, and Y. Iwasawa, Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces. Catalysis Today,2003.85(2-4):p.79-91.
    178. Namai, Y, K.-i. Fukui, and Y. Iwasawa, Atom-Resolved Noncontact Atomic Force Microscopic Observations of CeO2(111) Surfaces with Different Oxidation States:Surface Structure and Behavior of Surface Oxygen Atoms. The Journal of Physical Chemistry B,2003.107(42):p. 11666-11673.
    179. Torbrugge, S., M. Reichling, A. Ishiyama, et al., Evidence of subsurface oxygen vacancy ordering on reduced CeO2(111). Physical Review Letters,2007.99(5).
    180. Li, H.-Y., H.-F. Wang, X.-Q. Gong, et al., Multiple configurations of the two excess 4f electrons on defective CeO2(111):Origin and implications. Physical Review B,2009.79(19):p.193401.
    181. Berner, U., K. Schierbaum, G. Jones, et al., Ultrathin ordered CeO2 overlayers on Pt(111): interaction with NO2, NO, H2O and CO. Surface Science,2000.467(1-3):p.201-213.
    182. Stubenrauch, J. and J.M. Vohs, Interaction of CO with Rh supported on stoichiometric and reduced CeO2(111) and CeO2(100) surfaces. Journal of Catalysis,1996.159(1):p.50-57.
    183. Zhou, Y. and J. Zhou, Interactions of Ni Nanoparticles with Reducible CeO2(111) Thin Films. The Journal of Physical Chemistry C,2012.
    184. Luches, P., F. Pagliuca, S. Valeri, et al., Nature of Ag Islands and Nanoparticles on the CeO2(111) Surface. The Journal of Physical Chemistry C,2011.116(1):p.1122-1132.
    185. Zhou, J., A.P. Baddorf, D.R. Mullins, et al., Growth and Characterization of Rh and Pd Nanoparticles on Oxidized and Reduced CeOx(111) Thin Films by Scanning Tunneling Microscopy. The Journal of Physical Chemistry C,2008.112(25):p.9336-9345.
    186. Wilson, E.L., R. Grau-Crespo, C.L. Pang, et al., Redox Behavior of the Model Catalyst Pd/CeO2-x/Pt(1111). The Journal of Physical Chemistry C,2008.112(29):p.10918-10922.
    187. Senanayake, S.D., J. Zhou, A.P. Baddorf, et al., The reaction of carbon monoxide with palladium supported on cerium oxide thin films. Surface Science,2007.601(15):p.3215-3223.
    188. Mullins, D.R. and K.Z. Zhang, Metal-support interactions between Pt and thin film cerium oxide. Surface Science,2002.513(1):p.163-173.
    189. Skoda, M., M. Cabala, V. Chab, et al., Sn interaction with the CeO2(111) system:Bimetallic bonding and ceria reduction. Applied Surface Science,2008.254(14):p.4375-4379.
    190. Skala, T., F. Sutara, M. Cabala, et al., A photoemission study of the interaction of Ga with CeO2(111) thin films. Applied Surface Science,2008.254(21):p.6860-6864.
    191. Yang, Z., B. He, Z. Lu, et al., Physisorbed, Chemisorbed, and Oxidized CO on Highly Active Cu-CeO2(111). The Journal of Physical Chemistry C,2010.114(10):p.4486-4494.
    192. Skoda, M., M. Cabala, I. Matolinova, et al., Interaction of Au with CeO2(111):A photoemission study. Journal of Chemical Physics,2009.130(3).
    193. Rodriguez, J., X. Wang, P. Liu, et al., Gold nanoparticles on ceria:importance of O vacancies in the activation of gold. Topics in Catalysis,2007.44(1):p.73-81.
    194. Kong, D., G. Wang, Y. Pan, et al., Growth, Structure, and Stability of Ag on CeO2(111): Synchrotron Radiation Photoemission Studies. The Journal of Physical Chemistry C,2011:p. null-null.
    195. Nehasil, V., K. Sevcikova, T. Zahoranova, et al., Photoemission study of Rh/CeO2/Cu(111) system--Oxidation state, stability and interaction with adsorbed gases. Journal of Electron Spectroscopy and Related Phenomena,2010.181(2-3):p.229-233.
    196. Stubenrauch, J. and J.M. Vohs, Support effects in the dissociation of CO on Rh/CeO2(111). Catalysis Letters,1997.47(1):p.21-25.
    197. Loof, P., B. Kasemo, S. Andersson, et al., Influence of ceria on the interaction of CO and NO with highly dispersed Pt and Rh. Journal of Catalysis,1991.130(1):p.181-191.
    198. Frank, M., R. Kuhnemuth, M. Baumer, et al., Oxide-supported Rh particle structure probed with carbon monoxide. Surface Science,1999.427-428(0):p.288-293.
    199. Xu, J. and S.H. Overbury, H2 reduction of CeO2(111) surfaces via boundary Rh---O mediation. Journal of Catalysis,2004.222(1):p.167-173.
    200. Naya, K., R. Ishikawa, and K.-i. Fukui, Oxygen-Vacancy-Stabilized Positively Charged Au Nanoparticles on CeO2(111) Studied by Reflection-Absorption Infrared Spectroscopy. The Journal of Physical Chemistry C,2009.113(24):p.10726-10730.
    201. Tournayan, L., N.R. Marcilio, and R. Frety, Promotion of hydrogen uptake in cerium dioxide:The role of iridium. Applied Catalysis,1991.78(1):p.31-43.
    202. Lykhach, Y., V. Johanek, H.A. Aleksandrov, et al., Water Chemistry on Model Ceria and Pt/Ceria Catalysts. The Journal of Physical Chemistry C,2012.
    203. Suchorski, Y, R. Wrobel, S. Becker, et al., Ceria nanoformations in CO oxidation on Pt(111): Promotional effects and reversible redox behaviour. Surface Science,2007.601(21):p. 4843-4848.
    204. Suchorski, Y, R. Wrobel, S. Becker, et al., CO Oxidation on a CeOx/Pt(111) Inverse Model Catalyst Surface:Catalytic Promotion and Tuning of Kinetic Phase Diagrams. Journal of Physical Chemistry C,2008.112(50):p.20012-20017.
    205. Eck, S., C. Castellarin-Cudia, S. Surnev, et al., Adsorption and reaction of CO on a ceria-Rh(111) "inverse model catalyst" surface. Surface Science,2003.536(1-3):p.166-176.
    206. Martinez-Arias, A., M. Fernandez-Garcia, J. Soria, et al., Spectroscopic Study of a Cu/CeO2Catalyst Subjected to Redox Treatments in Carbon Monoxide and Oxygen. Journal of Catalysis,1999.182(2):p.367-377.
    207. Martinez-Arias, A., A.B. Hungria, M. Fernandez-Garcia, et al., Interfacial Redox Processes under CO/O2 in a Nanoceria-Supported Copper Oxide Catalyst. The Journal of Physical Chemistry B, 2004.108(46):p.17983-17991.
    208. Moreno, M., L. Bergamini, G.T. Baronetti, et al., Mechanism of CO oxidation over CuO/CeO2 catalysts. International Journal of Hydrogen Energy,2010.35(11):p.5918-5924.
    209. Yang, F., J. Graciani, J. Evans, et al., CO Oxidation on Inverse CeOx/Cu(111) Catalysts:High Catalytic Activity and Ceria-Promoted Dissociation of O2. Journal of the American Chemical Society,2011.133(10):p.3444-3451.
    210. Rodriguez, Jose" A., J. Graciani, J. Evans, et al., Water-Gas Shift Reaction on a Highly Active Inverse CeO2(111)/Cu(111) Catalyst:Unique Role of Ceria Nanoparticlesl3. Angewandte Chemie,2009.121(43):p.8191-8194.
