掺Yb~(3+)激光玻璃的组成—结构—性能相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二极管泵浦固体激光器是近年来国际上发展最快的新型激光器,而作为工作物质的激光材料是研究重点之一。Yb~(3+)离子因电子构型简单、理论上不存在交叉驰豫和激发态吸收、吸收峰位于970nm附近能与InGaAs二极管泵浦波长(900~1100nm)有效耦合,非常适合于用作大功率固体激光器的激活粒子。掺Yb~(3+)激光玻璃因制备工艺简单、容易形成大尺寸以及可通过调整玻璃组成来优化材料的性能等特点,而成为激光工作介质材料领域的重要发展方向,在现代工业、医学、科学研究和国防军工等各个方面都有着重要应用。由于磷酸盐玻璃具有发射截面大和荧光寿命长等优点,一直以来,磷酸盐系统都是掺Yb~(3+)激光玻璃的首选基质材料,但磷酸盐玻璃的结构单元[PO_4]四面体中含有一个P=O双键,致使磷酸盐玻璃呈层状或链状结构,这种特殊的结构决定了其热-力学性能较差,限制了它在各方面的应用。
     本文以掺Yb~(3+)磷酸盐、氟磷酸盐和硼磷酸盐三大体系激光玻璃材料为研究对象,采用传统熔融冷却方法制备了三大体系的激光玻璃材料,利用IR、Raman、X-ray衍射分析、吸收和发射光谱等手段系统研究了三大体系激光玻璃的组成-结构-性能三者之间的相关性,探索了Al_2O_3、B_2O_3、ZnO和氟化物等组分对激光玻璃结构和性能的影响,发现了碱金属和碱土金属离子与掺Yb~(3+)激光玻璃热-力学性能和光谱性能之间的变化规律,提出了B_2O_3-P_2O_5-ZnO系统玻璃的定量结构模型,综合比较了三大类激光玻璃材料理化性能的差异,获得了综合理化性能与QX/Yb和FP可比的新型激光玻璃材料。主要研究结果如下:
     1)在P_2O_5-Al_2O_3-(Nb_2O_5+La_2O_3+B_2O_3)-K_2O-BaO-Yb_2O_3系统磷酸盐玻璃中,引入Al_2O_3有助于改善玻璃热-力学性能,Al_2O_3的含量为7mol%时,玻璃有最好的热-力学性能。随Al_2O_3含量从7mol%到13mol%,非线性折射率n_2逐渐降低,而增益系数σ_(emi)·τ_m逐渐增大。
     2)在P_2O5-Al_2O_3-(Nb_2O_5+La_2O_3+B_2O_3)-R_2O/MO-Yb_2O_3(R为Li、Na和K,而M为Mg、Ca、Sr、Ba和Zn)系统玻璃中,随阳离子的场强Z/r~2增大,玻璃的热-力学性能按K~+<Na~+<Li~+和Ba~(2+)<Sr~(2)<Ca~(2+)<Zn~(2+)<Mg~(2+)的顺序变好,玻璃的光谱性能则随阳离子场强Z/r~2的增大而变差,而场强Z/r~2较小的K_2O和BaO玻璃表现出最好的光谱和激光性能。
     3)在多系统氟磷酸盐玻璃中,随氟化物(LiF和CaF_2)取代修饰体氧化物(Li_2O和BaO),玻璃的热-力学性能逐渐改善,非线性折射率n_2、积分吸收截面∑_(abs)、发射截面σ_(emi)和增益系数σ_(emi)·τ_m逐渐增大;碱金属或碱土金属氟化物种类和含量对玻璃的性能也有影响,氟化物阳离子场强Z/r~2较大的玻璃具有较好的热-力学性能,与低含量氟化物玻璃相比,氟化物含量较高时的积分吸收截面∑_(abs)和发射截面σ_(emi)都明显增大,但氟化物种类对光谱性质的影响不大。
     4)在P_2O_5-B_2O_3-(Nb_2O_5+Al_2O_3)-(K_2O+BaO)-Yb_2O_3系统玻璃中,当B/(B+P)值超过0.33时将会失透。而在B_2O_3-P_2O_5-ZnO系统玻璃中,由于Zn~(2+)在硼磷酸盐玻璃中特殊的配位结构,玻璃的形成范围大大增加,B/(B+P)值超过0.4时仍未失透。另外,由xB_2O_3-(60-x)P_2O_5-40ZnO(x=5,10,15,20和25mol%)系统玻璃的定量结构模型可知,当x≤20mol%时,由于B_2O_3中的B~(3+)优先形成[BO_4],使玻璃的三维网络结构得到加强,ZnO充当网络修饰体进入网络空隙,对玻璃网络结构有断网作用:当x>20mol%时,由于带负电荷的[BO_4]之间不能直接相连,过量的B~(3+)以[BO_3]三角体形式存在,而Zn~(2+)以[ZnO_6]八面体形式填充在网络间隙。
     5)在硼磷酸盐玻璃中,由于P-O-B(4)键的形成,大大提高了玻璃的热-力学性能,甚至与硅酸盐玻璃的相当。由于硼磷酸盐玻璃中存在多种结构单元(如[BO_3]、[BO_4]和[PO_4]等),Yb~(3+)离子周围配位场变得复杂,在xB_2O_3-(60-x)P_2O_5-40ZNO玻璃中,随X值增大,积分吸收截面∑_(abs)逐渐增大,但发射截面σ_(emi)在x=15mol%时有极大值0.816pm~2,因此这时玻璃具有最大的增益系数σ_(emi)·τ_m。
     6)通过对三个系统激光玻璃性能的比较,按磷酸盐<氟磷酸盐<硼磷酸盐顺序,玻璃的热-力学性能逐渐改善,非线性折射率n_2按磷酸盐>氟磷酸盐>硼磷酸盐的顺序降低,三种玻璃中氟磷酸盐玻璃具有最大的积分吸收截面∑_(abs)、发射截面σ_(emi)和增益系数σ_(emi)·τ_m。与国外的QX/Yb和FP激光玻璃相比,氟磷酸盐玻璃Ⅲ-2样品和硼磷盐玻璃BPZ3样品的综合性能优于FP玻璃的,与QX/Yb玻璃相近,有望用于二极管抽运固体激光器的工作介质。
The diode Pump Solid State Laser is a new kind of fast developinglaser. In order to meet the requirement of the solid state laser, the researchof laser metatials as working media of the laser has become a majoraspect. Because the configuration of Yb~(3+) ions is very simple withoutcross relaxation and excited state absorption in the theory and theemission spectrum of Yb~(3+)ions with main absorption peak around 970nm can be coupled effectively with the wavelength (900~1100nm)pumped by InGaAs laser diode(LD), it is very suitable to be used asexciting particle in the laser materials for using as high-power laser.Recently, Yb~(3+) doped laser glass have been attrcting increasing attentionbecause of its many advantages such as simple preparation technology,easy to form large size and optimizable properties by adjustingcomposition of glass, and have widely been applied in modern industry,medicine, scientific research and military affairs. As having largeemission cross-section and long fluorescence lifetime, the phosphateglasses have been using as major host materials doped-Yb~(3+). However,there is a double bond P=O in the structural unit [PO_4], which results inthe formation of the chain or layer-like structure in the phosphate glass. Itis very clear that the glass with this kind of structure has poorthermo-mechanical property and less practical application.
     In this article, Yb~(3+) doped phosphate, fluorophosphate andborophophate system laser glasses have been prepared by means ofconventional melt quenching technology. Correlation among composition,structure and properties of three system glasses were investigated byusing of IR, Raman, X-ray diffraction, absorption and emission spectra.The effect of addition of Al_2O_3, B_2O_3 and fluoride on structure andproperties of the phosphate glass was explored, and the change regularitybetween the thermal-mechanical/spectroscopic properties and thealkali/alkaline oxides was found. The structural model of B_2O_3-P_2O_5-ZnOsystem glass was put forward on the basis of the quantitative analysis ofthe glass structure. The properties of three system laser glasses weresystematically compared. It was easy to know that the prepared laser glasses possess the same excellent comprehensive properties as Qx/Yb orFP glass. The main research results were as follows:
