水稻幼苗硅素吸收能力的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高等植物种间硅(Silicon)含量存在巨大差异,从占地上部分干重的0.1%到10%以上。根据植物硅含量的高低以及Si和Ca的比值,可将植物分为高硅积累型、中等硅积累型和拒硅型三种硅积累类型。高等植物种间硅含量的差异主要来源于根系硅吸收能力的差异,与硅积累类型相应存在三种根系对硅的吸收形式:主动硅吸收、被动硅吸收和拒硅型。植物根系以硅酸的形式吸收硅,硅酸进入木质部后,随蒸腾流被输送到地上部分,以硅胶形式沉积在叶片、茎杆等器官的表皮组织和维管束厚壁组织。提高植物体内的硅含量可以改善植株的受光姿势、增强植物抗倒伏能力、提高植物对多种生物胁迫和非生物胁迫的抗(耐)性、增加产量和提高品质。硅对植物的有益作用随植物硅含量增高而表现明显。提高植物的硅含量除了增施硅肥外,提高根系吸收硅的能力也是一条值得探索的途径。
     水稻是高硅积累型植物,其根系能主动吸收硅。水稻地上部硅(Si)含量可高达干物质重的10%以上。稻株缺硅,其生长发育会受到影响,后期会因不育而导致减产。我国北方有近40%的稻田缺硅,南方则达50%。培育能从低有效硅土壤中高效吸收硅的水稻品种,增加水稻硅含量,既可改善水稻的受光姿势、增强抗倒伏能力、提高水稻对水分胁迫、盐胁迫、高温胁迫、铝毒、重金属毒害胁迫等多种非生物胁迫和稻瘟病、胡麻斑病、纹枯病、螟虫等生物胁迫的抗性,同时又可减少农药、硅肥等施用量,对水稻的可持续生产具有重要的意义。水稻硅吸收遗传机制的分析有利于阐明水稻硅吸收的分子机理,也有助于选育高效硅吸收水稻品种。
     本研究利用粳稻品种Nipponbare、Asominori、Kinmaze和籼稻品种Kasalath、IR24、DV85研究水稻品种间根系硅吸收能力的差异;利用Kinmaze/DV85重组自交系(recombinant inbred lines,RIL)作图群体和Asominori/IR24 RIL作图群体对水稻籼粳间的硅吸收能力进行了遗传分析,并对影响水稻单位根干重硅吸收能力(根硅吸收能力)、单株硅吸收能力和水稻根干重的数量基因座(quantitative trait locus QTL)进行了定位。结果如下:
     1、水稻品种间根系对硅的吸收能力有显著的差异(P<0.01),水稻地上部分的硅含量受根硅吸收能力和根冠比的影响。根硅吸收能力低的品种可因较高的根冠比(或相对较低的地上部生长量)而获得较高的地上部硅含量,因而稻株硅含量的高低并不能反应根系硅吸收能力的强弱,地上部硅含量不宜作为根硅吸收能力检测的指标。粳稻品种Kinmaze和籼稻品种DV85的硅酸吸收能力学试验表明Kinmaze和DV85对硅酸具有相近的亲合常数,但它们对硅酸的最大吸收速率存在显著差异。粳稻品种Asominori和籼稻品种IR24的硅酸吸收动力学试验也具有相同的结果,Asominori与IR24对硅酸的亲合常数相近,但最大硅吸收速率存在差异,暗示品种间的硅转运蛋白密度的差异。
     2、81个家系组成的Kinmaze/DV85 RIL作图群体和由71家系组成的Asominori/IR24 RIL作图群体均表现在单位根干重硅吸收、单株硅吸收和根干重三个性状上的分离,说明这三个性状是数量性状,受多基因控制。两套RIL群体的单位根干重硅吸收、单株硅吸收和根干重三个性状的相关分析表明单株硅吸收与根干重的相关性大于单株硅吸收与单位根干重硅吸收间的相关性,表明水稻单株硅吸收受根量的影响大于受根硅吸收能力的影响;在根干重和单位根干重硅吸收间则存在着负相关。
     3、利用Win QTL Cartographer 2.5分析软件,通过复合区间作图分析,以Kinmaze/DV85 RIL和Asominori/IR24 RIL作图群体为材料,对影响水稻根系硅吸收能力、单株硅吸收能力和根干重的QTL进行了检测。
     利用Kinmaze/DV85 RIL群体定位了3个单株硅吸收相关的QTL,分别位于第7、8和10染色体上,解释表型变异的13.2%、11.0%和11.5%;定位了4个与根硅吸收能力(单位根干重硅吸收)相关的QTL,分别位于第1、3、9和11染色体,相应贡献率为11.7%、7.2%、15.1%和12.2%;定位了3个影响根干重的QTL,分别位于第2、3、7染色体上,相应贡献率为17.2%、13.5%和8.1%。
     利用Asominori/IR24 RIL群体定位了3个单株硅吸收相关的QTL,分别位于第7、8染色体上,相应的贡献率为8.2%、16.1%和10.7%;定位了3个与根硅吸收能力相关的QTL,分别位于第3、7、9染色体上,相应的贡献率为13.5%、12.1%和11.4%;定位了6个影响根干重的QTL,分别位于第1、2、4、7、8染色体上,能解释表型变异的8.9%、7.4%、11.4%、8.5%、18.9%和12.8%。
     在两套RIL群体都检测到的QTL有:位于第3染色体上的影响根硅吸收的QTL,qSILr-3;位于第7、8染色体上与单株硅吸收相关QTL,qSILp-7和qSILp-8;位于第2、7染色体上影响根干重的QTL,qRDW-2和qRDW-7。
     4、根据Kinmaze/DV85 RIL和Asominori/IR24 RIL作图群体的单位根干重硅吸收相关QTL的定位结果,从以Asominori为遗传背景置换IR24的染色体片段置换系(chromosome segment substitution lines,CSSLs)AIS中选择包含根硅吸收QTL区间的染色体片段置换株系,分析目标QTL相应的IR24染色体片段在Asominori遗传背景中的效应,结果表明两套RIL定位的根硅吸收相关QTL基本能检测出,表明RIL定位结果的可靠性。本研究结果为进一步对根硅吸收QTL的精细定位及单基因分离奠定了基础。
The silicon (Si) concentration of plant shoots varies greatly between plant species;ranging from about 0.1% to more than 10% (w/w) Si on a dry weight basis. Base on the Siconcentration of the plant tops and the Si to Ca ratio, plants are classified in to Siaccumulator, intermediate type, and Si excluder species. The variation in Si concentration islargely due to different capacities for Si uptake by plant roots. Three uptake modes havebeen suggested: active, passive, and rejective uptake, corresponding for the three Siaccumulator types respectively.
     Si was absorbed by roots in the form of silicic acid. After uptake, silicic acid in thexylem was immediately transported to the shoot together with the transpiration stream.Most of the Si deposited on the surface of leaf, stem, and the sclerenchyma of vascularbundles, in the form of silica gel. Si in plant can stimulate canopy photosynthesis byimproving leaf erectness, decrease susceptibility to disease and insect damage, preventlodging, and alleviate various abiotic and biotic stresses. But, usually the more Siaccumulates in the shoots, the larger is the effect that gained. The utilization of siliconfertilizer was one way to increase Si concentration in shoot of plant, however, improve theability of Si uptake by root is another way that scientists are dedicating to.