    1. Gabasch, H., W. Unterberger, K. Hayek, et al., In situ XPS study of Pd(1;1;1) oxidation at elevated pressure, Part 2:Palladium oxidation in the 10-lmbar range. Surface Science,2006. 600(15):p.2980-2989.
    2. Hufner, S., S. Schmidt, and F. Reinert, Photoelectron spectroscopy—An overview. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2005.547(1):p.8-23.
    3.路家和,陈长彦,电子工业出版社.表面分析技术,1987.
    4.辛勤,罗.,科学出版社.现代催化研究方法,2008.
    5. Shirley, D.A., The effect of atomic and extra-atomic relaxation on atomic binding energies. Chemical Physics Letters,1972.16(2):p.220-225.
    6. C, M.N.W., ASTM. Quantitive Surface Analysis of Materials,1978.
    7. Tanuma, S., C.J. Powell, and D.R. Penn, Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range. Surface And Interface Analysis,1994. 21(3):p.165-176.
    8. Tanuma, S., C.J. Powell, and D.R. Penn, Calculations of Electron Inelastic Mean Free Paths (IMFPs)VI. Analysis of the Gries Inelastic Scattering Model and Predictive IMFP Equation. Surface And Interface Analysis,1997.25(1):p.25-35.
    9. Doktorwurde, z.E.d., CO Oxidation over Gold[D]:[PHD]. der Freien Universitat Berlin,2003.
    10. Edmar, A.S., M.C.d.C. Caio, and E.d.C. Vagner, Advances on surface structural determination by LEED. Journal of Physics:Condensed Matter,2011.23(30):p.303001.
    11.丁莹如,秦关林,上海科学技术出版社.固体表面化学,1989.
    12. Campuzano, J.C., M.S. Foster, G. Jennings, et al., Au(110) (1×2)-to-(1×1) Phase Transition:A Physical Realization of the Two-Dimensional Ising Model. Physical Review Letters,1985.54(25): p.2684.
    1. Szanyi, J. and D. Wayne Goodman, CO oxidation on a Cu(100) catalyst. Catalysis Letters,1993. 21(1-2):p.165-174.
    2. Millar, G.J., A. Canning, G. Rose, et al., Identification of Copper Species Present in Cu-ZSM-5 Catalysts for NOxReduction. Journal of Catalysis,1999.183(2):p.169-181.
    3. Yang, Y., J. Evans, J.A. Rodriguez, et al., Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(000[1 with combining macron]). Physical Chemistry Chemical Physics,2010.12(33):p.9909-9917.
    4. Yang, F., Y. Choi, S. Agnoli, et al., CeO2←→CuOx Interactions and the Controlled Assembly of CeO2(111) and CeO2(100) Nanoparticles on an Oxidized Cu(111) Substrate. The Journal of Physical Chemistry C,2011.115(46):p.23062-23066.
    5. Gao, Z., M. Zhou, H. Deng, et al., Preferential oxidation of CO in excess H2 over CeO2/CuO catalyst:Effect of calcination temperature. Journal of Natural Gas Chemistry,2012.21(5):p. 513-518.
    6. Cao, J., Y. Wang, T. Ma, et al., Synthesis of porous hematite nanorods loaded with CuO nanocrystals as catalysts for CO oxidation. Journal of Natural Gas Chemistry,2011.20(6):p. 669-676.
    7. Salmeron, M. and R. Schlogl, Ambient pressure photoelectron spectroscopy:A new tool for surface science and nanotechnology. Surface Science Reports,2008.63(4):p.169-199.
    8. Johnson, D.W., M.H. Matloob, and M.W. Roberts, Adsorption of nitric oxide on Cu(100) surfaces; an electron spectroscopic study. Journal of the Chemical Society, Chemical Communications, 1978(2):p.40-41.
    9. Johnson, D.W., M.H. Matloob, and M. W. Roberts, Study of the interaction of nitric oxide with Cu(100) and Cu(111) surfaces using low energy electron diffraction and electron spectroscopy. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1979.75:p.2143-2159.
    10. Wendelken, J.F., Summary Abstract:EELS study of nitric oxide adsorption on Cu(100) and Cu(111) surfaces. Journal of Vacuum Science and Technology,1982.20(3):p.884-885.
    11. Balkenende, A.R., O.L.J. Gijzeman, and J.W. Geus, The interaction of NO and CO with Cu(111). Applied Surface Science,1989.37(2):p.189-200.
    12. Balkenende, A.R., R. Hoogendam, T. de Beer, et al., The interaction of NO, O2 and CO with Cu(710) and Cu(711). Applied Surface Science,1992.55(1):p.1-9.
    13. So, S.K., R. Franchy, and W. Ho, Photodesorption of NO from Ag(111) and Cu(111). The Journal of Chemical Physics,1991.95(2):p.1385-1399.
    14. Balkenende, A.R., H. den Daas, M. Huisman, et al., The interaction of NO,02 and CO with Cu(100) and Cu(110). Applied Surface Science,1991.47(4):p.341-353.
    15. Fernandez-Garcia, M., J.C. Conesa, and F. Illas, The bonding mechanism of NO to Cu(111):An ab initio molecular orbital cluster model study. Surface Science,1993.280(3):p.441-449.
    16. Wee, A.T.S., J. Lin, A.C.H. Huan, et al., SIMS study of NO, CO adsorption on Cu(100) and Cu(210) surfaces. Surface Science,1994.304(1-2):p.145-158.
    17. Brown, W.A., R.K. Sharma, D.A. King, et al., Adsorption and Reactivity of NO and N2O on Cu{110}:Combined RAIRS and Molecular Beam Studies. The Journal of Physical Chemistry, 1996.100(30):p.12559-12568.
    18.Illas, F., J.M. Ricart, and M. Fernandez-Garcia, Geometry, vibrational frequencies and bonding mechanism of NO adsorbed on Cu(111). The Journal of Chemical Physics,1996.104(14):p. 5647-5656.
    19. Sueyoshi, T., T. Sasaki, and Y. Iwasawa, Coadsorption of NO and NH3 on Cu(111):The Formation of the Stabilized (2×2) Coadlayer. The Journal of Physical Chemistry,1996.100(32): p.13646-13654.
    20. van Daelen, M.A., Y.S. Li, J.M. Newsam, et al., Energetics and Dynamics for NO and CO Dissociation on Cu(100) and Cu(111). The Journal of Physical Chemistry,1996.100(6):p. 2279-2289.
    21. Dumas, P., M. Suhren, Y.J. Chabal, et al., Adsorption and reactivity of NO on Cu(111):a synchrotron infrared reflection absorption spectroscopic study. Surface Science,1997.371(2-3):p. 200-212.
    22. Carley, A.F., P.R. Davies, K.R. Harikumar, et al., The chemisorption of nitric oxide and the oxidation of ammonia at Cu(110) surfaces:a X-ray photoelectron spectroscopy (XPS) and scanning tunnelling microscopy (STM) study. Topics in Catalysis,2000.14(1):p.101-109.
    23. Bogicevic, A. and K.C. Hass, NO pairing and transformation to N2O on Cu(111) and Pt(111) from first principles. Surface Science,2002.506(1-2):p. L237-L242.
    24. Kim, C.M., C.W. Yi, and D.W. Goodman, Adsorption and Reaction of NO on Cu(100):An Infrared Reflection Absorption Spectroscopic Study at 25 K. The Journal of Physical Chemistry B, 2002.106(28):p.7065-7068.
    25. Yen, M.-Y. and J.-J. Ho, Density-functional study for the NOx (x=1,2) dissociation mechanism on the Cu(111) surface. Chemical Physics,2010.373(3):p.300-306.
    26. Matloob, M.H. and M. W. Roberts, Electron spectroscopic study of nitrogen species adsorbed on copper. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1977.73:p.1393-1405.
