掺杂介孔MCM-41分子筛的制备,表征及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1992年Mobil公司的研究人员成功合成M41s系列介孔分子筛以来,介孔材料以其高的比表面积、均匀的孔径分布、丰富的表面基团引起了广大科研工作者的兴趣。纯硅M41s分子筛具有中性骨架结构,导致缺陷少,离子交换能力小,酸含量和酸强度低,限制了它们在催化、吸附、分离和环保等方面的应用。研究掺杂的负载型介孔材料成为了近年来研究热点。由于介孔材料较差的水热稳定性和热稳定性,使其工业应用受到限制,合成高热和水热稳定性的介孔材料成为了人们不断努力追求的目标。介孔材料的孔径可控制备是介孔分子筛成为新型材料的有效工具,也是当今分子筛发展前沿的新生长点。
     本文以廉价的工业级高模数比硅酸钠(Na2O·3.3SiO2)代替传统的有机硅源,以溴化十六烷基三甲基铵(CTAB)为模板剂,水热合成法制备了掺杂的介孔材料。采用X射线粉末衍射(XRD),低温液氮吸附脱附(BET),红外光谱(FT-IR),固体紫外漫反射光谱(UV-Vis),扫描电镜(SEM),透射电镜(TEM),感耦等离子体原子发射光谱(ICP),程序升温还原(TPR)和热重分析(TG/DTG)等技术对介孔材料的结构和织构等方面进行了分析。本文考察了该分子筛的合成条件和水热稳定性和热稳定性,讨论了该分子筛的合成机理,研究了该分子筛的孔径调变方法。本论文主要包括以下几方面的内容:
     1.首先以水热合成法制备了掺钒的介孔V-MCM-41分子筛。分子筛的制备条件对介孔材料的结构具有很大的影响,其主要影响因素为模板剂用量,晶化温度以及pH值,而活性组分V用量,晶化时间,陈化时间,焙烧气氛以及加料方式等制备条件对分子筛的特征结构影响不显著。合成该介孔V-MCM-41分子筛的最佳制备条件为:原料比为n (Si)∶n (CTAB)∶n (V)=1∶0 .2∶0.04,晶化温度为110℃,pH=9.5,晶化48 h,不陈化,加料方式为先加钒源后加硅源,550℃空气气氛焙烧6 h。
     2.选择无机硅源和有机硅源,采用水热合成法制备了不同的介孔V-MCM-41分子筛。无机硅源(普通硅酸钠,高模数比的硅酸钠和硅溶胶)制备的分别记为VMC,VMH和VMS;有机硅源(正硅酸乙酯)在酸性和碱性下制备的分别记为VMT-ac和VMT-al。研究了不同硅源对该分子筛制备的影响。不同硅源对介孔V-MCM-41分子筛的制备影响较大,尤其是分子筛合成体系的pH值和晶化温度。无机硅源制备的分子筛的表面积大于有机硅源制备的,主要归因于硅源中的硅物种水解和聚合速度不同,导致其以不同的多聚体硅物种存在,该硅物种与表面活性剂相互作用并自身缩合的作用不一致。无机硅源在碱性条件下制备介孔分子筛,有机硅源既可在酸性条件下也可在碱性条件下制备介孔分子筛,只是碱性条件下制备的分子筛的织构优于酸性条件下的。四种不同分子筛的最优合成条件分别为为:VMT-ac的晶化温度110℃和溶液的pH值为5.5;VMT-al的晶化温度110℃和溶液的pH值为10.5;VMH的晶化温度110℃和溶液的pH值为9.5;VMC的晶化温度125℃和溶液的pH值为10.5;VMS的晶化温度125℃和溶液的pH值为11.5;
     3.考察了以高模数比硅酸钠制备的介孔V-MCM-41分子筛的水热稳定性和热稳定性。随着水热处理时间的增加该分子筛的织构参数都呈现下降趋势,但其介孔特征保持完好。水热处理8天后,其比表面积,总孔容和平均孔径的保留率分别为84.3%,81.6%和91.9%。XRD谱图观察到(100)晶面,(110)晶面和(200)晶面的特征峰存在,说明介孔特征仍保持完好。但随着水热处理时间的增加,样品的衍射峰出现宽化和峰强度减弱,表明随着水热处理时间的增长,该材料的有序度有一定程度的降低。当样品经10天水热处理后,介孔的特征遭到破坏,其比表面积的保留率可达80.7%,进一步说明该介孔材料高的水热稳定性。当V-MCM-41分子筛样品在空气气氛不同的热处理温度下考察其热稳定性,随着热处理温度的增加,样品的织构参数出现下降趋势。即使在900℃下焙烧12 h,但其介孔的特征仍然保持,其表面积和孔径的保留率分别为83.71%和68.2%。在两种不同焙烧气氛(空气和先氮气后空气)下焙烧该分子筛,其织构参数没有明显的差异,表明该分子筛能抵抗表面活性剂释放的大量的热,进而说明该分子筛是高热稳定性的,XRD谱图进一步的证实了该分子筛是高热稳定的。
     4.介孔材料的不同的制备体系会有不同的合成机理来解释,对以高模数比的硅酸钠制备的V-MCM-41分子筛的合成机理进行了讨论。实验结果表明该分子筛制备中晶化温度的影响可以归属于协同作用模板机理,而体系的pH值的影响可用层状向六方相的转变机理来解释,模板剂用量的影响主要是液晶模板机理起作用。该分子筛的合成机理不能仅仅只用一种机理来解释,而是多种机理共同作用的结果。