     Rice (Oryza sativa) is a typical plant that shows active uptake of Si, and canaccumulates Si to levels up to 10.0 % of shoot dry weight. Deficiency in Si, the growth ofrice is negatively affected, and the productivity decreases greatly due to reduced fertility. 40% of the paddy soil areas in the southern part of China, are Si deficient; and about 50% ofpaddy soil in the northern part of China are Si-deficient or potentially Si-deficient soils.However, the most strategy is to breed rice varieties with high ability of Si uptake that canget adequate Si from the Si-deficient soil. Thus, rice can get the beneficial from more Si inplant. Improves light interception characteristics by keeping the leaf blade erect, increasesresistance to diseases and pests and lodging, remediate nutrient imbalances, and other beneficial effects, and decrease the usage of pesticide and Si fertilizer, and this will beuseful for the rice sustaining productivity in China. Genetic dissection of silicon uptakeability in rice will be provide a better understanding of the mechanism of rice si uptakeability and a basis for higher Si uptake ability breeding in rice.
     In this study, three japonica rice varieties-Nipponbare, Asominori, Kinmaze -and threeindica rice varieties-Kasalath, IR24, DV85-was used to analysis the difference in Si uptakeamong rice genotypes, and two mapping population of recombinant inbreed lines (RIL)-Kinmaze (japonica) /DV85 (indica) RIL and Asominori (japonica) / IR24 (indica)RIL-were used to detect quantitative trait loci (QTL) for Si uptake by root and root dryweight. The results were followings:
     1. Significant difference in Si uptake ability was observed among rice varieties. The Siconcentration in shoot was affected by root Si uptake ability and the root to shoot ratio.Varieties with lower root Si uptake ability can get higher Si concentration in shoot throughhigher root to shoot ratio. Thus, Si concentration in shoot cannot reflect the ability of theroot Si uptake and it did not appropriate to be an index to detect the root Si uptake ability.Kinetics study indicated that the Si transporters in Kinmaze (japonica) and DV85 (indica)had the same affinity for silicic acid, but with different V_(max). The same result was observedin the kinetic study of Asominori (J) and IR24 (I), they had same affinity for silicic acid, butwith different V_(max), indicating that difference density of Si transporter in root of rice.
     2. Two mapping population of recombinant inbreed lines (RIL)-Kinmaze (japonica) /DV85 (indica) RIL and Asominori (japonica) / IR24 (indica) RIL-was used to detect theSi uptake ability in rice. The two RILs followed a continuous one-peak distribution andshow transgressive segregation in both directions for Si uptake by individual plants (SP), Siuptake per unit root dry weight (SR) and root dry weight (RDW). Therefore, these threetraits are polygenic inheritance. Low correlation was observed between the SP and SR, buthighly significant correlation between the SP and RDW in the both RILs populationssuggesting that SP was much more affected by RDW than by SR. Root biomass play animportant role in Si uptake per plant, and negative correlations between the SR and RDWwere observed in the two RIL populations.
     3. Composite interval mapping (CIM) was conducted by using Win QTL Cart 2.5 software to detected QTLs controlling the Si uptake and the root dry weight in the Kinmaze /DV85 RIL and Asominori / IR24 RIL populations.
     In the Kinmaze / DV85 RIL, three QTLs on chromosome 7, 8 and 10 were identified for SP with the phenotypic variation (PVE) of 13.2%, 11.0%, and 11.5%, respectively.Four QTLs on chromosomel, 3, 9, and 11 were identified for SR with PVEs of 11.7%, 7.2%, and 15.1%, respectively. And 3 QTLs for RDW were detected on chromosome 2, 3, 7with PVEs of 17.2%, 13.5%, and 8.1%, respectively.
     In the Asominori / IR24 RIL, three QTLs on chromosome 7, 8 were identified for SPwith PVE of 8.2%, 16.1%, and 10.7%, respectively. Three QTLs on chromosome 3, 7,and 9 were identified for SR with PVEs of 13.5 %, 12.1%, and 11.36 %, respectively. And6 QTLs for RDW were detected on chromosome 1, 2, 4, 7, 8 with PVEs of 8.9%, 7.4%,11.4%, 8.5%, 18.9%, and 12.8%, respectively.
     The QTL qSILr-3 for SR on the chromosome 3 was detected in both RIL. QTLs for SP,qSILp-7 and qslLp-8 were identified in both RILs, which on chromosome 7 and 8,respectively. And QTLs for RDW on chromosome 2 and 7 were detected in the both twoRILs.
     4. The AIS lines carried the QTL region for SR, which identified in the two RILsmapping populations, in the chromosome segment substitution lines (CSSLs) of IR24chromosome segments in the Asominori genetic background were selected to detect the Siuptake ability by root. The results showed that all the QTLs for SR detected in the Kinmaze/ DV85 RILs and Asominori / IR24 RILs had a corresponding effect. These showed therealty of these QTLs. Thus, the results from this study will provide a better understandingof the mechanism of rice Si uptake ability and the basis for fine-mapping the genesinvolved, and will be useful for the high Si uptake ability in rice breeding program.
引文
Agarie S, Hanaoka N, Ucho O, Miyazaki A, Kubota F, Agata W, Kaufman P B. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science, 1998,1(2): 96-103
    Agarie S, Uchida H, Qgata W, et al. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza Sativa L.). Japanese Journal of Crop Science, 1998,1(2): 89- 95
    Ahmad R, Zaheer S, Ismail S. Role of silicon in salt tolerance of wheat (Tritium aestivum L.). Plant Science, 1992, 85: 43 -50
    Amos G L. Silica in timbers. Commonwealth Scientific and Industrial. Research Bulletin (Australia) 1952, 267:1-55
    
    Amato I. Reverse engineering the ceramic art of algae. Science, 1999, 286:1059-1061
    Anderson D L, Snyder G H, Martin F G. Multi-year response to calcium silicate slag on Everglades histosols. Agronomy Journal, 1991,83:870-874
    Arnon D I, Stout P R. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiology, 1939,14:371-75
    Barber D A, Shone M G T. The absorption of silica from aqueous solutions by plants. Journal of Experimental Botany, 1966,17: 569-578
    Barcelo J, Guevara P, Poschenrieder C. silicon amelioration of aluminum toxicity in teosinte ( Zea mays L) spp. Mexicana Plant Soil, 1997,188:171-176
    Baylis A D, Gragopoulou C, Davidson K J. Effect of silicon on the toxicity of aluminium to soybean. Communications in Soil Science and Plant Analysisi, 1994, 25(5-6):537 - 546
    Belanger R R, Benhamou N, Menzies J G. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology, 2003, 93, 402-12
    Blackman, E. Observations on the development of the silica cells of the leaf sheath of wheat (Triticum aestivum). Canadian Journal of Botany, 1969,47: 827-838.