    27. Davies, P.R., N. Shukla, and D.J. Vincent, Trapping of metastable oxygen species at Cu(111) surfaces. Journal of the Chemical Society, Faraday Transactions,1995.91(17):p.2885-2890.
    28. Zhu, J.F., M. Kinne, T. Fuhrmann, et al., The adsorption of NO on an oxygen pre-covered Pt(111) surface:in situ high-resolution XPS combined with molecular beam studies. Surface Science, 2003.547(3):p.410-420.
    29. Zhu, J.F., M. Kinne, T. Fuhrmann, et al., In situ high-resolution XPS studies on adsorption of NO on Pt(111). Surface Science,2003.529(3):p.384-396.
    30. Skelly, J.F., T. Bertrams, A.W. Munz, et al., Nitrogen induced restructuring of Cu(111) and explosive desorption of N2. Surface Science,1998.415(1-2):p.48-61.
    31. Kirstein, W., B. Kruger, and F. Thieme, CO adsorption studies on pure and Ni-covered Cu(111) surfaces. Surface Science,1986.176(3):p.505-529.
    32. Davies, P.R., M.W. Roberts, N. Shukla, et al., Oxygen states at a Cu(111) surface:the influence of coadsorbed ammonia. Surface Science,1995.325(1-2):p.50-56.
    33. Bloch, J., D.J. Bottomley, S. Janz, et al., Kinetics of oxygen adsorption, absorption, and desorption on the Cu(111) surface. The Journal of Chemical Physics,1993.98(11):p.9167-9176.
    34. Sueyoshi, T., T. Sasaki, and Y. Iwasawa, Molecular and atomic adsorption states of oxygen on Cu(111) at 100-300 K. Surface Science,1996.365(2):p.310-318.
    35. Wiame, F., V. Maurice, and P. Marcus, Initial stages of oxidation of Cu(111). Surface Science, 2007.601(5):p.1193-1204.
    36. Dubois, L.H., Oxygen chemisorption and cuprous oxide formation on Cu(111):A high resolution EELS study. Surface Science,1982.119(2-3):p.399-410.
    37. Moritani, K., M. Okada, S. Sato, et al., Translational energy induced reconstruction and absorption in the oxidation processes of Cu{111}. Thin Solid Films,2004.464-465:p.48-51.
    38. Moritani, K., M. Okada, Y. Teraoka, et al., Reconstruction of Cu(111) Induced by a Hyperthermal Oxygen Molecular Beam. The Journal of Physical Chemistry C,2008.112(23):p.8662-8667.
    39. Jiang, Z., W. Huang, D. Tan, et al., Surface chemistry of NO and NO2 on the Pt(110)-(1×2) surface:A comparative study. Surface Science,2006.600(21):p.4860-4869.
    40. Root, T.W., G.B. Fisher, and L.D. Schmidt, Electron energy loss characterization of NO on Rh(111). Ⅱ. Coadsorption with oxygen and CO. The Journal of Chemical Physics,1986.85(8):p. 4687-4695.
    41. Chen, J.G., W. Erley, and H. Ibach, A pairs investigation of the interaction between the coadsorbed NO and oxygen on Ni(111):Observation of a substantial N O bond strengthening. Surface Science,1989.224(1-3):p.215-234.
    42. Davies, P.R. and M. Bowker, On the nature of the active site in catalysis:the reactivity of surface oxygen on Cu(110). Catalysis Today,2010.154(1-2):p.31-37.
    43. Hua, Q., F. Shi, K. Chen, et al., Cu2O-Au nanocomposites with novel structures and remarkable chemisorption capacity and photocatalytic activity. Nano Research,2011.4(10):p.948-962.
    44. Chinchen, G.C., M.S. Spencer, K.C. Waugh, et al., Promotion of methanol synthesis and the water-gas shift reactions by adsorbed oxygen on supported copper catalysts. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1987.83(7): p.2193-2212.
    45. Chen, C.-S., W.-H. Cheng, and S.-S. Lin, Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst. Applied Catalysis A: General,2003.238(1):p.55-67.
    46. Yong, S.T., C.W. Ooi, S.P. Chai, et al., Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. International Journal of Hydrogen Energy,2013. 38(22):p.9541-9552.
    47. Solomon, E.I., P.M. Jones, and J.A. May, Electronic structures of active sites on metal oxide surfaces:definition of the copper-zinc oxide methanol synthesis catalyst by photoelectron spectroscopy. Chemical Reviews,1993.93(8):p.2623-2644.
    48. Kalidindi, S.B., U. Sanyal, and B.R. Jagirdar, Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane. Physical Chemistry Chemical Physics, 2008.10(38):p.5870-5874.
    49. Yang, P., Surface chemistry:Crystal cuts on the nanoscale. Nature,2012.482(7383):p.41-42.
    50. Shi, J., J. Li, X. Huang, et al., Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra. Nano Research,2011.4(5):p.448-459.
    51. Wang, Y., H. Chu, W. Zhu, et al., Copper-based efficient catalysts for propylene epoxidation by molecular oxygen. Catalysis Today,2008.131(1-4):p.496-504.
    52. Chen, B., Y. Ma, L. Ding, et al., Reactivity of Hydroxyls and Water on a CeO2(111) Thin Film Surface:The Role of Oxygen Vacancy. The Journal of Physical Chemistry C,2013.117(11):p. 5800-5810.
    53. Xu, L., W. Zhang, Y. Zhang, et al., Oxygen Vacancy-Controlled Reactivity of Hydroxyls on an FeO(111) Monolayer Film. The Journal of Physical Chemistry C,2011.115(14):p.6815-6824.
    54. Xu, L., Z. Wu, Y. Zhang, et al., Hydroxyls-Involved Interfacial CO Oxidation Catalyzed by FeOx(111) Monolayer Islands Supported on Pt(111) and the Unique Role of Oxygen Vacancy. The Journal of Physical Chemistry C,2011.115(29):p.14290-14299.
    55. Xu, L., Y. Ma, Y. Zhang, et al., Direct Evidence for the Interfacial Oxidation of CO with Hydroxyls Catalyzed by Pt/Oxide Nanocatalysts. Journal of the American Chemical Society,2009. 131(45):p.16366-16367.
    56. McCash, E.M., S.F. Parker, J. Pritchard, et al., The adsorption of atomic hydrogen on Cu(111) investigated by reflection-absorption infrared spectroscopy, electron energy loss spectroscopy and low energy electron diffraction. Surface Science,1989.215(3):p.363-377.
    57. Kammler, T. and J. Kuppers, Interaction of H atoms with Cu(111) surfaces:Adsorption, absorption, and abstraction. The Journal of Chemical Physics,1999.111(17):p.8115-8123.
    58. Lloyd, P.B., M. Swaminathan, J.W. Kress, et al., Temperature programmed desorption study of the adsorption and absorption of hydrogen on and in Cu(111). Applied Surface Science,1997. 119(3-4):p.267-274.
    59. Lee, G. and E.W. Plummer, High-resolution electron energy loss spectroscopy study on chemisorption of hydrogen on Cu(111). Surface Science,2002.498(3):p.229-236.
    60. Luo, M.F., D.A. MacLaren, and W. Allison, Migration and abstraction of H-atoms from the Cu(1;1;1) surface. Surface Science,2005.586(1-3):p.109-114.
    61. Luo, M.F., D.A. MacLaren, I.G Shuttleworth, et al., Preferential sub-surface occupation of atomic hydrogen on Cu(111). Chemical Physics Letters,2003.381(5-6):p.654-659.
    62. Mudiyanselage, K., Y. Yang, F.M. Hoffmann, et al., Adsorption of hydrogen on the surface and sub-surface of Cu(111). The Journal of Chemical Physics,2013.139(4):p.044712.