     1) The thermo-mechanical properties of P_2O_5-Al_2O_3-(Nb_2O_5+La_2O_3+B_2O_3)-K_2O-BaO-Yb_2O_3 glasses can be improved by theintroducting appropriate content Ai_2O_3 and the optimum value of Al_2O_3 isabout 7mol%. The nonlinear refractive index n_2 decreases but the gaincoefficient increases with increasing Al_2O_3 content from 7mol%to13mol%.
     2) In P_2O_5-Al_2O_3-(Nb_3O_5+La_2O_3+B_3O_3)-R_2O/MO-Yb_2O_3 systemglasses (R for Li, Na and K, M for Mg、Ca、Sr、Ba and Zn), with increaseof cation field strength Z/r~2, the thermo-mechanical properties becomebetter in the order of K~+<Na~+<Li~+ and Ba~(2+)<Sr~(2+)<Ca~(2+)<Zn~(2+)<Mg~(2+),whereas the glasses containing K_2O and BaO with smaller field strengthshow excellent spectroscopic and laser properties.
     3) In multicomponent fluorophosphate glasses, the thermo-mechanical properties are improved, at the same time, the nonlinearrefractive index n_2, integral absorption cross-section∑_(abs), emissioncross-sectionσ_(emi) and gain coefficientσ_(emi)·σ_m increase when Li_2O andBaO are substituted by LiF and CaF_2. In addition, the species and thecontent of fluoride also influence the properties of fluorophosphateglasses, the thermo-mechanical properties are better for thefluorophosphate glasses containing alkali/alkaline fluorides with largercation field strength Z/r~2, and compared with the fluorophosphate glasseswith low fluoride content, the glasses with high fluoride content showlarger integral absorption cross-section∑_(abs) and emission cross-sectionσ_(emi), but the species of fluoride has little influence on the spectroscopicproperties.
     4) The devitrifing phenomenon will happen in P_2O_5-B_2O_3-(Nb_2O_5+Al_2O_3)-(K_3O+BaO)-Yb_2O_3 system glasses when B/(B+P) valueis larger than 0.33. However, the phenomenon will not happen in theB_3O_3-P_2O_5-ZnO glasses when B/(B+P) value is larger than 0.4, which isdue to introducting ZnO, which broaden the range of formation ofB_2O_3-P_2O_5-ZnO glasses because of the special coodination of Zn~(2+) ions inthe borophosphate glass. In addition, in the xB_2O_3-(60-X)P_3O_5-40ZnO (x=5, 10, 15, 20 and 25 mol%) glass, B~(3+) prefers to form [BO_4] whichstrengthen network structure, whereas Zn~(2+) depolymerizes networkstructure as modifier when x≤20mol%. When B_2O_3 content is larger than20mol%, the redundant B~(3+) ions form [BO_3] because [BO_4] tetrahedrawith negative charge can not link each other, and Zn~(2+)ions form [ZnO_6]in the rich B_2O_3.
     5) Due to the formation of P-O-B(4) bonds in borophosphate glass,the thermo-mechanical properties are improved greatly and almost areequal to those of silicate glasses. There are various structural units such as[BO_3], [BO_4], [PO_4] etc, therefore the site environment around Yb~(3+)become complicated, In xB_2O_3-(60-x)P_2O_5-40ZnO glasses, the integralabsorption cross-section∑_(abs) increases with increase of B_2O_3 content, butthe emission cross-sectionσ_(emi) has maximum value of 0.816 pm~2 atx=15mol%, therefore the glass has maximal gain coefficientσ_(emi)·τ_m.
     6) It is found that the thermo-mechanical properties become better inthe order of phosphate<fluorophosphate<borophosphate glass, wherasthe nonlinear refractive indexes n2 decrease in the order of phosphate>fluorophosphate>borophosphate glass. Among the three system glasses,the fluorophosphate glasses have the largest integral absorptioncross-section∑_(abs), emission cross-sectionσ_(emi) and gain coefficientσ_(emi)·τ_m.Compared with QX/Yb and FP laser glasses, the comprehensiveproperties of the fluorophosphate glassⅢ-2 and the borophosphate glassBPZ3 are superior to FP, and are equal to those of QX/Yb. The two kindsof glass could be used as the promising working media for diode PumpSolid State Laser.
引文
[1] 李湘银,姚敏玉,李卓等.激光原理技术及应用.哈尔滨:哈尔滨工业大学出版社,2003:127