    Bornman J F S, Reuber Y, Cen P, Weissenbock G. Ultraviolet radiation as a stress factor and the role of protective pigments. In: Plant and UV-B: responses to environmental change. Lumsden P J, ed. Cambrige: Cambrige University Press, 1997, 157-168
    Bowen P, Menzies J, Ehret D. Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science, 1992,117, 906-12
    Boylston E K, Hebert J J, Hensarling T P, Bradow J M, Thibodeaux D P. Role of silicon in developing cotton fibers. Journal of Plant Nutrition, 1990, 13:131 -148
    Brandt L A, and Koch E W. Periphyton as a UV-B filter on seagrass leaves: a result of different transmittance in the UV-B and PAR ranges. 2003, Aquatic Botany, 76:317-327
    Carver T L W, Zeyen R J, Ahlstrand G G. The relationship between insoluble silicon and success or failure of attempted primary penetration by powdery mildew (Erysiphe graminis) germlings on barley. Physiological and Molecular Plant Pathology, 1987, 31:133-48
    Casey W H, Kinrade S D, Knight C T G, Rains D W, Epstein E. Aqueous silicate complexes in wheat, Triticu, aestivum L. Plant Cell and Environment, 2004,27,51-54
    Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 361-365
    Cherif M, Asselin A, Belanger R R, Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology, 1994. 84, 236-42
    Cherif M, Benhamou N, Menzies J G, Belanger R R. Silicon-induced resistance in cucumber plants against Pythium ultimum. Physiological and Molecular Plant Pathology, 1992a 41,411-25
    Cherif M, Menxies J G, Bh ret D L. Yield of cucumber infected with Pythium aphanideruatuum when growth with soluble silicon. Horticulture Science, 1994, 29(8): 2362242
    Cherif M, Menzies J G, Benhamou N, Belanger RR. Studies of silicon distribution in wounded and Pythiumultimum infected cucumber plants. Physiological and Molecular Plant Pathology, 1992b 41, 371-85
    Cocker K M, Evans D E, Hodson M J. The amelioration of aluminium toxicity by silicon in wheat (Triticum aestivum L.): malate exudation as evidence for an in planta mechanism. Planta, 1998, 204:318-323
    Dai Wei-Min, Zhang Ke-Qin, Duan Bin-Wu, Zheng Kang-Le,Zhuang Jie-Yun, Cai Run. Genetic Dissection of silicon content in defferent organs of rice. Crop Science, 2005, 45:1345-1352
    Dakora F D, Nelwarnondo A. Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cow-pea. Functional Plant Biology, 2003, 30 (9): 947-953
    Dakora F D. Diverse functions of isoflavonoids in legumes transcendanti-microbial definitions of phytoalexins. Physiological and Molecular Plant Pathology, 1996, 49:1-20
    Dayanadan P. Localization of silica and calcium carbonate in plants. Scan Electron Microscop, 1983, (3):1519-1524
    Deren C W. Plant genotype, silicon concentration, and silicon- related responses. In: Datonoff L, Snyder G, Korndorfer G, eds. Silicon in agriculture. New York, NY, USA: Elsevier Science Publishing, 2001,149-158
    Deren C W, Datnoff L E, Snyder G N. Variable silicon content of rice cultivars grown on Everglades Histosols. Jounal of Plant Nutrition, 1992,15: 2363-2368
    Deren C W, Datnoff L E, Snyder G N, Martin F G Silicon concentration, disease resonse, and yield components of rice genotypes grown on flooded Histosols. Crop Science, 1994,34:733-737
    Djamin A, Pathak M D. Role of silica in resistance to Asiatic rice borer, Chilo suppressalis (Walker), in rice varieties. Journal of Economic Entomology, 1967, 60:347-351
    Dorweiler J E, Doebley J. Developmental analysis of teosinte glume architecture. 1: A key locus in the evolution of maiae (Poaceae). American Journal of Botany, 1997, 84:1313-1322
    Ebitani T, Takeuchi Y, Nonoue Y, et al. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar 'kasalath' in a genetic background of japonic elite cultivar 'koshihikari'. Breeding Science, 2005,55: 65-73.
    Elawad S H, Gascho G J, Street J J. Response of sugarcane to silicate source and rate. I. Growth and yield. Agronomy Journal, 1982, 74:481-484
    Elawad S H, Street J J, Gascho G J. Response of sugarcane to silicate, source and rate. II. Leaf freckling and nutrient content. Agronomy Journal, 1982, 74:484-487
    Elie Ayitondji Dannon, Kerstin Wydra. Interaction between silicon amendment, bacterial wilt development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiological and Molecular Plant Pathology, 2004, 64:233-243
    
    Engel W. Investigation into the Si compounds in the culm of rice. Planta, 1953, 41:134-141
    Epstein E. Silicon. Annual Review Plant Physiology and Plant Molecular Biology, 1999,50:641-64
    Epstein, E. Silicon in plants: Facts vs. concepts.In: Datnoff LE, Snyder GH, Korndorfer GH, editors. Silicon in agriculture. The Netherlands: Elsevier Science; 2001,1-15
    Epstein, E. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 1994,91:11 -17
    Fang J Y, Ma X Y. In vitro simulation studies of silica deposition induced by lignin from rice. Journal of Zhangjiang University Science B, 2006, 7(4):267-271
    
    Faure G. Principles and Applications of Inorganic Geochemistry. Macmillan, New York, 1991, 626
    Fauteux, F, Remus-Borel W, Menzies J G, Belanger R. R. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters, 2005, 249:1- 6
    Fawe A, Abou-Zaid M, Menzies JG, Belanger R R. Silicon-mediated accumulation flavonoid phytoalexins cucumber. Phytopathology, 1998, 88:396-401
    Fawe A, Menzies JG, Cherif M, Belanger RR. Silicon and disease resistance in dicotyledons. In: Datnoff
    LE, Snyder GH, Korndorfer GH, eds. Silicon in Agriculture. Amsterdam, the Netherlands: Elsevier, 2001, 159-69
    Foy C D. Soil chemical factors limiting plant root growth. Advancements in Soil Science, 1992, 19: 97-149
    Gao X, Zou C, Wang L et al. Silicon improves water use efficiency in maize plants. Journal of Plant Nutrition, 2004, 27(8): 1457-14701
    Garrity D P, Vidal E T, O'Toole, J C. Genotypic variation in the thickness of silica deposition on flowering rice spikelets. Anals of Botany, 1984,54:413-421
    Germar B. On some effects of silicic acid on cereal plants, especially on their resistance to mildew). Review of Applied Mycology, 1935,14:25-26
    Gobetz K E, Bozarth S R. Implications for late Pleistocene mastodon diet from opal phytoliths in tooth calculus. Quaternary Research, 2001, 55:115-122
    Gong H, Chen K, Chen G, Wang S, Zhang, C. Effects of silicon on growth of wheat under drought, Journal of Plant Nutrition, 2003, 26:1055-1063
    Groh S, Gonzalez-Leon D, Khairallah MM, et al. QTL Mapping in tropical maize: III. Genomic regions for resistance to diatraea spp. And associated traits in two RIL pollution. Crop science, 1998, 38:1062-1072
    Handreck K A, Jones L H P. Studies of silica in the oat plant. IV. Silica content of the plant in relation to stage of growth, supply of silica and transpiration. Plant and Soil, 1968, 29:449-459
    Hammerschmidt R. Phenols and plant-pathogen interactions: The saga continues. Physiological and Molecular Plant Pathology, 2005, 66:77-78
    Hammond K E, Evans D E, Hodson M J. Aluminium / silicon interactions in barley (Hordeumvulgare L.) seedlings. Plant and Soil, 1995,173:89-95
    Hara T, Gu M H, Hiroyuki Koyama. Ameliorative effect of silicon on aluminum injury on the rice plant. Soil Science and Plant Nutrition, 1999, 45(4): 929 - 936
    Harrison C C, Lu Y. In vivo and in vitro studies of polymer controlled silicification. Bull. Inst. Oceanogr. Monaco No. 1994,14:151-158
    
    Hattori T, Lux A, Tanimoto E, Luxova M, Sugimoto Y, Inanaga S. The effect of silicon on the growth of sorghum under drought, in: Proceedings of The 6th symposium of the International Society of Root Research, Nagoya, Japan, 2001, 348-349