    63. Zhang, Z., H. Che, J. Gao, et al., Shape-controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction. Catalysis Science & Technology,2012.2(6):p. 1207-1212.
    64. Bao, H., W. Zhang, D. Shang, et al., Shape-Dependent Reducibility of Cuprous Oxide Nanocrystals. The Journal of Physical Chemistry C,2010.114(14):p.6676-6680.
    65. Schulz, K.H. and D.F. Cox, Surface hydride formation on a metal oxide surface:the interaction of atomic hydrogen with Cu2O(100). Surface Science,1992.278(1-2):p.9-18.
    66. Kolovos-Vellianitis, D., T. Kammler, and J. Kiippers, Interaction of gaseous hydrogen atoms with oxygen covered Cu(100) surfaces. Surface Science,2001.482-485, Part 1(0):p.166-170.
    67. Kolovos-Vellianitis, D. and J. Kiippers, Kinetics of Abstraction of D and O on Cu(110) Surfaces by Gaseous H Atoms. The Journal of Physical Chemistry B,2003.107(11):p.2559-2564.
    68. Kammler, T. and J. Kuppers, The Kinetics of the Reaction of Gaseous Hydrogen Atoms with Oxygen on Cu(111) Surfaces toward Water. The Journal of Physical Chemistry B,2001.105(35): p.8369-8374.
    69. Yang, F., Y. Choi, P. Liu, et al., Identification of 5-7 defects in a copper oxide surface. Journal of the American Chemical Society,2011:p. null-null.
    70. Yang, F., Y. Choi, P. Liu, et al., Autocatalytic Reduction of a Cu2O/Cu(111) Surface by CO:STM, XPS, and DFT Studies(?). The Journal of Physical Chemistry C,2010:p. null-null.
    71. Onsten, A., J. Weissenrieder, D. Stoltz, et al., Role of Defects in Surface Chemistry on Cu2O(111). The Journal of Physical Chemistry C,2013.117(38):p.19357-19364.
    72. Onsten, A., M. Mansson, T. Claesson, et al., Probing the valence band structure of Cu_{2}O using high-energy angle-resolved photoelectron spectroscopy. Physical Review B,2007.76(11):p. 115127.
    73. Ouml, A. nsten, aring, et al., Probing the valence band structure of Cu2O using high-energy angle-resolved photoelectron spectroscopy. Physical Review B,2007.76(11):p.115127.
    74. Onsten, A., M. Gothelid, and U.O. Karlsson, Atomic structure of Cu2O(111). Surface Science, 2009.603(2):p.257-264.
    75. Chaika, A.N., S.S. Nazin, and S.I. Bozhko, Selective STM imaging of oxygen-induced Cu(115) surface reconstructions with tungsten probes. Surface Science,2008.602(12):p.2078-2088.
    76. Jensen, F., F. Besenbacher, and I. Stensgaard, Two new oxygen induced reconstructions on Cu(111). Surface Science,1992.269-270:p.400-404.
    77. Jensen, F., F. Besenbacher, E. Laegsgaard, et al., Oxidation of Cu(111):two new oxygen induced reconstructions. Surface Science Letters,1991.259(3):p. L774-L780.
    78. K, W., Photoemission studies of adsorbed oxygen and oxide layers. Surface Science Reports, 1982.2(1):p.1-121.
    79. Li, J., L. Liu, Y. Yu, et al., Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method. Electrochemistry Communications, 2004.6(9):p.940-943.
    80. Okada, M., L. Vattuone, A. Gerbi, et al., Unravelling the Role of Steps in Cu2O Formation via Hyperthermal 02 Adsorption at Cu(410). The Journal of Physical Chemistry C,2007.111(46):p. 17340-17345.
    81. Panzner, G., B. Egert, and H.P. Schmidt, The stability of CuO and Cu2O surfaces during argon sputtering studied by XPS and AES. Surface Science,1985.151(2-3):p.400-408.
    82. Platzman, I., R. Brener, H. Haick, et al., Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions. The Journal of Physical Chemistry C,2008.112(4):p.1101-1108.
    83. Walker, A.V. and J.T. Yates, Does Cuprous Oxide Photosplit Water? The Journal of Physical Chemistry B,2000.104(38):p.9038-9043.
    84. Kim, J.Y., J.A. Rodriguez, J.C. Hanson, et al., Reduction of CuO and Cu2O with H2:H Embedding and Kinetic Effects in the Formation of Suboxides. Journal of the American Chemical Society,2003.125(35):p.10684-10692.
    85. Rodriguez, J.A. and J. Hrbek. Decomposition of NO2 on metal surfaces:Oxidation of Ag, Zn, and Cu films.1994. Orlando, Florida (USA):AVS.
    86. Yang, F., J. Graciani, J. Evans, et al., CO Oxidation on Inverse CeOx/Cu(111) Catalysts:High Catalytic Activity and Ceria-Promoted Dissociation of O2. Journal of the American Chemical Society,2011.133(10):p.3444-3451.
    87. Matsumoto, T., R.A. Bennett, P. Stone, et al., Scanning tunneling microscopy studies of oxygen adsorption on Cu(111). Surface Science,2001.471(1-3):p.225-245.
    88. Pritchard, J., On the structure of CO adlayers on Cu(100) and Cu(111). Surface Science,1979. 79(1):p.231-244.
    89. Jugnet, Y. and T. Minh Due, Coverage dependent photoelectron spectroscopy of CO chemisorption on Cu (111):Evidence for two adsorption sites. Chemical Physics Letters,1978. 58(2):p.243-248.
    90. Hinch, B.J. and L.H. Dubois, Time-resolved EELS studies of molecular surface residence times: the CO/Cu(111) desorption system. Journal of Electron Spectroscopy and Related Phenomena, 1990.54-55:p.759-772.
    91. Hollins, P. and J. Pritchard, Site adsorption in the incommensurate compression structure of chemisorbed co on Cu(111). Journal of the Chemical Society, Chemical Communications, 1982(21):p.1225-1226.
    92. Raval, R., S.F. Parker, M.E. Pemble, et al., FT-rairs, eels and leed studies of the adsorption of carbon monoxide on Cu(111). Surface Science,1988.203(3):p.353-377.
    93. Hollins, P. and J. Pritchard, Interactions of CO molecules adsorbed on oxidised Cu(111) and Cu(110). Surface Science,1983.134(1):p.91-108.
    94. Cox, D.F. and K.H. Schulz, Interaction of CO with Cu+ cations:CO adsorption on Cu2O(100). Surface Science,1991.249(1-3):p.138-148.
    95. Cox, D.F. and K.H. Schulz, H2O adsorption on Cu2O(100). Surface Science,1991.256(1-2):p. 67-76.
    96. Zuo, Z., W. Huang, P. Han, et al., Solvent effects for CO and H2 adsorption on Cu2O (111) surface:A density functional theory study. Applied Surface Science,2010.256(8):p.2357-2362.
    97. Zhang, R., B. Wang, L. Ling, et al., Adsorption and dissociation of H2 on the Cu2O(111) surface: A density functional theory study. Applied Surface Science,2010.257(4):p.1175-1180.
    98. Carley, A.F., P.R. Davies, M.W. Roberts, et al., The hydroxylation of Cu(111) and Zn(0001) surfaces. Applied Surface Science,1994.81(2):p.265-272.
    99. Deng, X., T. Herranz, C. Weis, et al., Adsorption of Water on Cu2O and A12O3 Thin Films. The Journal of Physical Chemistry C,2008.112(26):p.9668-9672.
    100. Becker, T., S. Hovel, M. Kunat, et al., Interaction of hydrogen with metal oxides:the case of the polar ZnO(0001) surface. Surface Science,2001.486(3):p. L502-L506.
    101. Suzuki, S., K.-i. Fukui, H. Onishi, et al., Hydrogen Adatoms on TiO2(110)(1×1) Characterized by Scanning Tunneling Microscopy and Electron Stimulated Desorption. Physical Review Letters, 2000.84(10):p.2156-2159.