    [2] 西北轻工业学院.玻璃工艺学.北京:中国轻工业出版社,2000:608
    [3] 干福熹,姜中宏,李家治等.现代玻璃科学技术.上海:上海科学技术出版社,1988:280-284
    [4] Robison C C and Fournier J T. Co-ordination of Yb~(3+) in phosphate, silicate, and germinate. J. Phys. Chem. Solids, 1970, 131:895-904
    [5] Weber M J. Optical properties of Yb~(3+) and Nd~(3+) -Yb~(3+) Energy transfer in YAlO_3. Physical Review B, 1971, 4:3153-3159
    [6] Feng Xian, Qi Changhong, Lin Fengyin, et al. Tungsten-tellurite glass: a new candidate medium for Yb~(3+)-doping. Journal of Non-Crystalline Solids, 1999, 256& 257:372-377
    [7] Murata T, Mazeno K, Moringa K. Matrix effect on local structure surrounding Yb~(3+) and spontaneous emission probability in oxide glasses. Science and technology of advanced materials, 2002:385-390
    [8] Robinson C C, Foumier J T. CoOordination of Yb~(3+) in phosphate, silicate and germinate glasses, Journal of Physics and Chemistry of Solids, 1970, 31: 895-904
    [9] Jiang Chun Zhang Junzhou Huang Guosong, et al. Spectroscopic Properties of Yb3+-doped Borate Glasses. Chinese Journal of Lasers, 1999, 8(4): 366-371
    [10] 上海光机所研究报告集.第二集:激光玻璃,1974:59
    [11] 李家成,李顺光,胡和方等.Yb~(3+)掺杂氟铝酸盐玻璃的光谱性质,中国激光,2004,31(2):232-236
    [12] 雷宁,姜中宏.Yb~(3+)掺杂固体中的浓度猝灭机制.中国激光,1995,22(11):857-860
    [13] 王民权,马立新,樊宏平.磷酸盐玻璃中稀土离子的发光浓度效应研究.玻璃与搪瓷,1996,24(2):6-9
    [14] 邱关明,孙彦彬.稀土激光玻璃的研究.中国稀土学报,2000,18:28-30
    [15] 柳祝平,戴世勋,胡丽丽等.Yb~(3+),Er~(3+)共掺磷酸盐铒玻璃光谱性质研究.中国激光,2001,28(5):467-470
    [16] Veasey D L, Funk D S, Peters P M. Yb~(3+)/Er~(3+)-codoped and Yb-doped waveguide lasers in phosphate glass. Journal of Non-crystalline Solids, 2000, 263&264:369-381
    [17] Cruz Vicent S G, Martinez Gamez M.A, Kiryanov A V. The luminescent properties of Er~(3+)-Yb~(3+)-doped fluorophosphate fiber glass preforms at high temperatures. Optical Materials, 2005, 27:1563-1566
    [18] Weber M J, W, Lynch J E, Blackburn D H. Dependence of the stimulated emission cross section of Yb~(3+) on host glass .composition. IEEE J. Quantum Electron, 1983, QE-19(10):1600-1608
    [19] Peng B, Izumitani T. Next generation laser glass for nuclear fusion. The Review of laser engineering, 1993, 21(12): 1234-1244
    [20] Zou Xuelu, Hisayoshi T. Evaluation of spectroscopic properties of Yb~(3+)-doped glasses. Physical Review B, 1995, 52(22): 15889-15897
    [21] Koch R, Griebner U, Schonnagel H, et al. Efficiency room temperature C W Yb~(3+): Glass laser pumpered by a 946nm Nd: YAG laser. Optical Communication, 1997, 134(1-6):175-178
    [22] Petrov V, Griebnur U, Ehrt D, et al. Femtosecond self mode locking of Yb: fluoride phosphate glass laser. Optics Letters, 1997, 22(6): 408-410
    [23] Takebe H, Murata T, Morinaga K. Compositional dependence of absorption and fluorescence of Yb~(3+) in oxide glasses. Journal of the American Ceramic Society, 1996, 79:681-687
    [24] Dai Nengli, Hu Lili, Jiang Chu, et al. Spectroscopic properties of Yb~(3+)-doped silicate glasses. Journal of Alloys and Compounds, 2004, 363:1-5
    [25] 戴能利.Yb~(3+)掺杂多组分硅酸盐玻璃光谱性质研究:[博士学位论文],上海,中科院上海光机所,2004
    [26] Jiang Chu, Zeng Qingji, Liu Hua, et al. Yb: Niobosilicate glass with high-emission cross section. Journal of the American Ceramic Society, 2000, 83(7): 1709-1712
    [27] Hiromichi T, Yakahiro M and Kenji M. Compositional dependence of absorption and fluorescence of Yb~(3+) in oxide glasses. Journal of the American Ceramic Society, 1996, 79(3): 681-687
    [28] 姜淳,曾庆济,干福熹.掺镱硼酸盐和磷酸盐玻璃光谱性质的成分依赖性.科学通报,2000,45(11):1123-1131
    [29] Griebner U, Koch R, Schonnagel H, et al. Laser performance of a new ytterbium doped phosphate laser glass, OSA Proc.on Advanced solid state lasers, 1996
    [30] 公开特许公报,特开平8-26768,Yb~(3+)掺杂激光玻璃和玻璃激光器,1996-9-10
    [31] Jiang C, Liu H, Zeng Q, et al. Yb: phosphate laser glass with high emission cross-section Journal of Physics and Chemistry of Solids, 2000, 61: 1217-1223
    [32] 姜淳,张俊洲,卓敦水等.BaO-P_2O_5和R_2O-BaO-P_2O_5系统磷酸盐激光玻璃 RAP法除水的研究.中国激光,1996,23(2):182-186
    [33] 姜淳,高文燕,卓敦水等.OH基对磷酸盐激光玻璃激光性能和物理性质的影响.硅酸盐学报,1998,26(1):97-102
    [34] Ehrmann P R, Carlson K, Campbell J H, et al. Neodymium fluorescence quenching by hydroxyl groups in phosphate laser glasses. Journal of Non-Crystal Solids, 2004, 349:105-114