    Heath MC. Effects of heat shock, actinomycin D, cycloheximide and basticidin-S on non-host interactions with rust fungi. Physiological Plant Pathology, 1979, 15:211-218
    Heath MC. The suppression of the development of silicon containing deposits in French bean leaves by exudates of the bean rust fungus and extracts from rust-infected tissue. Physiological Plant Pathology, 1981,18:149-155
    Hodson M J, Sangster A G, Parry D W. An ultrastructural study on the development of silicified tissues in the lemma of Phalaris canariensis L. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1984, 222:413-425
    Hodson M J, Sangster A G. The interaction between silicon and aluminium in Sorghum bicolor (L.) Moench: growth analysis and X- ray microanalysis. Annal of Botany, 1993, 72: 389 - 400
    Horiguchi T, Morita S. Mechanism of manganese toxicity and tolerance of plants V I. Effect of silicon on alleviation of manganese toxicity of barley. Journal of Plant Nutrition, 1987,10:2299 - 2310
    Horiguchi T. Mechanism of manganese toxicity and tolerance of plant, IV. Effects of silica on alleviation of manganese toxicity of rice plant. Soil Science and Plant Nutrition, 1988, 34 (1):65-73
    Horst W J, Marschner H. Effect of silicon on manganese tolerance of bean plants (Phaseolus Vulgaris L.). Plant and Soil, 1978,50: 287 - 303
    Huang F and M Zhang. Pollen and phytolith evidence for rice cultivation during the Neolithic at Long quizhang, eastern Jianghuai, China. Vegetation History and Archaeobotany, 2000, 9:161-168
    Huang S B, Dai Q J, Liu X Z. Biochemical adaptive mechanism of rice to elevated UV-B radiation. Acta Agronmica Sinica, 1998, 24:464-469
    
    Her, R.K. The chemistry of Silica, Plenum Press, New York, 1979
    Inanaga S, Okasaka A, Tanaka S. Does silicon exist in association with organic compounds in rice plants? Soil Science and Plant Nutrition, 1995, 41:111-117
    Inanaga S, Okasaka A. Calcium and silicon binding compounds in cell wall so rice shoots. Soil Science and Plant Nutrition, 1995, 41:103-110
    Ingri N. Aqueous silicic acids, silicates and silicate complexes. In: Bendz G, Lindquist J (Eds) Biochemistry of Silicon and Related Problems. Plenum, NY, 1978,3-52
    Ishibashi H. Effect of silica on the growth of rice plant. Japanese Journal of Soil Science and Plant Nutrition, 1956 10:244-256
    Ishibashi T, Kimura S, Yamamoto T, Furukawa T, Takata K, Uchiyama Y, Hashimoto J, Sakaguchi K. () Rice UV-damaged DNA binding protein homologues are most abundant in proliferating tissues. Gene, 2003,308:79-87
    Iwasaki K, Ma Ier P, Fechtm, et al. Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguicu21ata). Journal of Plant Physiology, 2002,159(2): 167 -173
    Iwasaki K, Maier P, Fecht M, Horst W. Effect of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L. )walp). Plant and Soil, 2002, 238:281 - 288
    Iwasaki K, Matsumura A. Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. Shintosa). Soil Science and Plant Nutrition, 1999, 45(4): 909 - 920
    Jansen M A K, Gaba V, Greenberg B M. Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends in Plant Science, 19983:131-135
    Jarvis S C, Jones LHP, The absorption and transport of manganese by perennial ryegrass and white clover as affected by silicon. Plant and Soil, 1987, 99: 231-240
    Jarvis S C. The uptake and transport of silicon by perennial ryegrass and wheat. Plant and Soil, 1987, 97: 429-438
    Jones L H P, Handreck K A. Silica in soils plants and animals. Advances in Agronomy, 1967, 19: 107-149
    Jones L H P, Milne A A, Wadham S M. Studies of silica in the oat plant, II: Distribution of the silica in the plant. Plant and Soil, 1963,18: 358-371
    Jones L H P, Handreck K A. Studies of silica in the oat plant, III: Uptake of silica from soils by the plant. Plant and Soil, 1965, 23: 79-96
    Jones L H P, Handreck K A. Uptake of silica by Trifolium incarnatum in relation to the concentration in the external solution and to transpiration. Plant and Soil, 1969, 30: 71-80
    
    Jones L H, Milne A A, Sanders J V. Tabashir: An opal of plant origin. Science, 1966,151: 464-466
    Jordan B R. The effect of ultraviolet-B radiation on plants: molecular perspective. In: Callow J A, ed. Advances in botanical research incorporating advances in plant pathology. New York: Academic Press, 1996, 22: 97-162
    Kaufman P B, Petering L B, Smith J G. Ultrastructural development of cork-silica cell pairs in Avena internodal epidermis. Botanical Gazette, 1970,131 (3):173-185
    Kauss H,Seehaus K,Franke R,Gilbert S,Dietrich R, Kroger N. Silica deposition by a repetitive proline-rich protein from systemically resistant cucumber plants. Plant Journal, 2003, 33:87-95
    Kerr, JB, McElroy, CT. Evidence for large upward trends of UV-B radiation linked to ozone depletion. Science, 1993, 262:1032-1034
    Kim S.G, KW Kim, E W Park, D Park, D Choi. Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 2002, 92: 1095-1103
    Kim Y C, Kim K Y, Park KW. et al. Influence of silicate application on the sucrose synthetic enzyme activity of tomato in perlite media culture. Journal of the Korean Society for Horticulture, 2003, 44 (2):172-176
    Kroger N, Lehmann G, Rachel R, et al., Characterization of a 200 kDa diatom protein that is specifically associated with a silcica-based substructure of the cell wall. European Journal of Biochemistry, 1997, 250:99-105
    Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L). Breeding Science, 2002, 52: 319-325.
    Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genetics Newsletter, 1999, 19: 104-106.
    Langmuir D. Aqueous Environmental Cheornistry. Prentice Hall, Upper Saddle River, New Jersey, 1997,600
    Lanning F C. Silicon in rice. Journal of Agriculture and Food Chemistry, 1963, 11:435-437
    Lanning F C, Eleuterius F C. Silica deposition in some C_3 and C_4 species of grasses, sedges and composites in the USA. Annals of Botany, 1983, 63:395-410
    Lanning F C. Nature and distribution of silica in strawberry plants. Proceedings of the American Society for Hor-ticultural Science, 1960,76:349-358
    Lawton J R. Observation on the structure of epidermal cells, particularly the cork and silica cells, from the flowering stem intemode of Lolium temulentum L. (Gramineae). Botanical Journal of the Linnean Society, 1980, 80:161-177
    Lee J S, Park J H, Han K S. Effects of potassium silicate on growth, photosynthesis and inorganic ion absorption in cucumber hydroponics. Journal of the Korean Society of Horticultural Science, 2000, 41(5):480-484
    Lewin J C. Silicification. In physiology and Biochemistry of Algae, Lewin R A, Ed, Academic press, N Y, 1962, 445-455
    Lewin J, Reimann BEF. Silicon and plant growth. Annual Review of Plant Physiology, 1969, 20: 289-304
    Li Y C, Sumner M E, Miller W P, Alva A K. Mechanism of silicon induced alleviation of aluminum phytotoxicity. Journal of Plant Nutrition, 1996, 19, 7:1075-1087
    Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX. Exogenous silicon (Si) increases antioxidant enzyme activityand reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 2003, 160:1157-1164
    Liang YC, Shen Q, Shen Z, Ma T. Effects of silicon on salinity tolerance of two barley cultivars. Journal of Plant Nutrition,1996, 19:173-183
    Liang YC, Si J, Romheld V. Silicon uptake and transport is an active process in Cucumis sativus. New Phytologist, 2005, 167:797-804
    Liang YC. Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere, 1998, 8:289-296
    Liang YC. Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant and soil, 1999, 209:217-224
    Liang YC. Sun WC, Si J, Romheld V. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathology, 2005, 54:678-685
    Liebig J Von. Organic chemistry in its application to agriculture and physiology. Ed. From the manuscript of the author by Lyon Playfair. Taylor and Walton, London 1840