    102. Li, M., J.-y. Zhang, Y. Zhang, et al., Density functional theory calculations of surface properties and H2 adsorption on the Cu2O (111) surface. Applied Surface Science,2011.257(24):p. 10710-10714.
    103. Xu, L., Z. Wu, W. Zhang, et al., Oxygen Vacancy-Induced Novel Low-Temperature Water Splitting Reactions on FeO(111) Monolayer-Thick Film. The Journal of Physical Chemistry C, 2012.116(43):p.22921-22929.
    1. Herman, G.S., Y.J. Kim, S.A. Chambers, et al., Interaction of D2O with CeO2(001) investigated by temperature-programmed desorption and X-ray photoelectron spectroscopy. Langmuir,1999. 15(11):p.3993-3997.
    2. Lykhach, Y., V. Johanek, H.A. Aleksandrov, et al., Water Chemistry on Model Ceria and Pt/Ceria Catalysts. The Journal of Physical Chemistry C,2012.
    3. Henderson, M.A., C.L. Perkins, M.H. Engelhard, et al., Redox properties of water on the oxidized and reduced surfaces of CeO2(111). Surface Science,2003.526(1-2):p.1-18.
    4. Matolin, V., I. Matolinova, F. Dvorak, et al., Water interaction with CeO2(1;1;1)/Cu(1;1;1) model catalyst surface. Catalysis Today,2012.181(1):p.124-132.
    5. Mullins, D.R., P.M. Albrecht, T.-L. Chen, et al., Water Dissociation on CeO2(100) and CeO2(111) Thin Films. The Journal of Physical Chemistry C,2012.116(36):p.19419.
    6. Kundakovic, L., D.R. Mullins, and S.H. Overbury, Adsorption and reaction of H2O and CO on oxidized and reduced Rh/CeOx(111) surfaces. Surface Science,2000.457(1-2):p.51-62.
    7. Gritschneder, S., Y. Iwasawa, and M. Reichling, Strong adhesion of water to CeO 2 (111). Nanotechnology,2007.18(4):p.044025.
    8. Watkins, M.B., A.S. Foster, and A.L. Shluger, Hydrogen Cycle on CeO2 (111) Surfaces: Density Functional Theory Calculations. The Journal of Physical Chemistry C,2007.111(42):p. 15337-15341.
    9. Fronzi, M., S. Piccinin, B. Delley, et al., Water adsorption on the stoichiometric and reduced CeO2(111) surface:a first-principles investigation. Physical Chemistry Chemical Physics,2009. 11(40):p.9188-9199.
    10. Yang, Z., Q. Wang, S. Wei, et al., The Effect of Environment on the Reaction of Water on the Ceria(111) Surface:A DFT+U Study. The Journal of Physical Chemistry C,2010.114(35):p. 14891-14899.
    11. Marrocchelli, D. and B. Yildiz, First-Principles Assessment of H2S and H2O Reaction Mechanisms and the Subsequent Hydrogen Absorption on the CeO2(111) Surface. The Journal of Physical Chemistry C,2011.
    12. Fernandez-Torre, D., K. Kosmider, J. Carrasco, et al., Insight into the Adsorption of Water on the Clean CeO2(111) Surface with van der Waals and Hybrid Density Functionals. The Journal of Physical Chemistry C,2012.
    13. Kumar, S. and P.K. Schelling, Density functional theory study of water adsorption at reduced and stoichiometric ceria (111) surfaces. Journal of Chemical Physics,2006.125(20).
    14. Molinari, M., S.C. Parker, D.C. Sayle, et al., Water Adsorption and Its Effect on the Stability of Low Index Stoichiometric and Reduced Surfaces of Ceria. The Journal of Physical Chemistry C, 2012.116(12):p.7073-7082.
    15. Cordatos, H. and R.J. Gorte, CO, NO, and H2 adsorption on Ceria-Supported Pd. Journal of Catalysis,1996.159(1):p.112-118.
    16. Chen, H.-T., Y.M. Choi, M. Liu, et al., A Theoretical Study of Surface Reduction Mechanisms of CeO2(111) and (110) by H2. Chemphyschem,2007.8(6):p.849-855.
    17. Vicario, G., G. Balducci, S. Fabris, et al., Interaction of Hydrogen with Cerium Oxide Surfaces: a Quantum Mechanical Computational Study. The Journal of Physical Chemistry B,2006. 110(39):p.19380-19385.
    18. Alam, M.K., F. Ahmed, R. Miura, et al., Surface reduction processes of cerium oxide surfaces by H2 using ultra accelerated quantum chemical molecular dynamic study. Catalysis Today,2011. 164(1):p.9-15.
    19. Alam, M.K., F. Ahmed, R. Miura, et al., Study of reduction processes over cerium oxide surfaces with atomic hydrogen using ultra accelerated quantum chemical molecular dynamics. Applied Surface Science,2010.257(5):p.1383-1389.
    20. Krompiewski, S., Modelling a spin-selective interface between ferromagnetic electrodes and a carbon nanotube—towards the enhanced giant magnetoresistance effect. Journal of Physics: Condensed Matter,2004.16(17):p.2981.
    21. Huang, W. and W. Ranke, Autocatalytic partial reduction of FeO(1;1;1) and Fe3O4(1;1;1) films by atomic hydrogen. Surface Science,2006.600(4):p.793-802.
    22. Doh, W.H., P.C. Roy, and C.M. Kim, Interaction of Hydrogen with ZnO:Surface Adsorption versus Bulk Diffusion(?). Langmuir,2010.26(21):p.16278-16281.
    23. Huang, W., W. Ranke, and R. Schlogl, Reduction of an α-Fe2O3(0001) Film Using Atomic Hydrogen. The Journal of Physical Chemistry C,2007.111(5):p.2198-2204.
    24. Knudsen, J., L.R. Merte, L.C. Grabow, et al., Reduction of FeO/Pt(1;1;1) thin films by exposure to atomic hydrogen. Surface Science,2010.604(1):p.11-20.
    25. Xu, L., Z. Wu, Y. Zhang, et al., Hydroxyls-Involved Interfacial CO Oxidation Catalyzed by FeOx(111) Monolayer Islands Supported on Pt(111) and the Unique Role of Oxygen Vacancy. The Journal of Physical Chemistry C,2011.115(29):p.14290-14299.
    26. Xu, L., W. Zhang, Y. Zhang, et al., Oxygen Vacancy-Controlled Reactivity of Hydroxyls on an FeO(111) Monolayer Film. The Journal of Physical Chemistry C,2011.115(14):p.6815-6824.
    27. Xu, L., Y. Ma, Y. Zhang, et al., Direct Evidence for the Interfacial Oxidation of CO with Hydroxyls Catalyzed by Pt/Oxide Nanocatalysts. Journal of the American Chemical Society,2009. 131(45):p.16366-16367.
    28. Xu, L., Z. Wu, W. Zhang, et al., Oxygen Vacancy-Induced Novel Low-Temperature Water Splitting Reactions on FeO(111) Monolayer-Thick Film. The Journal of Physical Chemistry C, 2012.116(43):p.22921-22929.
    29. Trovarelli, A., Catalytic Properties of Ceria and CeO2-Containing Materials. Catalysis Reviews, 1996.38(4):p.439-520.
    30. Manzoli, M., G. Avgouropoulos, T. Tabakova, et al., Preferential CO oxidation in H2-rich gas mixtures over Au/doped ceria catalysts. Catalysis Today,2008.138(3-4):p.239-243.
    31. Campbell, C.T. and C.H.F. Peden, CHEMISTRY:Oxygen Vacancies and Catalysis on Ceria Surfaces. Science,2005.309(5735):p.713-714.