    [35] Toratani H, Meissner H E, Izumitani T, et al. Phosphate laser glass of absorption loss of 10~(-4)cm~(-1). Journal of Non-Crystalline Solids, 1987, 95-96:701-708
    [36] Quirino W G; Bell M J V, Oliveira S L, et al. Effects of non-radiative processes on the infrared luminescence of Yb~(3+) doped glasses. Journal of Non-Crystal Solids, 2005, 351:2042-2046
    [37] Mix E, Heumann E, Huber G; et al. Effective CW-laser operation of Yb~(3+)-doped fluoride phosphate glass at room temperature. OSA Proc. Advanced solid-state lasers, 1995(24): 339-342
    [38] Yin Hongbing, Deng Pengzhen, Zhang Junzhou, et al. Emission properties of Yb~(3+) in fluorophosphates glass. Journal of Non-Crystal Solids, 1997, 210:243-248
    [39] Choi J H, Margaryan A, Shi F G, et al. Optical transition properties of Yb~(3+) in new fluorophosphates glasses with high gain coefficient. Journal of Alloy and Compounds, 2005, 396:79-85
    [40] Wang Guonian, Zhang Junjie, Dai Shixun, et al. Thermal .analysis, spectral characterization and structural interpretation of Yb~(3+) doped TeO_2-ZnO-ZnF_2 glasses. Physics A, 2005, 341:285-290
    [41] Wang Guonian, Zhang Junjie, Dai Shixun, et al., Effect of F~- ions on spectroscopic properties of Yb~(3+) -doped zinc-tellurite glasses. Journal of Physics and Chemistry of Solids 2005, 66:1107-1111
    [42] Wang Guonian, Dai Shixun, Zhang Junjie, et al. Fluorescence lifetime increase by introduction of F~- ions in Ytterbium-doped TeO_2-based glasses. Journal of Alloys and Compounds 2005, 393:279-282
    [43] Kassab L R P, Courrol L C, Cacho V D D, et al. GeO_2- PbO-Bi_2O_3 glasses doped with Yb~(3+) for laser applications. Journal of Non-Crystal Solids, 2004, 348:103-107
    [44] Peng B, Jiang L, Qiu X M, et al. Ytterbium doped heavy metal oxide glasses with high emission cross-section. Journal of Alloys and Compounds, 2005, 398:170-172
    [45] Jiang Chun, Lin Hua, Zeng, et al. Yb: phosphate laser glass with high emission cross-section. Journal of Physics and Chemistry of Solids, 2000, 61: 1217-1223
    [46] Moses E I, Campbell J H, Stolz C, et al. The national Ignition Facility: the world's largest optics and laser system, Proc. SPIE, 2003, 5001:1-15
    [47] Campbell J H, Suratwala T I, Thorsness C B. Continuous melting of phosphate laser glasses, 2000, 263&264:342-357
    [48] 余尧楚,姜中宏.磷酸盐玻璃熔炼时对铂的腐蚀.无机材料学报,1977,12(3):265-272
    [49] Judd B R. Optical absorption intensities in rare earth ions. Journal of Chemical Physics, 1962, 127(3): 750-761
    [50] Ofelt. G. R. Intensities of crystal spectra of rare ions, Journal of Chemical Physics, 1962, 37(3): 511-520
    [51] H Takebe, T Mruata, K Morinaga, Compositonal dependence of absorption and fluorescence of Yb~(3+) in oxide glasses. Journal of the American Ceramic Society, 79(1996), 681-687
    [52] Krupke W F. Dependence of the ~4F_(3/2)-~4F_(11/2) Induced-Emission Cross Section for Nd~(3+) on glass composition. IEEE J. Quantum Electron, 1974, 80:450-461
    [53] L Dellach, S Payne, L Chase, et al. Evaluation of absorption and emission properties of Yb~(3+) doped crystal for laser applications. IEEE Journal of Quantum Electronics, 29(1993), 1179-1191
    [54] L R P Kassab, L C Courrol, A S MorNs, et al. Spectroscopic properties of lead fluoroborate and heavy metal oxide glasses doped with Yb~(3+). Journal of Non-Crystalline Solids, 2002, 304, 233-237
    [55] Sidek H A A, Collier I T, Hampton R N, et al. Electrical conductivity and dielectric constant of samarium phosphate glasses. Philosophical Magazine B, 1989, 59(2): 221-232
    [56] Munoz F, Montagne L, Marchand R. Structure and properties of (25-x/2)Li_2O-(25-x/2)Na_2O- xPbO-50P_2O_5 metaphosphate glasses. Journal of Non-crystalline Solids, 2004, 347:153-158
    [57] Karlsson G; Pasiskevicius V, Fraqemann A, et al. Generation of 100-kW-level pulses at 1.53 um in the diode-pumped Er-Yb: glass laser-PPKTP optical parametric amplifier system. Proceedings of the SPIE-The International Society for Optical Engineering, 2003, 5137(1):37-42
    [58] Blaize S, Bastard L,. Cassaqnetes C, et al. Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate. IEEE Photonics Technology Letters, 2003, 15(4): 516-518
    [59] David L. Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass.Journal of Non-crystalline Solids, 2000, 263: 369-381
    