    Lux A, Luxova M, Morita S, Abe J, Inanaga S. Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (Oryza sativa L.). Canadian Journal of Botany, 1999, 77: 955-960
    Lux A. Luxova M, Hattori T, Inanaga S, Sugimoto Y. Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance, Physiologia Plantarum, 2002,115, 87-92
    Ma J F, Miyake Y, Takahashi E. Silicon as a beneficial element for crop plants. In: Datonoff L, Snyder G, Korndorfer G, eds. Silicon in agriculture. New York, NY, USA: Elsevier Science Publishing, 2001a, 17-39
    Ma J F, Higashitani A, Sato K, Takeda K. Genotypic variation in silicon concentration of barley grain. 2003, Plant and Soil, 2003, 249:383-387
    Ma J F, Goto S, Tamai. Role of root hairs and lateral roots in silicon up take by rice. Plant Physiology, 2001b, 127:1773-1780
    Ma J F, Mitani N, Nagao S, et al. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology, 2004, 136:3284-3289
    Ma J F, Nishimura K, Takahashi E. Effect of silicon on the growth of rice plant at different growth stages. Soil Science and Plant Nutrition, 1989, 35:347-356
    Ma J F, Sasaki Ma, Matsumoto H. A1-induced inhibition of root elongation in corn, Zea mays L. is overcome by Si addition. Plant and Soil, 1997, 188:171-176
    Ma J F, Takahashi E. Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant and Soil, 1991, 133:151-155
    Ma J F, Takahashi E. Interaction between Calcium and Silicon in water cultured rice plants. Plant and Soil, 1993, 148: 107-1131
    Ma J F, Takahashi E. Soil, Fertilizer and Plant Silicon Research in Japan, Elsevier, 2002
    Ma J F, Takahashi E. The effect of silicic acid on rice in a P-deficient soil. Plant and Soil, 1990, 126: 121-125
    Ma J F, Tamai K, Yamaji N,Mitani N, et al. A silicon transporter in rice. Nature, 2006, 440(30): 688-691
    Ma J F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 2004, 50:11-18
    Madronich S R L, Mckenzie M, Caldwell M, Bjorn L O. Changes in ultraviolet radiation reaching the earth's surface. AMBIO, 1995, 24:143-152
    Majumder N D, Rakahit S C, Borthankur D N. Genetics of silica uptake in selected genotypes of rice. Plant and soil, 1985, 88:449-453
    Mabichenkov V V, Calvertd V, Bocharinikova E A. Effect of Si fertilization on growth and P nutrition of Bahiagrass. Soil and Crop Science Society of Florida Proceedings, 2001, 60:30-36
    Mann S, Parker S B, Perry C C, Ross M D, Skarnulis A J, Willianms R J P. Problems in the understanding of biominerals. P 171-183 in Westbrook P, and de Jong E W(eds.), Biomineralisation and biological metal accumulaton. D. Reidel Publishing Company, 1983a
    Mann S, Perry C C, Willianms R J P, Fyfe C A, Gobbi C C, Kenned G J. The characterization of the nature of silica in biological systems. Journal of Chemical Society, Chemical Communications, 1983b, 168-170
    Marschner H.高等植物的矿质营养.李春俭,王震宇,张福锁,等译.北京:中国农业大学出版社,2001,289-306
    Maticherdov V V, Calvert D V. Silicon as a beneficial element for sugarcane. Journal American Society of Sugarcane Technologists, 2002, 22:21-30
    Matoh T, Kairusmee P. Takahashi E, Salt - induced damage to rice plants and alleviation effect of silicate. Soil Science and Plant Nutrition,1986, 32:295-304
    Mauch-Mani B, Metraux J-P. Salicylic acid and systemic acquired resistance to pathogen attack. Annals Botany, 1998, 82:535-40
    Menzies J G, Ehret D L, Glass A D M, et al., Effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginea and Cucumis sativus. Phytopathology, 1991a, 81:84-88
    Menzies J G, Ehret D L, Glass A D M, et al., Foloar application of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. Journal of the American Society of Horticultural Science, 1992, 117:902-905
    Mbida Mindzie C H, Doutrelepont L, Vrydaghs R L, Swennen R J, et al. First archaelological evidence of banana cultivation in central Africa during the third millennium before present. Vegetation History and Archaeobotany, 2001, 10:1-6
    McCouch SR, Cho YG, Yano M, Paul E, Paul E, Blinstrub M, Morishirna H, Kinoshita T. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14:11-13
    Mckeague J A, Cline M G. Silica in soil solutions. I. The form and. concentration of dissolved silica in aqueous extracts of some soil. Canadian Journal of Soil Science, 1963, 43, 70-83
    Mckeague J A, Cline M G. Silica in soils. Advan. Agron, 1963, 15,339-396
    Mitani N, Ma J F, Iwashita T. Identification of silicon form in xylem sap of rice (Oryza sativa L.). Plant and Cell Physiology, 2005a, 46(2): 279-283
    Mitani N, Ma J F. Uptake system of silicon in different plant species. Journal of Experimental Botany, 2005b, 56(414): 1255- 1261
    Mitsui S, Aso S, Kumazawa K. Dynamic studies on the nutrient uptake by crop plants (Part 1) Effect of H_2S on the nutrient uptake by rice roots. Japanese Journal of Soil Science and Manure, 1951, 22: 46-52
    Mitsui S, Kumazawa K, Ishibashi T. Dynamic studies on the nutrient uptake by crop plants (Part 7) Effect of respiration inhibitors such as H_2S, NaCN, NaN_3 and butyric acid on the nutrient uptake by rice roots. Japanese Journal of Soil Science and Manure, 1953, 24:45-50
    Mitsui S, Takatoh H. Nutritional study of silicon in graminaceous crops (part2). Soil science and plant nutrition, 1963, 9(2): 12-16
    Miyake Y, Takahashi E. Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. Soil Science and Plant Nutrition, 1986 32:321-326
    Miyake Y, Takahashi E. Effect of silicon on the growth of cucumber plant in soil culture. Soil Science and Plant Nutrition, 1983, 29:463-471
    Miyake Y, Takahashi E. Effect of silicon on the growth of soil-cultured cucumber plant. Comparative studies on the silica nutrition in plants (Part 17). Japanese Journal of Soil Science and Manure. 1982, 53:23-29
    Miyake Y, Takahashi E. Effect of silicon on the growth of cucumber plants in a solution culture, Japanese Journal of Soil Science and Plant Nutrition, 1982, 53:15-22
    Miyake Y, Takahashi E. Effect of silicon on the growth of solution-cultured cucumber plant. Comparative studies on the silica nutrition in plants (Part 16). Japanese Journal of Soil Science and Manure. 1982, 53:15-22
    Miyake Y, Takahashi E. Effect of silicon on the growth of solution-cultured cucumber plant. Soil Science and Plant Nutrition, 1983, 29:71-83
    Miyake Y, Takahashi E. Effect of silicon on the growth of soybean plants in solution culture. Soil Science and Plant Nutrition, 1985, 31:625-636
    Miyake Y, Takahashi E. Effect of silicon on the resistance of cucumber plant to microbial disease. Comparative studies on the silica nutrition in plants (Part 18). Japanese Journal of Soil Science and Manure. 1982 53:106-110
    Miyake Y, Takahashi E. Silicon deficiency of tomato plants (1) demonstration of silicon deficiency. Comparative studies on the silica nutrition in plants (Part 10). Japanese Journal of Soil Science and Manure.1976 47:383-390
    Miyake Y, Takahashi E. Silicon deficiency of tomato plants (2) on the environmental conditions to appearance of silicon deficiency. Comparative studies on the silica nutrition in plants (Part 11). Japanese Journal of Soil Science and Manure. 1976 47:447-450
    Miyake Y, Takahashi E. Silicon deficiency of tomato plants (3) on the cultivar characteristics and environmental condition. Comparative studies on the silica nutrition in plants (Part 12). Japanese Journal of Soil Science and Manure.1976 47:451-57
    Miyake Y, Takahashi E. Silicon deficiency of tomato plant. Soil science and plant nutrition, 1978, 24(2):175-189
    Moiler J D Rasmussen H. Stegmata in Orchidales: character-state distribution and polarity. Botanical Journal of the Linnean Society, 1984, 89: 53-76.