    32. Esch, F., S. Fabris, L. Zhou, et al., Electron localization determines defect formation on ceria substrates. Science,2005.309(5735):p.752-755.
    33. Naya, K., R. Ishikawa, and K.-i. Fukui, Oxygen-Vacancy-Stabilized Positively Charged Au Nanoparticles on CeO2(111) Studied by Reflection-Absorption Infrared Spectroscopy. The Journal of Physical Chemistry C,2009.113(24):p.10726-10730.
    34. Pfau, A. and K.D. Schierbaum, The electronic structure of stoichiometric and reduced CeO2 surfaces:an XPS, UPS and HREELS study. Surface Science,1994.321(1-2):p.71-80.
    35. Mullins, D.R., S.H. Overbury, and D.R. Huntley, Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surface Science,1998.409(2):p.307-319.
    36. Norenberg, H. and G.A.D. Briggs, Defect formation on CeO2(111) surfaces after annealing studied by STM. Surface Science,1999.424(2-3):p. L352-L355.
    37. Mullins, D.R., M.D. Robbins, and J. Zhou, Adsorption and reaction of methanol on thin-film cerium oxide. Surface Science,2006.600(7):p.1547-1558.
    38. Zhou, Y. and J. Zhou, Interactions of Ni Nanoparticles with Reducible CeO2(111) Thin Films. The Journal of Physical Chemistry C,2012.
    39. Matolin, V., J. Libra, I. Matolinova, et al., Growth of ultra-thin cerium oxide layers on Cu(111). Applied Surface Science,2007.254(1):p.153-155.
    40. Siokou, A. and R.M. Nix, Interaction of methanol with well-defined ceria surfaces: Reflection/absorption infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption study. Journal of Physical Chemistry B,1999.103(33):p. 6984-6997.
    41. Holgado, J.P., G. Munuera, J.P. Espinos, et al., XPS study of oxidation processes of CeOx defective layers. Applied Surface Science,2000.158(1-2):p.164-171.
    42. Kirstein, W., B. Kriiger, and F. Thieme, CO adsorption studies on pure and Ni-covered Cu(111) surfaces. Surface Science,1986.176(3):p.505-529.
    43. Skala, T., F. Sutara, M. Cabala, et al., A photoemission study of the interaction of Ga with CeO2(111) thin films. Applied Surface Science,2008.254(21):p.6860-6864.
    44. Senanayake, S.D., D. Stacchiola, J. Evans, et al., Probing the reaction intermediates for the water-gas shift over inverse CeOx/Au(1;1;1) catalysts. Journal of Catalysis,2010.271(2):p. 392-400.
    45. Sutara, F., M. Cabala, L. Sedlacek, et al., Epitaxial growth of continuous CeO2(111) ultra-thin films on Cu(111). Thin Solid Films,2008.516(18):p.6120-6124.
    46. Luches, P., F. Pagliuca, and S. Valeri, Morphology, Stoichiometry, and Interface Structure of CeO2 Ultrathin Films on Pt(111). The Journal of Physical Chemistry C,2011:p. null-null.
    47. Rodriguez, Jose A., J. Graciani, J. Evans, et al., Water-Gas Shift Reaction on a Highly Active Inverse CeO2(111)/Cu(111) Catalyst:Unique Role of Ceria Nanoparticles13. Angewandte Chemie,2009.121(43):p.8191-8194.
    48. Li, S.Y., J.A. Rodriguez, J. Hrbek, et al., Reaction of hydrogen with O/Ru(001) and RuOx films: Formation of hydroxyl and water. Journal of Vacuum Science & Technology A,1997.15(3): p.1692-1697.
    49. Kolovos-Vellianitis, D. and J. Kuppers, Kinetics of Abstraction of D and O on Cu(110) Surfaces by Gaseous H Atoms. The Journal of Physical Chemistry B,2003.107(11):p.2559-2564.
    50. Kammler, T. and J. Kuppers, Interaction of H atoms with Cu(111) surfaces:Adsorption, absorption, and abstraction. The Journal of Chemical Physics,1999.111(17):p.8115-8123.
    51. Yang, F., J. Graciani, J. Evans, et al., CO Oxidation on Inverse CeOx/Cu(111) Catalysts:High Catalytic Activity and Ceria-Promoted Dissociation of O2. Journal of the American Chemical Society,2011.133(10):p.3444-3451.
    52. Yang, F., Y. Choi, S. Agnoli, et al., CeO2←→CuOx Interactions and the Controlled Assembly of CeO2(111) and CeO2(100) Nanoparticles on an Oxidized Cu(111) Substrate. The Journal of Physical Chemistry C,2011.
    53. Trovarelli, A., Catalysis by Ceria and Related Materials. Imperial College Press,2002.
    54. Sun, C., H. Li, and L. Chen, Nanostructured ceria-based materials:synthesis, properties, and applications. Energy & Environmental Science,2012.5(9):p.8475-8505.
    55. Guzman, J., S. Carrettin, and A. Corma, Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2. Journal of the American Chemical Society,2005.127(10):p.3286-3287.
    56. Li, C., K. Domen, K. Maruya, et al., Dioxygen adsorption on well-outgassed and partially reduced cerium oxide studied by FT-IR. Journal of the American Chemical Society,1989.111(20): p.7683-7687.
    57. Pushkarev, V.V., V.I. Kovalchuk, and J.L. d'Itri, Probing Defect Sites on the CeO2 Surface with Dioxygen. The Journal of Physical Chemistry B,2004.108(17):p.5341-5348.
    58. Guzman, J., S. Carrettin, J.C. Fierro-Gonzalez, et al., CO Oxidation Catalyzed by Supported Gold: Cooperation between Gold and Nanocrystalline Rare-Earth Supports Forms Reactive Surface Superoxide and Peroxide Species. Angewandte Chemie International Edition,2005.44(30):p. 4778-4781.
    59. Choi, Y.M., H. Abernathy, H.-T. Chen, et al., Characterization of O2-CeO2 Interactions Using In Situ Raman Spectroscopy and First-Principle Calculations. Chemphyschem,2006.7(9):p. 1957-1963.
    60. Huang, M. and S. Fabris, Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria:Density functional theory calculations. Physical Review B,2007.75(8): p.081404.
    61. Martinez-Arias, A., J. Conesa, and J. Soria, O2-probe EPR as a method for characterization of surface oxygen vacancies in ceria-based catalysts. Research On Chemical Intermediates,2007. 33(8):p.775-791.
    62. Chen, H.-T., J.-G. Chang, H.-L. Chen, et al., Identifying the O2 diffusion and reduction mechanisms on CeO2 electrolyte in solid oxide fuel cells:A DFT+U study. Journal Of Computational Chemistry,2009.30(15):p.2433-2442.
    63. Li, H.-Y., H.-F. Wang, X.-Q. Gong, et al., Multiple configurations of the two excess 4f electrons on defective CeO2(111):Origin and implications. Physical Review B,2009.79(19):p.193401.
    64. Nolan, M., Healing of oxygen vacancies on reduced surfaces of gold-doped ceria. The Journal of Chemical Physics,2009.130(14):p.144702-9.
    65. Chen, H.-L. and H.-T. Chen, Role of hydroxyl groups for the O2 adsorption on CeO2 surface:A DFT+U study. Chemical Physics Letters,2010.493(4-6):p.269-272.
    66. Wu, Z., M. Li, J. Howe, et al., Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption. Langmuir,2010.26(21):p. 16595-16606.
    67. Preda, G., A. Migani, K.M. Neyman, et al., Formation of Superoxide Anions on Ceria Nanoparticles by Interaction of Molecular Oxygen with Ce3+ Sites. The Journal of Physical Chemistry C,2011.115(13):p.5817-5822.