    [60] Yung H, Shih P Y, Liu H S. Nitridation effect on properties of stannous-lead phosphate glasses. Journal of the American Ceramic Society, 1997, 80(9):2213-2220.
    
    [61] Reidmeyer M R, Rajaram M, Day D E, Preparation of phosphorus oxynitride glasses Journal of Non-crystalline Solids, 1986, 85:186
    
    
    [62] Brow R K. Nature of Alumina in Phosphate Glasses: I, Properties of Sodium Aluminophosphate Glass. Journal of the American Ceramic Society, 1993, 76:913-918
    
    [63] Muller D, Berger G, Grunze I, et al. Solid- state high-resolution ~(27)Al nuclear magnetic resonance studies of the structure of CaO-Al_2O_3-P_2O_5 Glasses. Physics and Chemistry of Glasses, 1983,24(2): 37-42
    
    [64] Brow R K, Kirkpatrick R J, Turner G L. Nature of Alumina in Phosphate Glasses: II, Structure of Sodium Aluminophosphate Glass. Journal of the American Ceramic Society, 1993,76: 919-928
    
    [65] Tallant D R, Nelson C. Raman Investigation of Glass Structure in The Na_2O-SiO_2- P_2O_5-Al_2O_3 System. Physics and Chemistry of Glasses, 1986, 27(2):166-173
    
    [66] Mackenzie J D. Modern aspects of the vitreous state. London: Butterworths,1960
    
    [67] Kordes E, Anorg Z. Physicochemical Investigation of fine Structure of Glasses.Allgemeine Chemie, 1939,241(141): 1-38
    
    [68] Korles E, Vogel W, Feterowsky R, Physical Chemistry Investigations of the Characteristics and Fine Solutions of Phosphate Glasses. Z. Electrochem. 1953, 57(4):282-289
    
    [69] Lippma E, Magi M, Samoson A, et al. Structural studies of silicates by solid-state high-resolution 29 Si NMR. Journal of the American Chemical Society, 1980, 102:4889-4893
    
    [70] Martin S W, Eur. Review of the Structures of Phosphate Glasses. Journal of Solid State and Inorganic Chemistry, 1991,1: 163-168
    
    [71] Bunker B C, Kirkpatrick R J, Brow R K. Local structure of Alkaline-earth boroaluminate crystals and glasses I : crystal chemical concepts-structural predictions and comparisons to known crystal structures. Journal of the American Ceramic Society, 1991, 74(6): 1425-1429
    [72] Bunker B C, Kirkpatrick R J, Brow R K, et al. Local structure of Alkaline-earth boroaluminate crystals and glasses II: ~(11)B and ~(27)A1 MAS NMR spectroscopy of Alkaline-earth boroaluminate glasses. Journal of the American Ceramic Society, 1991,74(6): 1430-1438
    