    Motomura H, Mita N, Suzuki M. Silica accumulation in long-lived leaves of Sasa veitchii (Carriere) Rehder (Poacea-Bambusoideae).Annals of Botany, 2002, 90:149-152
    Neumann D, Nieden Z U. Silicon and heavy metal tolerance of higher plants. Phytochemistry, 2001, 56: 685-692
    Neumann D, Figueiedo C D. A novel mechanism of silicon uptake.Protoplasma, 2002,220:59-67
    Nicholson RL, Hammerschmidt R. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 1992, 30:369-89
    Ohkawa K. Studies on plant physiological function of silica (1) Japanese Journal of Soil Science and Plant Nutrition, 1936, 10:96-101
    Okamoto Y. Physiological studies on the effects of silicic acid upon rice plants ⅩⅢ. Effects of silicic acid on the formation of organs and tissues of rice plants. Japanese Journal of Crop Science, 1969, 38:748-751
    Okamoto Y. Physiological studies of the effects of silicic acid upon rice plant Ⅲ. Proceedings of the Crop Science Society of Japan, 1957, 25:219-221
    Okuda A, Takahashi E. The role of silicon. In: the Mineral nutrition of the rice plant. The Johsn hopking press, 1964, 123-146
    Okuda A, Takahashi E. Studies on the physiological role of silicon in crop plant. Part 1 on the method of silicon-free culture. Japanese Journal of Soil Science and Manure, 1961a, 32:475-480
    Okuda A, Takahashi E. Studies on the physiological role of silicon in crop plant. Part 4 effect of silicon on the growth of barley, tomato, radish, green onion, Chinese cabbage and their nutrients uptake. Japanese Journal of Soil Science and Manure, 1961d, 32: 623-626
    Okuda A, Takahashi E. Studies on the physiological role of silicon in crop plants part 5: Effect of silicon supply on the injuries due to excess amounts of Fe~(2+), Mn~(2+), Cu~(2+), As~(3+), Al~(3+), Co~(2+), of barley and rice plant. Japanese Journal of Soil Science and Manure, 1962, 33:1 - 8
    Okuda A, Takahashi E. Studies on the physiological role of silicon in crop plant. Part 8 Some examination on the specific behavior of low land rice in silicon uptake. Japanese Journal of Soil Science and Manure, 1962,33:217-221
    Okuda A, Takahashi E. Studies on the physiological role of silicon in crop plant. Part 9 Effect of various metabolic inhibitors on the silicon uptake by rice plant. Japanese Journal of Soil Science and Manure, 1962, 33:453-455
    Palanakamjorn, S. and Pathak MD. Varietal resistance of rice to the Asiatic rice, borer, chils suppressalis (Lepidoptera: crambidae), and it association with various plant, characters . Annals of Entomological Society of America, 1967, 60:287-292
    Parry D W, Kelso M. The distribution of silicon deposits in the roots of Molinia caerulea (L.) Moench. And Sorghum Bicolor (L.) Moench. Annals of botany, 1975, 39: 995-1001
    Parry D W, Hodson M J, Sangster A G. Some recent advances in studies of silicon in higher plants. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 1984, 304: 537-549
    Parry D W, Winslow A. 1977. Electron- proe microanalysis of silicon accumulation in the leaves and tendrils of Pisum sativum(L.)following root severance. Annals of Botany, 41: 275-278
    Perry C C, Keeling- Tucker T, Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium. Journal of Inorganic Biochemistry, 1998, 68:181 -191
    Perry CC. Silication in biological systems. D Phil Thesis. Oxford: University of Oxford, 1985
    Piperno D R, Flannery K V. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 2101-2103
    Piperno D R. Phytolith analysis: An archaelolgical and geological perspective. Academic press, San Diego 1988
    
    Raven J A. Cycling silicon - the role of accumulation in plants. New Phytologist, 2003,158:419-430
    Raven J A. Silcion transport at the cell and tissue level. In: Datnoff LE, Snyder GH, Korndorfer GH, editors. Silicon in agriculture. The Netherlands: Elsevier Science; 2001, p41-55
    Raven J A. The transport and function of silicon in plants. Biological Reviews, 1983, 58:179-207
    Remus-Borel W, Menzies J G, Belanger R R. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiological and Molecular Plant Pathology, 2005, 66:108-15
    Richmond, K. E. & Sussman, M. Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology, 2003, 6:268-272
    Rodrigues F A, Benhamou N, Datnoff L E, Jones J B. Belanger R R. Ultrastructural and cytochemical aspects of silicon mediated rice blast resistance. Phytopathology, 2003, 93:535-545
    Rodrigues F A, Jurick W M, Datnoff L E, Jones J B, Rollins J A. Silicon influences cytological and molecular events in compatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 2005, 66:144-159
    Rodrigues F A, McNally D J, Datnoff L E, Jones J B, Labbe C, Benhamou N, Menzies J G, Belanger R R. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology, 2004, 94:177-183
    Samuels A L, Glass A D M, Ehret D L, Menzies J G. Mobility and deposition of silicon in cucumber plants. Plant, Cell & Environment, 1991a, 14, 485-92
    Samuels A L, Glass A D M, Ehret D L, Menzies J G. Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca fuliginea). Canadian Journal of Botany, 1991b, 69:140-6
    Sangster AG.. Intracellular silica deposition in immature leaves in three species of the Gramineae. Annals of Botany, 1970a, 34:245-257
    Sangster AG. Intracellular silica deposition in mature and senescent leaves of Sieglingia decumbens (L.) Bernh.Annals of Botany, 1970b, 34:557-570
    Sangster A G, Hodson G M. Silica in higher plants. In: Everedand D, M Connor, eds. Silicon Biochemistry. U K: Ciba Found, Symp. Wiley, Chichester, 1986, 90-111
    Sangster A G. Hodson MJ, Tubb H J. Silicon deposition in higher plants. In: Datnoff LE, Snyder GH, Kornd(?)rfer GH, editors.Silicon in agriculture. The Netherlands: Elsevier Science; 2001.85-113
    Sangster A G, Parry D W. Endodermal silicification in mature, nodal roots of Sorghum bicolor (L.) Moench. Annals of Botany, 1976, 40:373-379
    Sangster A G,Parry D W. Silica deposition in the grass leaf in relation to transpiration and the effect of Dinitrophenal.Annals of Botany, 1971, 35:667-677
    Sasamoto, K. Study on the relation between the silica content in the rice plant and insect pests Ⅷ.feeding preferent nitrogen levels. Japan Journal of Applied Entomology and Zoology, 1960, 4:115-118
    Sasamoto, K.Study on the relation between the silica content in the rice plant and insect pests Ⅵ. On the injury of silicated rice plant caused by the rice stem borer and its feeding behavior. Japan Journal of Applied Entomology and Zoology, 1958, 2:82-92
    Savant N K, Snyder G H, Datnoff L E. Silicon management and sustainable rice production. Advances in Agronomy, 1997, 58:151-199