     5.在介孔材料的合成过程中,研究孔径的调变是介孔材料应用的一个重要内容。在水热过程中通过改变模板剂用量会导致其孔径大小的改变。当改变模板剂CTAB的用量时,该分子筛V-MCM-41的孔径的变化范围为:3.52~5.26 nm;随着模板剂溴化十二烷基三甲基铵(DTAB)用量的改变,导致其孔径的变化范围为:2.21~4.15 nm;采用中性模板剂(P123),其调变的孔径范围为:4.21~10.91 nm。当采用阳离子表面活性剂CTAB和DTAB混合调变孔径时,表面活性剂的链长与分子筛的孔径大小成线性关系。链长越长,孔径越大。孔径变化范围为2.21~3.94 nm。当采用有机胺调节孔径时,以TEA为模板剂制得得孔径可达18.4 nm,且形成的介孔材料的比表面积为189 m2/g;当有机胺与CTAB混合作用调节孔径时,以N,N二甲基十二烷基胺(DMDA)为结构导向剂的扩孔效果最好,孔径变化范围为:3.94~5.49 nm。孔径大小变化并不随着有机胺用量的增加而增加,当有机胺用量增加到一定程度,反而对分子筛孔径扩大有破坏作用。水热后处理也是常用来扩孔的有效方法。采用氨水后处理扩孔,并不能增加分子筛的孔径大小,表明该V-MCM-41分子筛具有较好的结晶度。采用有机胺在后水热处理过程中扩孔,不同的后水热处理温度和不同的有机胺导致的扩孔效果差别显著,其中以TEA和DMDA在高温水热处理下的扩孔效果最优。高温水热后处理,TEA的加入能调变V-MCM-41分子筛的孔径从3.94扩孔到9.30 nm,增加2.36倍。而DMDA的加入能将孔径从3.94扩孔到6.62 nm,增加68%。
     6.考察了以MCM-41为载体的催化剂的催化性能。①制备了掺杂V的介孔V-MCM-41分子筛,考察了其制备条件对苯乙烯催化氧化反应的影响。在分子筛/H2O2催化氧化苯乙烯反应体系中,副产物为水,具有重要的环保意义和应用价值。先氮气后空气焙烧的样品对双氧水的利用率为55.9%,苯乙酸的选择性为49.44%。②制备了HRh(CO)(PPh3)3络合物负载于MCM-41载体上的负载型催化剂,该负载型催化剂与均相催化剂相比,具有高活性、高选择性和与产物易分离等优点。
The M41s mesoporous molecular sieves successfully synthesized by Mobil researchers in 1992 have attracted great interest due to their large specific surface area, uniform pore size distribution and rich surface functional groups. However, the nature of the neutral framework with few lacuna, weak acid intensity, poor ion-exchange ability and hydrothermal stability of M41s materials, limits their potential in catalysis, adsorption and separation, environmental protection and so on. Molecular sieves with transition metals incorporated into the framework have become the hot topic. It has been demonstrated that V-MCM-41 materials has poor hydrothermal stability and thermal stability, which is considered to be a serious problem in any practical application of this material that requires structural integrity. The materials with high hydrothermal and thermal stability become the aim of several scientists. The preparation of mesoporous materials with tunable pore size is the efficient method for its application as novel catalytic materials.