    [73] Bunker B C, Tallant D R, Kirkpatrick R J, et al. Multinuclear NMR and Raman investigation of sodium borosilicate glasses structures. Physics and Chemistry of Glasses, 1990, 31(1): 30-41
    
    [74] Meer H V. The crystal structure of a monoclinic form of Aluminum metaphosphate, Al(PO_3)_3, Acta Crystallographica Section A: Foundations, 1976, B32:2423-2426
    
    [75] Thong N, Schwarzenbach D. The use of electric field gradient calculations in charge density refinements. II, Charge density refinement of the low-Quartz structure of aluminum phosphate. Acta Crystallographica Section A: Foundations, 1979, A35:658-664
    
    [76] Ng H N, Calvo C. The crystal structure of KAlP_2O_7. Canadian Journal of Chemistry, 1973, 51: 2613-2620
    
    [77] Hafid M, Jermoumi T, Toreis N, et al. Structure of (45 -x )Na_2O-xBaO-5ZnO-50P_2O_5 glasses studied by DSCand infrared spectroscopy. Materials Letters, 2002, 56:486-496
    
    [78] Shih P Y, Yung S W, Chin T S. FTIR and XPS studies of P_2O_5-Na_2O-CuO glasses.Journal of Non-crystalline Solids, 1999,244: 211-222
    
    [79] Moustafa Y M, El-Egili K. Infrared spectra of sodium phosphate glasses. Journal of Non-crystalline Solids, 1998,240: 144-153
    
    [80] Karabulut M, Metwall E, Brow R K. Structure and properties of lanthanum Aluminum Phosphate glasses. Journal of Non-crystalline Solids, 2001, 283: 211-219
    
    [81] Roussilot C, Rhess E E, Malugani J P, et al. Correlations between structure and conductivity in NaPO_3-TiO_2 glasses. Solid state Ionics, 1992, 58:71-76
    
    [82] Hudgens J J, Martin S W. Glass transition and infrared spectra of low-alkali, anhydrous lithium phosphate glasses. Journal of the American Ceramic Society, 1993,76(3):1691-1696.
    
    [83] Znasik P, Jamnicky M. Preparation, infrared spectra and structure of glasses in the system CuCl-Cu_2O-(P_2O_5 + MoO_3). Journal of Non-crystalline Solids, 1992, 146:74-80
    