    Shariatmadaria H, Mermuta AR. Magnesium and silicon - induced phosphate desorption in smectite, palygorskite, and sepiolite - calcite systems. Soil Society of America Journal, 1999, 63(5): 1167-1173
    Shimizu K, Cha J N, Stucky G D et al. Silicate in: cathespon L-like protein in sponge biosilica. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 6234-6238
    Shimoyama S. Effect of calcium silicate application to rice plants on the alleviation of lodging and damage from strong gales. Studies in the improvent of ultimate yields of crops by the application of silicate materials. Japanese association for the advancement of science, 1958, 57-99
    Stachel SE, Nester EW, Zambryski PC. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83:379-83
    Sujatha G, Reddy GPV, Murthy MMK. Effect of certain biochemical factors on expression of resistance of rice varieties to brown plant hopper (Nilaparvata lugens Stal). Journal Research Apau, Andhra Pradesh, 1987, 15:124-128
    Takahashi E, Effects of co-existing inorganic ions on silicon uptake by rice seedling. Comparative studies on silica nutrition in plants (Part 20). Japanese Journal of Soil Science and Plant Nutrition, 1982, 53:271-276
    Takahashi E, Hino K. Silica uptake by plant with special reference to the forms of dissolved silica. Japanese Journal of Soil Science and Manure, 1978, 49:357 - 360
    Takahashi E, Miyake Y. Silicon and plant growth: Proceedings of the international Seminar on Soil Enviroment and Fertility Management in Intensive Agriculture 1977,
    Takahashi E, Nishi T. Effects of nutritional conditions on the silicon uptake by rice plants. Comparative studies on silica nutrition in plants (Part 21). Japanese Journal of SoU Science and Plant Nutrition, 1982, 53:395-401
    Takahashi E, Okuda A. Studies on the physiological role of silicon in crop plant. Part 10 Effect of some sugars and organic acids on silicon uptake by rice plant. Japanese Journal of Soil Science and Manure, 1963, 34:114-118
    Takahashi E, Okuda A. studies on the physiological role of silicon in crop plant. Part 11 Effect of light on the silicon uptake by the seedlings of rice plant. Japanese Journal of Soil Science and Manure. 1963,34:397-402
    Takshashi E, Ma J F, Ma Y, Miyake Y. The possibility of silicon as an essential element for higher plants. Comments on Agricultural and Food Chemistry, 1990, 2:99-122
    Takshashi E. Uptake mode and physiological functions of silica. In: Science of the Rice Plant: Physiology Food Agric. Tokyo: Policy Res. Center, 1996, 2:420-433
    Tamai K, Ma J F. Characterization of silicon uptake by rice roots. New Phytologist, 2003, 158, 431-436
    Teramura, A H, Ziska, LH, Sztein A E. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiologia Plantarum, 1991, 83:373-380.
    van der Vorm P D J. Uptake of Si by five plant species, as influenced by variation in Si-supply. Plant and Soil, 1980, 56: 153-156.
    Vicari M, Bazely D R. Do grasses fight back? The case for antiherbivore defences. Trends in Ecology & Evolution, 8(4):137-141
    Wagner, Richard R B, Patricia A B. Soluble silicon itsrole in crop and disease management of green house crops. Plant Disease, 1995, 4: 329-336.
    Wallace A. Participation of silicon in cation - anion balance as apossilible mechanism for aluminum and iron tolerance in some gramineae. Journal of Plant Nutrition, 1992, 15, 9:1345 -1351.
    Wang J, Naser N. Improved performance of carbon paste ampermeric biosensors through the incorporation of fumed silica. Electroanalysis, 1994, 6, 571-575
    Werner D, Roth R. Silica metabolism. In: Lauch A, Bielsky R L. (Ed.) Inorganic Plant Nutrition, New Series. Spring-Verlog, New York, N.Y. 1983, 682-694.
    Werner D, Roth R.. Silica metabolism. In: inorganic plant nutrition, New York: New Series. Spring-Velay, 1983, 267-287
    Williams D E, Vlamis J. The effect of silicon in yield and manganese- 54 up take and distribution in the leaves of barley plants grown in culture solution. Plant Physiology, 1957, 32:404 - 409
    Winslow M D, Okada K and Fedmando CV. Silicon deficiency and the adaptation of tropical rice ecotypes. Plant and Soil, 1997, 188:239-248
    Winslow M D. Silicon, Disease Resistance, and Yield of Rice Genotypes under Upland Cultural Conditions. Crop Science, 1992, 32:1208-1213
    Xu Y B. Globa view of QTL: Rice as a model. In Kang M S (ed) Quantitative genetics, genomes and plant breeding. CABI Publ. Wallingford, UK. 2002, 109-134
    Yeo A R, Flowers S A, Rao G., Welfare K. Silicon reduces sodium uptake in rice (Oryza Sativa L.) in
    saline condition and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell and Environment, 1999, 22, 559-565.
    Yoshida S, Ohnishi Y, Kitagishi K. Chemical forms mobility and deposition of silicon in rice pant. Soil Science and Plant Nutrition, 1962, 8:15-21
    Yoshida S, Ohnishi Y, Kitagishi K. Histochemistry of silicon in rice plant, Ⅱ, Localization of silicon within rice tissues. Soil Science and Plant Nutrition, 1962, 8(1):36-41.
    Yoshida S, Ohnishi Y, Kitagishi K. Histochemistry of silicon in rice plant. Ⅲ. The presence of cutical-silica double layer in epidermal tissues. Soil Science and Plant Nutrition, 1962, 8:1-5
    Yoshida S, Ohnishi Y, Kitagishi K. Role of silicon in rice nutrition. Soil and plant food, 1959, 5:127-133
    Yoshida,S. Chemical aspects of the role of silicon in physiology of the rice plant. Bulletin of the National Institute of Agricultural Science, 1965, 15, 1-58
    Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468
    蔡德龙,陈常友,小林均.硅肥对水稻镉吸收影响初探.地域研究与开发,2000,19(4):69-71
    陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996.115-119,158-159
    房江育,王贺,陈旧,张福锁.过氧化物酶催化酚类聚合反应诱导纳米硅球的形成.自然科学通报,2003(13):647-650
    高尔明,赵全志.水稻施用硅肥增产的生理效应研究.耕作与栽培,1998,5:20-28
    高井康雄.植物营养与技术.敖光明等译.北京:农业出版社,1988
    高柳青,杨树杰.硅对小麦吸收镉锌的影响及其生理效应.中国农学通报,2004,20:246-249
    高桥英一.世界酸研究现状今後课题-「第2回国际酸农业会议」.日本土壤肥料学,2003,74(2):243-246
    甘秀芹,江立庚,徐建云,董登峰,韦善清.水稻的硅素积累与分配特性及其基因型差异.植物营养与肥料学报,2004,10(5):531-535
    龚玉琴,杨金明,白锦红,冯伟宁,徐志霞.硅、硫、锌、锰肥配施对水稻品质及产量的影响.土壤肥料,2004,6:16-24
    顾明华,黎晓峰.硅对减轻水稻的铝胁迫效应及其机理研究.植物营养与肥料学报,2002,8(3):360-66
    管恩太,蔡德龙,邱士可等.硅营养.磷肥与复肥,2000,15(5):64-66
    胡瑞芝,方水娇,陈桂秋.硅对杂交水稻生理指标及产量的影响.湖南农业大学学报(自然科学版),2001,27(5):335-338
    何电源 土壤和植物中的硅.土壤学进展,1980,(5-6):1-11
    黄彬,韩永圣,秦政.硅素的肥料效应及补硅途径.江苏农业科学,1997,3:47-49
    黄昌勇,沈冰.硅对大麦铝毒的清除和缓解作用的研究.植物营养与肥料学报,2003,9(1):98-101
    黄巧云,李学垣,胡红青.硅对酸性土壤铝毒的缓解作用.环境科学,1995,16(6):11-13
    黄小红,张壮塔,柯玉诗,等.硅肥对甘蔗叶片营养,产量及糖分的影响,热带亚热带土壤科学 1997,6(4):242-246
    季明德,黄湘源,付美琴,等.硅元素对甘蔗产量和糖分含量的影响.江西化工,1994,1:13-15.