    68. Zhao, Y., B.-T. Teng, X.-D. Wen, et al., Superoxide and Peroxide Species on CeO2(111), and Their Oxidation Roles. The Journal of Physical Chemistry C,2012.
    69. Soria, J., A. Martinez-Arias, and J.C. Conesa, Spectroscopic study of oxygen adsorption as a method to study surface defects on CeO2. Journal of the Chemical Society, Faraday Transactions, 1995.91(11):p.1669-1678.
    70. Chen, B., Y. Ma, L. Ding, et al., Reactivity of Hydroxyls and Water on a CeO2(111) Thin Film Surface:The Role of Oxygen Vacancy. The Journal of Physical Chemistry C,2013.117(11):p. 5800-5810.
    71. Perkins, C.L., M.A. Henderson, C.H.F. Peden, et al., Self-Diffusion in Ceria. Journal of Vacuum Science & Technology A,2001.19(4):p.1942-1946.
    72. Matolin, V., J. Libra, I. Matolinova, et al., Growth of Ultra-thin Cerium Oxide Layers on Cu(111). Applied Surface Science,2007.254(1):p.153-155.
    73. Stetsovych, V., F. Pagliuca, F. Dvorak, et al., Epitaxial Cubic Ce2O3 Films via Ce-CeO2 Interfacial Reaction. The Journal of Physical Chemistry Letters,2013.4(6):p.866-871.
    74. Sundaram, K.B., P.F. Wahid, and O. Melendez, Deposition and x-ray photoelectron spectroscopy studies on sputtered cerium dioxide thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,1997.15(1):p.52-56.
    75. Skoda, M., M. Cabala, V. Chab, et al., Sn interaction with the CeO2(111) system:Bimetallic bonding and ceria reduction. Applied Surface Science,2008.254(14):p.4375-4379.
    76. Corneille, J.S., J.-W. He, and D.W. Goodman, XPS characterization of ultra-thin MgO films on a Mo(100) surface. Surface Science,1994.306(3):p.269-278.
    77. Lamontagne, B., F. Semond, and D. Roy, K overlayer oxidation studied by XPS:the effects of the adsorption and oxidation conditions. Surface Science,1995.327(3):p.371-378.
    78. Namai, Y., K.-I. Fukui, and Y. Iwasawa, Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces. Catalysis Today,2003.85(2-4):p.79-91.
    79. Wang, G.D., D.D. Kong, Y.H. Pan, et al., Low energy Ar-ion bombardment effects on the CeO2 surface. Applied Surface Science,2012.258(6):p.2057-2061.
    80. Campuzano, J.C., M.S. Foster, G. Jennings, et al., Au(110) (1×2)-to-(1×1) Phase Transition:A Physical Realization of the Two-Dimensional Ising Model. Physical Review Letters,1985.54(25): p.2684.
    81. Gottfried, J.M., K.J. Schmidt, S.L.M. Schroeder, et al., Adsorption of carbon monoxide on Au(110)-(1×2). surface science,2003.536(1-3):p.206-224.
    82. Sandell, A., P. Bennich, A. Nilsson, et al., Chemisorption of CO on Cu(100), Ag(110) and Au(110). surface science,1994.310(1-3):p.16-26.
    83. Outka, D.A. and R.J. Madix, The oxidation of carbon monoxide on the Au(110) surface. Surface Science,1987.179(2-3):p.351-360.
    84. Gottfried, M., Adsorption and Reaction of Oxygen, Carbon Monoxide,and Carbon Dioxide on an Au(110)-(1×2) Surface[D]. Freien Universitat,eingereicht am Fachbereich Biologie, Chemie und Pharmazie,2003.
    85. Senanayake, S.D., J. Zhou, A.P. Baddorf, et al., The reaction of carbon monoxide with palladium supported on cerium oxide thin films. Surface Science,2007.601(15):p.3215-3223.
    86. Gottfried, J.M., N. Elghobashi, S.L.M. Schroeder, et al., Oxidation of gold by oxygen-ion sputtering, surface science,2003.523(1-2):p.89-102.
    87. Xu, Y. and M. Mavrikakis, Adsorption and Dissociation of O2 on Gold Surfaces:Effect of Steps and Strain. The Journal of Physical Chemistry B,2003.107(35):p.9298-9307.
    88. Yi, G., Z. Xu, G. Guo, et al., Morphology effects of nanocrystalline CeO2 on the preferential CO oxidation in H2-rich gas over Au/CeO2 catalyst. Chemical Physics Letters,2009.479(1-3):p. 128-132.
    89. Tana, M. Zhang, J. Li, et al., Morphology-dependent redox and catalytic properties of CeO2 nanostructures:Nanowires, nanorods and nanoparticles. Catalysis Today,2009.148(1-2):p. 179-183.
    90. Huang, X.-S., H. Sun, L.-C. Wang, et al., Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Applied Catalysis B:Environmental,2009. 90(1-2):p.224-232.
    1. Stubenrauch, J. and J.M. Vohs, Support effects in the dissociation of CO on Rh/CeO2(111). Catalysis Letters,1997.47(1):p.21-25.
    2. Xu, L., Y. Ma, Y. Zhang, et al., Direct Evidence for the Interfacial Oxidation of CO with Hydroxyls Catalyzed by Pt/Oxide Nanocatalysts. Journal of the American Chemical Society,2009. 131(45):p.16366-16367.
    3. Rodriguez, J.A., S. Ma, P. Liu, et al., Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science,2007.318(5857):p.1757-1760.
    4. Xu, L., W. Zhang, Y. Zhang, et al., Oxygen Vacancy-Controlled Reactivity of Hydroxyls on an FeO(111) Monolayer Film. The Journal of Physical Chemistry C,2011.115(14):p.6815-6824.
    5. Xu, L., Z. Wu, Y. Zhang, et al., Hydroxyls-Involved Interfacial CO Oxidation Catalyzed by FeOx(111) Monolayer Islands Supported on Pt(111) and the Unique Role of Oxygen Vacancy. The Journal of Physical Chemistry C,2011.115(29):p.14290-14299.
    6. Rodriguez, Jose A., P. Liu, J. Hrbek, et al., Water Gas Shift Reaction on Cu and Au Nanoparticles Supported on CeO2(111) and ZnO(000):Intrinsic Activity and Importance of Support Interactions. Angewandte Chemie International Edition,2007.46(8):p.1329-1332.
    7. Xu, J., D.R. Mullins, and S.H. Overbury, CO desorption and oxidation on CeO2-supported Rh: Evidence for two types of Rh sites. Journal of Catalysis,2006.243(1):p.158-164.
    8. Wilson, E.L., W.A. Brown, and G. Thornton, RAIRS studies of CO adsorption on Pd/CeO2-x(111)/Pt(111). Surface Science,2006.600(12):p.2555-2561.
    9. Fernandez-Garcia, M., A. Martinez-Arias, J.C. Hanson, et al., Nanostructured Oxides in Chemistry:Characterization and Properties. Chemical Reviews,2004.104(9):p.4063-4104.
    10. Avgouropoulos, G. and T. Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Applied Catalysis A:General,2003.244(1):p.155-167.
    11. Bera, P., K.R. Priolkar, P.R. Sarode, et al., Structural Investigation of Combustion Synthesized Cu/CeO2 Catalysts by EXAFS and Other Physical Techniques:Formation of a Cel-xCuxO2-δ Solid Solution. Chemistry of Materials,2002.14(8):p.3591-3601.
    12. Harrison, P.G., I.K. Ball, W. Azelee, et al., Nature and Surface Redox Properties of Copper(Ⅱ)-Promoted Cerium(IV) Oxide CO-Oxidation Catalysts. Chemistry of Materials,2000. 12(12):p.3715-3725.
    13. Luo, M.-F., Y.-J. Zhong, X.-X. Yuan, et al., TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation. Applied Catalysis A:General,1997.162(1-2):p.121-131.