    [84] Chahine A, Et-cabiron M, Pascal J L. FIR and Raman spectra of the Na_2O-CuO-Bi_2O_3-P_2O_5 glasses. Materials Letters, 2004, 58:2776-2780
    [85] Begun G M, Bamberger C E. Raman spectra of the rare earth trimetaphosphates. Journal of Raman Spectroscopy. 1982, 13(3): 284-289
    [86] Hudgens J J, Brow R K, Tallant D R, et al. Raman spectroscopy study of the structure of Lithium and Sodium ultraphosphate glasses. Journal of Non-Crystalline Solids, 1998, 223:21-31
    [87] Munoz F, Agullo F, Montagne L. Structure and properties of (25-x/2)Li_2O-(25-x/2)Na_2O- xPbO-50P_2O_5 metaphosphate glasses. Journal of Non-Crystalline Solids, 2004, 347:153-158
    [88] Santos C N, Yukimitu, Zanata A R, et al. Thermoluminescence of alluminophophate glasses in the metaphosphate composition. Nuclear Instruments and Methods in Physics Reserch B, 2006, 374-378
    [89] Ilieva D, Jivov B, Kovacheva D, et al. FI-IR and Raman spectra of Gd phosphate crystals and glasses. Journal of Non-Crystalline Solids, 293-295:562-568
    [90] Brow R K, Tallant D R, Myers S T, et al. The short-range structure of zinc polyphosphate glass. Journal of Non-Crystalline Solids, 1995, 191:45-55
    [91] Karakassides M A, Saranti A, Koutselas I. Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. Journal of Non-Crystalline Solids, 2004, 347:69-79
    [92] Metwalli E, Brow R K. Modifier effects on the properties and structures of aluminophosphate glasses. Journal of Non-Crystalline Solids, 2001, 289:113-122
    [93] Growth K B. Structure and Infra-red spectra of CaRP_4O_(12) crystals, Journal of Materials Science, 1982, 17(7): 1847-1854
    [94] Cervinka L, Bergerova J, Trojan M. An X-ray study of phosphate glasses of the composition [M(PO_3)_2](M=Zn, Cu, Mn, Ca and Mg), Journal of Non-Crystalline Solids, 1995, 192& 193:121-124
    [95] 西北轻工业出版社.玻璃工艺学.北京:中国轻工业出版社,2000:142
    [96] Zarzycki J.干福熹译.玻璃与非晶态材料.北京:科学出版社,2001:570
    [97] Campbell J H, Suratwala T I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers. Journal of Non-Crystalline Solids, 2000, 263&264:318-341.
    [98] 干福熹.光学玻璃(中册).北京:科学出版社,1982:406
    [99] Jiang Chun, Deng Peizhen, Zhang Junzhou, et al. Yb: tellurogermanate laser glass with high emission cross section. Journal of Luminescence, 1999, 82(4): 321-326
    [100] Jiang Chun, Lin Hua, Zeng Qingji, et al. Yb: phosphate laser glass with high emission cross-section. Journal of Physics and Chemistry of Solids, 2000, 61: 1217-1223
    [101] Zou Xuelu, Hisyoshi T. Evaluation of the spectroscopic properties of Yb3+ doped glasses. Physical review B, 1995, 52(22): 15889-15897
    [102] 胡丽丽,黄国松,戴世勋等.钛宝石激光器用泵浦Yb硼酸盐玻璃首次实现1053nm激光输出.中国激光,1999,26(9):818
    [103] Izmutani T, Toratani H, Kuroda K. Radiation and non-radiation properties of Neodymium doped silicate and phosphate glasses. Journal of Non-crystalline Solids, 1982, 47:87-100
    [104] 干福熹.现代玻璃科学技术(下).上海:上海科学技术出版社,1990:263-307
    [105] Infrared Luminescence of Yb~(3+)-Doped Ions in Floride Glasses. ACTA OPTICA SINICA, 1999, 19(12): 1694-1697 (In Chinese)
    [106] Seeber W, Barth S, Seifert F, et al. New Yb-doped fluoride phosphate laser glass-structural investigations using probe ions. Journal of Luminescence, 1997, 72-74: 449-450.
    [107] Zhang Liyan, Wen Lei, Sun Hongtao. Influence of TeO_2, PbF_2, ZnF_2 on the spectroscopic and lasing properties of Yb~(3+) doped fluorophosphate glass. Journal of Alloys and Compounds, 2005, 391(1-2): 156-161
    [108] Zhang Liyan, Sun Hongtao, Wu Haitao, et al. Effects of PbF_2 on the spectroscopic, lasing and structural properties of Yb~(3+)-doped fluorophosphate glass. Solid State Communications, 2005, 135:150-154
    [109] 戴世勋,胡丽丽.P_2O_5-BaO-Nb_2O_5三元系统玻璃的形成及性能的研究.硅酸盐学报,1999,27(1):48-53
    [110] Binnemans K, Leebeeck H D, C Grrller-Walrand, et al. Spectroscopic properties of uranyl ions in fluorophosphate glasses, Journal of Physics.: Condensed Matter, 1999, 11:4283-4287
    [111] Santos L F, Almeida R M, Tikhomirov V K, et al. Raman spectra and structure of fluoroaluminophosphate glasses. Journal of Non-Crystalline Solids, 2001, 284(1-3): 43-48
    [112] Lebullenger R, Nunes L A O, and Hemandes C. Properties of glasses from fluoride to phosphate composition. Journal of Non-Crystalline Solids, 2001, 284(1-3): 55-60
    [113] Efimov A M. Vibrational spectra, related properties, and structure of inorganic glasses. Journal of Non-crystalline Solids 1999, 253:95-118
    [114] Dowdidar H, Moustafa Y M, El-Maksoud S A, et al. Properties of Na_2O-Al_2O_3-B_2O_3 glasses, Materials Science and Engineering. 2001, A301:207-212
    [115] 干福熹,陈世正,黄国松.多组分无机玻璃的振动光谱.光学学报,1982,2(3):252-257
    [116] Liu H S, Chin T S and Yung S W. FTIR and XPS studies of low-melting PbO-ZnO-P_2O_5 glasses. Materials Chemistry and Physics, 1997, 50:1-10
    [117] Karmakar B, Kundu P, Dwivedi R N. IR spectra and their application for evaluating physical properties of fluorophosphates glasses. Journal of Non-Crystalline Solids, 2001, 289:155-162
    [118] Nakamoto K. Infrared and Raman spectra of Inorganic and coordination compounds, New York: 1986
    [119] Zhang Liyan, Wen Lei, Zhang Junjie, et al. Spectroscopic and structural properties of YbF_3-doped fluorophosphates glasses. Materials Chemistry and Physics, 2005, 91:166-171