    江立庚,甘秀芹,韦善清,徐建云,曹卫星.水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系.应用生态学报,2004,15(2):226-230
    李发林.硅肥的功效及施用技术,云南农业,1997a,(9):16
    李发林,张锦元.云南省烟草施用硅肥试验研究.云南农业科技,1997b,2:15-17
    李军,张玉龙等.施用Si肥对辽宁省部分地区水稻产量及品质的影响.中国土壤学会第九次全国会员代表大会论文集(辽宁省卷),沈阳:辽宁科学技术出版社,1999,170-172
    李军等.辽宁省水稻土供硅能力及硅肥肥效的研究.土壤通报,2002,33(2):142-144
    李清芳,周秀杰,马成仓.硅对小麦幼苗几项生理生化性质的影响.作物学报,2002,(9):665-669
    李文彬,史新慧,王贺等,施硅提高水稻叶片对紫外线胁迫的抗性.Acta botanica sinica,2004,46(6):691-697
    李文彬,王贺,张福锁.高温胁迫下硅对水稻花药开裂及授粉量的影响.作物学报,2005,31(1):134-136
    梁永超,沈其荣,张爱国,等.钙、硅对酸雨胁迫下小麦生长和养分吸收的影响.应用生态学报,1999,10(5):589-592
    梁永超,张永春,马同生.植物的硅素营养.土壤学进展,1993,21(3):7-14
    梁永超,丁瑞兴,硅对大麦根系中离子的微域分布的影响及其与大麦耐盐性的关系.中国科学C辑,2002,32(2):113-121
    梁永超,丁瑞兴,刘谦.硅肥对大麦耐盐性的影响及其机制.中国农业科学,1999,32(6):75-83
    梁永超,孙万春.硅和诱导接种对黄瓜炭疽病的抗性研究.中国农业科学,2002,35(3):267-271
    廖宗文,林东敖,江东荣,等.水稻黄叶生理病与硅肥施用效果.华南农业大学学报,1993,14(4):15-19
    刘鸣达,张玉龙.水稻土硅素肥力的研究现状与展望.土壤通报,2001,32(4):187-192
    刘鸣达.施用钢渣对水稻土肥力的影响及其肥料效应的研究,1999,沈阳农业大学
    刘平,何继英,贺宁等.硅浓度对水稻生长、含水量、根冠比和过氧化物酶活性的影响.贵州农业科学,1987,16(3):6-9
    刘树堂,韩效国,东先旺.硅对冬小麦抗逆性影响的研究.莱阳农学院学报,1997,14(1):21-25
    刘永涛.硅肥的应用及开发前景,河南科技,1997,(1):6-7
    卢维盛,李华兴,刘远金.施硅对水稻产量和稻米品质的影响华南农业大学学报 2002,23:92
    陆景陵.植物营养学(上册).北京:中国农业大学出版社,1994.80
    马成仓,李清芳,束良佐,等.硅对玉米种子萌发和幼苗生长作用机制初探,作物学报,2002,28(5):665-669
    马同生.我国水稻土中硅素丰缺原因.土壤通报,1997,28(4):169-171
    毛知耘.肥料学北京:中国农业出版社,1997
    秦淑琴,黄庆辉.硅对水稻吸收镉的影响.塔里木农垦大学学报,1996,8(2):17-20
    秦遂初,马国瑞.植物营养与合理施肥.孙羲主编.土壤养分,北京:中国农业出版社,1983,152-160
    邱克逢,李俊仙,方先兰,刘小平,申昌优.烟草施硅的增效应用初探.江西农业科技,2000(2):26-27
    史新慧,覃闯登,宁建兰,夏晓平,王贺.水稻及其他禾本科植物体内硅结合蛋白的免疫印迹检测.生物化学与生物物理进展,2005,32(4),371-376
    束良佐,刘英慧.硅对盐胁迫下玉米幼叶膜脂过氧化和保护系统的影响.厦门大学学报(自然科学版)2001,40(6):1295-1300
    束良佐,刘英慧.硅对盐胁迫下玉米幼叶生长的影响.农业环境保护,2001,20(1):38-40
    孙万春,梁永超,杨艳芳,等.硅和接种黄瓜炭疽菌对黄瓜过氧化物酶活性的影响及其与抗病性的关系,中国农业科学,2002,35(12):1560-1564
    孙曦.土壤养分、植物营养与合理施肥.北京:农业出版社,1983
    汪传炳,茅国芳,姜忠涛.上海地区水稻硅素营养状况及硅肥效应,上海农业学报,1999,15(3):65-69
    王荔军,李敏,李铁津等.植物体内的纳米结构SiO_2科学通报,2001,46(8):625-632
    王永锐,陈平.水稻对硒吸收、分布及硒与硅共施效应植物生理学报,1999,30(3):121-122.
    王永锐,成艺,胡智群.硅营养抑制钠盐及铜盐毒害水稻秧苗的研究.中山大学学报(自然科学版),1997,36(3):72-75
    王永锐.王永锐水稻文集.广州:中山大学出版社,1999.17-21
    魏朝富,谢德体,杨剑虹等.氮钾硅肥配施对水稻产量和养分吸收的影响.土壤通报,1997,28(3):121-123
    吴魏,张宽,王秀芳等.硅对水稻养分吸收及产量的影响.吉林农业科学,1996,21(3):61-65.
    夏石头,萧浪涛,彭克勤.高等植物中硅元素的生理效应及其在农业生产中的作用.植物生理学通讯,2001,37(4):356-360
    邢雪荣,张蕾.植物的硅素营养研究综述.植物学报,1998,15(2):22-40
    薛珠政,彭嘉桂,张金鱼.硅对甘蔗产量和糖分含量的影响.福建农业科技,1997,(1):32
    杨建堂,高尔明,霍晓婷等.沿黄稻区水稻硅素吸收、分配特点研究.河南农业大学学报,2000,34(1):37-42
    杨艳芳,梁永超,娄运生,等.硅对小麦过氧化物酶、超氧化酶和木质素的影响及与抗白粉病的关系,中国农业科学,2003,36(7):813-317
    叶春.土壤可溶性硅与水稻生理及产量的关系.农业科技译丛,1992,(1):24-27
    张翠珍,邵长泉,孟凯,等.水稻施用硅肥效果及适宜用量的研究.山东农业科学,1997,(3):44245
    张国良,戴其根,张洪程,等.水稻硅素营养研究进展,江苏农业科学,2003,(3):6-12
    张伟锋,陈平,刘胜洪,覃广泉,王鸿博,王永锐.硅和铬(Ⅲ)对水稻种子萌发及幼苗生长的影响.仲恺农业技术学院学报,1997,10(1):29-35
    张学军,冯卫东,宋德印,王兴盛,王玉琳.施用硅钙磷肥对水稻生长、产量及品质的研究初报,宁夏农林科技,2001,1:3
    周青,潘国庆,施作家.不同时期用硅肥对水稻群体质量及产量的影响.耕作与栽培,2001,(3):25-27
    朱小平,王义炳,李家全.水稻硅素营养特性的研究,土壤通报,1995,26:232-233
    邹春琴,高霄鹏,刘颖杰,王荔军,张福锁.硅对向日葵水分利用效率的影响 植物营养与肥料学报 2005,11(4):547-550

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700