     In this work, the industrial inorganic silicate Na2O·3.3SiO2 was selected as a cheaper source of silica instead of expensive organic precursors, using CH3(CH2)15·(CH3)3NBr (CTAB) as surfactant, and the supported mesoporous materials was prepared by direct hydrothermal synthesis. The framework structure , texture, thermal stability and hydrothermal stability of V-MCM-41 materials had been investigated; the X-ray diffraction (XRD), N2 adsorption/desorption, Fourier-transformed infrared spectroscopy(FT-IR), diffuse reflectance UV-Vis spectra, inductively coupled plasma technique (ICP), scanning electron microscopy (SEM),Transmission electron microscopy (TEM) and differential thermogravimetric analysis(TG/DTG) were utilized for the characterizations of the supported mesoporous materials. The aim of the current work was to synthesize and characterize the mesoporous molecular sieves, investigate the thermal and hydrothermal stabilities of the samples, discuss the synthesis mechanism of the materials and probe the method of the tunable pore size of the materials. This dissertation mainly was consisted by the following several aspects.
     1. V-MCM-41 mesoporous materials were synthesized by hydrothermal method. The results indicated that several factors affected the synthesis. The crystallizing temperature, pH value and ratio of Si and CTAB were the most important factors. The texture parameters of the materials were affected by the following factors, active component V amounts, crystallizing time, aging time, calcination atmosphere, the order of materials adding and so on. The proper parameters were selected: n (Si): n (CTAB): n (V)=1: 0.2: 0.08, pH=9.5, crystallizing at 110℃for 48 h, no aging, adding vanadium source first and then silica source, calcination at 550℃for 6 h in air.
     2. V-MCM-41 mesoporous materials with different silica source were synthesized by hydrothermal method with Na2SiO3·9H2O, colloidal silica, and Na2O·3.3SiO2 as silica source, which was noted as VMC, VMS and VMH, respectively. V-MCM-41 mesoporous materials prepared by tetraethylorthosilicate.(TEOS)in acid condition and alkaline condition were noted as VMT-ac and VMT-al, respectively. The results indicated that .the synthesis processes were different with different silica sources, especially in the crystallizing temperature and pH value. The specific surface area of materials prepared by inorganic silica is lager than that of organic silica. It was due to the different speed of hydrolyzation and polymerization of different silica sources, which resulted in different polymer form. The different polymer would make difference with the reciprocity between the surfactants and silica source. The materials were prepared by inorganic silica in alkali condition, but the materials obtained by organic silica were synthesized in acid conditions. The optimal parameters of synthesis for the four silica were listed in following: crystallizing temperature at 110℃and pH value≈5.5 for VMT-ac materials; crystallizing temperature at 110℃and pH value≈10.5 for VMT-al materials; crystallizing temperature at 110℃and pH value≈9.5 for VMH materials; crystallizing temperature at 125℃and pH value≈10.5 for VMC materials; crystallizing temperature at 125℃and pH value≈11.5 for VMS materials.
     3. The hydrothermal and thermal stability of V-MCM-41 materials using Na2O·3.3SiO2 as silica source were investigated. The surface area, pore volume and pore size of the V-MCM-41 materials decreased with augmentation of hydrothermal treatment time. The mesoporous structure of V-MCM-41 materials was retained, the remaining ratio of surface area, pore volume and pore diameter were 84.3%, 81.6% and 91.9%, respectively, for the sample under hydrothermal treatment for 8 d. Clearly, well-resolved (100), (110) and (200) diffraction peaks of V-MCM-41 were observed from the XRD picture, which indicated that the mesopore-structure was kept almost totally even after 8 d aging in boiling water. The diffraction peaks became slightly broad and peak intensities decreased slightly with the augmentation of aging time in the boiling water, which indicated that the order of the materials was weaken with the increasing of aging in the boiling water. Furthermore, after 10d hydrothermal treatment, the mesoporous structure of this material was destroyed. However, the remaining ratio of specific surface area was 80.7%. The hydrothermal treatment indicated the mesoporous materials V-MCM-41 was of good hydrothermal stability. The sample was thermal treated at 900℃for 12 h, the mesopore-structure of this materials was retained. The remaining ratio of specific surface area and pore diameter of the sample were 83.71 % and 68.2 %. No remarkable changes were observed for the isotherms of the V-MCM-41 sample calcined at air and nitrogen/air atmosphere, which indicated that the samples could resist the released heat of template combustion and desorption when the samples were calcined in the air, which farther indicated that the samples were of high thermal stability.