    [120] Chittenden R A, Thomas LC. Characteristic infra-red absorption frequencies of organophosphorus compounds-Ⅳ. PX bonds. Spectrochim. 1965, Acta 21 A: 861-867
    [121] Videau J J, Portier J, Piriou B. Rarnan spectroscopic studies of fluorophosphate glasses. Journal of Non-Crystalline Solids, 1982, 48(2-3): 385-392
    [122] Thomas L C, Chittenden R A. Characteristic infrared absorption frequencies of organophosphorus compounds. Ⅶ. Phosphorus ion. Spectrochim, 1970, Acta 26A: 781-785
    [123] Mogus-Milankovic A, Pivac B, Furic K, et al. Structural study of iron phosphate glasses. Physics and Chemistry of Glasses, 1997, 38 (2): 74
    [124] Fang Xiangyu, Ray C S, Mogus-Milankovic A, et al. Iron redox equilibrium, structure and properties of iron phosphate glasses. Journal of Non-Crystalline Solids, 2001, 283:162-172
    [125] Koudelka L, Klikorka J and Frumar M. Raman spectra of fluorophosphates glasses of (1-x)Ba(PO3)2-xLiRAIF6. Journal of Non-Crystalline Solids, 1986, 85:204-210
    [126] 福格尔,谢于深译.玻璃化学.北京:轻工业出版社,1988:53
    [127] 张军杰,何冬兵,段忠超等.氟磷酸盐玻璃的应用研究进展.激光与光电子学进展,2005,42(7):12-16
    [128] Gan Fuxi. Optical and spectroscopic properties of glass. Shanghai, Scientific and Technical Publishers, 1992:42
    [129] Yun Y H, Bray P J. Nuclear magnetic resonance studies of the glasses in the system K_2O-B_2O_3-P_2O_5. Journal of Non-crystalline Solids 1978, 30(1): 45-60
    [130] Koudelka L, Mosner P. Study of the structure and properties of Pb-Zn borophosphate glasses. Journal of Non-crystalline Solids, 2001,293-295:635-641
    [131] Ducel J F, Videau J J, Couzi M. Structural study of Borophosphate glasses by Raman and Infrared spectroscopy. Physics and Chemistry of Glasses, 1993, 34(5): 212-218
    [132] Ducel J F, Videau J J, Couzi M. A structural approach to (1-x)NaPO_3-xNa_2B_4O_7 glasses. Physics and Chemistry of Glasses. 1994, 35(6):253-257
    [133] Scagliotti M, Villa M, Childelli G. Short range order in the network of the borophosphate glasses: Raman results. Journal of Non-crystalline Solids, 1987, 93(2-3): 350
    [134] Villa M, Scagliotti M, Childelli G. Short range order in the network of the borophosphate glasses: A ~(31)P NMR-MAS (Magic Angle Spinning) study. Journal of Non-crystalline Solids, 1987, 94(1): 101-121
    [135] Magistris A, Chiodelli G; Villa M. Lithium borophosphate vitreous electrolytes. Journal of Power Sources, 1985, 14:87-91
    [136] Yano T, Kunimine N, Shibata S, et al. Structural investigation of sodium borate glasses and melts by Raman spectroscopy Ⅱ. Conversion between BO4 and BO_2O~- units at high temperature. Journal of Non-Crystalline Solids, 2003, 321 (3): 147-156
    [137] Lower N P, McRae J L, Feller H A, et al. Physical properties of alkaline-earth and alkali borate glasses prepared over an extended range of compositions. Journal of Non-Crystalline Solids, 2001, 293-295:669-675
    [138] Yokokawa T, Kohsaka S. Acid strength of molten oxide mixtures. Journal of Chemical and Engineering Data, 1979, 24:167-171
    [139] Ilieva D, Jivov B, Kovacheva D, et al. FT-IR and Raman spectra of Gd phosphate crystals and glasses. Journal of Non-crystalline Solids, 2001, 293-295: 562-568
    [140] Pisarski W A, Goryczka T, Wodecka-Dus B, et al. Structure and properties of rare earth-doped lead borate glasses. Materials Science and Engineering, 2005, B122: 94-99
    [141] Brow R K, Tallant D R, Structural design of sealing glasses, Journal of Non-Crystalline Solids, 1997, 222:396-406
    [142] Tatsumisago M, Kowada Y, Minami T. Structure of rapidly quenched lithium phosphate glasses. Physics and Chemistry of Glasses, 1988, 29: 63
    [143] Walter G, ttoppe U, Vogel J, et al. The structure of zinc polyphosphate glass studied by diffraction methods and ~(31)P NMR. Journal of Non-Crystalline Solids, 2004, 333:252-262
    [144] Tischendorf B, Alam T M, Cygan R T, et al. The structure and properties of binary zinc phosphate glasses studied by molecular dynamics simulations. Journal of Non-Crystalline Solids, 2003, 316:261
    [145] Suzuya K, Itoh K, Kajinami A, et al. The structure of binary zinc phosphate glasses. Journal of Non-Crystalline Solids, 2004, 345&346:80-87
    [146] Le Grand M, Romas A Y, Calas G, et al. Zinc environment in aluminoborosilicate glasses by Zn K-edge extended x-ray absorption fine structure spectroscopy. Journal of Materials Research, 2000, 15(9): 2015-2019
    [147] Doweidar H. The Density of silicate glasses in relation to the microstructure. Journal of Non-Crystalline Solids, 1996, 194:155-162
    [148] Doweidar H. Density-structure correlations in Na_2O-Al_2O_3-SiO_2 glasses. Journal of Non-Crystalline Solids, 1998, 240:55-65
    [149] Doweidar H. Density-structure correlations in silicate glasses, Journal of Non-Crystalline Solids, 1999, 249:194-200
    [150] Feil D, Feller S. The density of sodium borosilicate glasses related to atomic arrangements. Journal of Non-Crystalline Solids, 1990, 119: 103-111.
    [151] Doweidar H. Refractive index-structure correlations in silicate glasses. Journal of Non-Crystalline Solids, 2000, 277:98-105
    [152] 杨钢峰,邓再德,印冰等.碱土金属氧化物对掺铒磷酸盐玻璃光谱性质的影响.硅酸盐学报,2004,32(8):954-958
    [153] Liu Shujiang, Lu Anxian, Tang Xiaodong, et al. Investigation on Structures and Properties of Yb~(3+)-Doped Laser Glasses. Journal of Rare Earths, 2006, 24(2): 163-167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700