    14. Rodriguez, J.A. and J. Hrbek, Inverse oxide/metal catalysts:A versatile approach for activity tests and mechanistic studies. Surface Science,2010.604(3-4):p.241-244.
    15. Trovarelli, A., Catalytic Properties of Ceria and CeO2-Containing Materials. Catalysis Reviews, 1996.38(4):p.439-520.
    16. Szabova, L., O. Stetsovych, F. Dvorak, et al., Distinct Physicochemical Properties of the First Ceria Monolayer on Cu(111). The Journal of Physical Chemistry C,2012.
    17. Sutara, F., M. Cabala, L. Sedlacek, et al., Epitaxial growth of continuous CeO2(111) ultra-thin films on Cu(111). Thin Solid Films,2008.516(18):p.6120-6124.
    18. Chen, B., Y. Ma, L. Ding, et al., Reactivity of Hydroxyls and Water on a CeO2(111) Thin Film Surface:The Role of Oxygen Vacancy. The Journal of Physical Chemistry C,2013.117(11):p. 5800-5810.
    19. Matolin, V., J. Libra, I. Matolinova, et al., Growth of ultra-thin cerium oxide layers on Cu(111). Applied Surface Science,2007.254(1):p.153-155.
    20. Jensen, F., F. Besenbacher, E. Laegsgaard, et al., Oxidation of Cu(111):two new oxygen induced reconstructions. Surface Science Letters,1991.259(3):p. L774-L780.
    21. Onsten, A., M. Gothelid, and U.O. Karlsson, Atomic structure of Cu2O(111). Surface Science, 2009.603(2):p.257-264.
    22. Yang, F., J. Graciani, J. Evans, et al., CO Oxidation on Inverse CeOx/Cu(111) Catalysts:High Catalytic Activity and Ceria-Promoted Dissociation of 02. Journal of the American Chemical Society,2011.133(10):p.3444-3451.
    23. Skoda, M., M. Cabala, I. Matolinova, et al., A photoemission study of the ceria and Au-doped ceria/Cu(111) interfaces. Vacuum,2009.84(1):p.8-12.
    24. Panzner, G., B. Egert, and H.P. Schmidt, The stability of CuO and Cu2O surfaces during argon sputtering studied by XPS and AES. Surface Science,1985.151(2-3):p.400-408.
    25. Ghijsen, J., L.H. Tjeng, J. van Elp, et al., Electronic structure of Cu_{2}O and CuO. Physical Review B,1988.38(16):p.11322.
    26. Kirstein, W., B. Kriiger, and F. Thieme, CO adsorption studies on pure and Ni-covered Cu(111) surfaces. Surface Science,1986.176(3):p.505-529.
    27. Senanayake, S.D., J. Zhou, A.P. Baddorf, et al., The reaction of carbon monoxide with palladium supported on cerium oxide thin films. Surface Science,2007.601(15):p.3215-3223.
    28. Mullins, D.R., P.M. Albrecht, T.-L. Chen, et al., Water Dissociation on CeO2(100) and CeO2(111) Thin Films. The Journal of Physical Chemistry C,2012.116(36):p.19419.
    29. Schulz, K.H. and D.F. Cox, Surface hydride formation on a metal oxide surface:the interaction of atomic hydrogen with Cu2O(100). Surface Science,1992.278(1-2):p.9-18.
    30. Kammler, T. and J. Kuppers, Interaction of H atoms with Cu(111) surfaces:Adsorption, absorption, and abstraction. The Journal of Chemical Physics,1999.111(17):p.8115-8123.
    31. Au, C.-t., J. Breza, and M.W. Roberts, Hydroxylation and dehydroxylation at Cu(111) surfaces. Chemical Physics Letters,1979.66(2):p.340-343.
    32. Spitzer, A. and H. Luth, The adsorption of water on clean and oxygen covered Cu(110). Surface Science,1982.120(2):p.376-388.
    33. Hinch, B.J. and L.H. Dubois, Stable and metastable phases of water adsorbed on Cu(111). The Journal of Chemical Physics,1992.96(4):p.3262-3268.
    34. Matolin, V., L. Sedlacek, I. Matolinova, et al., Photoemission spectroscopy study of Cu/CeO2 systems:Cu/CeO2 nanosized catalyst and CeO2(111)/CU(111) inverse model catalyst. Journal of Physical Chemistry C,2008.112(10):p.3751-3758.
    35. S.D. Jackson, J.S.J.H., in Metal Oxide Catalysis2008, Wiley:New York. p. I-XX.
    36. Ladebeck, J.R. and J.P. Wagner, Catalyst development for water-gas shift, in Handbook of Fuel Cells2010, John Wiley & Sons, Ltd.
    37. Byron Smith R J, M.L., Murthy Shekhar Shantha, A Review of the Water Gas Shift Reaction Kinetics. International Journal of Chemical Reactor Engineering, June 2010.8(1).
    38. Bing Zhou, S.H., Gabor A. Somorjai, Nanotechnology in Catalys,Kluwer-Plenum,New York. 2004.
    39. Wang, X., J.A. Rodriguez, J.C. Hanson, et al., In Situ Studies of the Active Sites for the Water Gas Shift Reaction over Cu-CeO2 Catalysts:Complex Interaction between Metallic Copper and Oxygen Vacancies of Ceria. The Journal of Physical Chemistry B,2005.110(1):p.428-434.
    40. Germani, G. and Y. Schuurman, Water-gas shift reaction kinetics over μ-structured Pt/CeO2/A12O3 catalysts. AIChE Journal,2006.52(5):p.1806-1813.
    41. Eck, S., C. Castellarin-Cudia, S. Surnev, et al., Adsorption and reaction of CO on a ceria-Rh(111) "inverse model catalyst" surface. Surface Science,2003.536(1-3):p.166-176.
    42. Guzman, J., S. Carrettin, and A. Corma, Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2. Journal of the American Chemical Society,2005.127(10):p.3286-3287.
    43. Grenoble, D.C., M.M. Estadt, and D.F. Ollis, The chemistry and catalysis of the water gas shift reaction:1. The kinetics over supported metal catalysts. Journal of Catalysis,1981.67(1):p. 90-102.
    44. Choi, Y. and H.G. Stenger, Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. Journal of Power Sources,2003.124(2):p.432-439.
    45. Qi, X. and M. Flytzani-Stephanopoulos, Activity and Stability of Cu-CeO2 Catalysts in High-Temperature Water-Gas Shift for Fuel-Cell Applications. Industrial & Engineering Chemistry Research,2004.43(12):p.3055-3062.
    46. Rodriguez, J.A., J. Evans, J.s. Graciani, et al, High Water-Gas Shift Activity in TiO2(110) Supported Cu and Au Nanoparticles:Role of the Oxide and Metal Particle Size. The Journal of Physical Chemistry C,2009.113(17):p.7364-7370.
    47. Rodriguez, Jose A., J. Graciani, J. Evans, et al., Water-Gas Shift Reaction on a Highly Active Inverse CeO2(111)/Cu(111) Catalyst:Unique Role of Ceria Nanoparticles 13. Angewandte Chemie,2009.121(43):p.8191-8194.
    48. Xu, L., Z. Wu, W. Zhang, et al., Oxygen Vacancy-Induced Novel Low-Temperature Water Splitting Reactions on FeO(111) Monolayer-Thick Film. The Journal of Physical Chemistry C, 2012.116(43):p.22921-22929.
    49. van Reijzen, M.E., M.A. van Spronsen, J.C. Docter, et al., CO and H2O adsorption and reaction on Au(310). surface science,2011.605(17-18):p.1726-1731.
    50. Senanayake, S.D. and D.R. Mullins, Redox pathways for HCOOH decomposition over CeO2 surfaces. Journal of Physical Chemistry C,2008.112(26):p.9744-9752.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700