     4. The different formation mechanism in the different system would explain the synthesis of the mesoporous materials. The formation mechanism of the materials prepared by the Na2O·3.3SiO2 was investigated. The effect of the crystallizing temperature could be explained by the Cooperative Formation Mechanism. The effect of the mol ratio of surfactants and silica source could be attributed to the Liquid Crystal Template Mechanism. The effect of the pH value was ascribed as Lamellar Transformation Hexangular Mechanism. The formation mechanism of this material could be explained by the cooperative results of several formation mechanisms, not only by one formation mechanism.
     5. The different surfactant amounts in the mesoporous materials synthesis can result in the different pore size of the materials. The pore size of the materials changed from 3.52 nm to 5.26 nm with the CTAB amounts shift; the amounts of CH3(CH2)11·(CH3)3NBr (DTAB) could change the pore size of the materials: from 2.21 to 4.15 nm; the pore size of the materials changed from 4.21 nm to 10.91 nm using P123 surfactant. The pore size of the materials was linear with length of long-chain alkyl of surfactants. The longer alkyl of surfactants, the larger pore size of the materials was. The pore size shifted from 2.21 to 3.94 nm with less DTAB and more CTAB. The organic amine was selected to expand the pore size of these materials. the (C2H5)3N (TEA) was used as surfactants, the pore size can be enlarged to 18.4 nm and specific surface area was 189 m2/g. the pore size could be changed with the different ratio of CTAB and CH3(CH2)11N(CH3)2 (DMDA), the range of pore size was 3.94~5.49 nm. The pore size didn't increase with the increasing of amounts of organic amine. The organic amine could destroy the expansion of pore size with the condition of adding excess amounts of amine. Ammonia hydrothermal treatment couldn’t expand the pore size which indicated the V-MCM-41 materials remained good crystal structure. The application of excessive amounts of DMDA was somewhat less effective for expansion of mesopore pore size. It was shown that the use of DMDA and TEA to restructure MCM-41 with 3.94 nm pores prepared under conventional hydrothermal synthesis afforded mesoporous silica with up to 6.62 and 9.30 nm pores, respectively. 2.36 times expansion of pore size for TEA and 68% improvement for DMDA was achieved successfully.
     6. The catalytic performance of catalysts using MCM-41 supports was investigated.①the selective oxidation of styrene using hydrogen peroxide as oxidant over V-MCM-41 samples was investigated; the phenylacetic acid was the principal most important product. The selectivity of phenylacetic acid was 49.44% and the conversion of H2O2 was 55.9% for the sample of V-MCM-41, which was calcined at 550 ?C in flowing nitrogen at first, then in air. The sample of V-MCM-41, which was calcined only in air at 550℃gave 63% H2O2 conversion and 38.74% selectivity in phenylacetic acid.②Mesoporous MCM-41 zeolite supported HRh(CO)(PPh3)3 complex for isobutene hydroformylation was prepared. Compared with homogeneous catalysts, the catalysts were of high catalytic performance and high selectivity of isovaleraldehyde besides the advantage of easy separation of catalyst from the product mixture.
引文
1. 曾昭槐. 择形催化. 北京: 中国石化出版社.1991
    2. Kalipcilar H, Culfaz A. Influence of Nature of Silica Source on Template-Free Synthesis of ZSM-5. Cryst. Res. Technol. 2001, 36(11):1197~1207
    3. Taramasso M, Millanese S D, Perego G M, Notari B.:Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides[P], USP4410501,1983
    4. Beck J S, Vartuli J C, Roth W J, et al. A New family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114(27): 10834~10843
    5. Beck J S, Vartuli J C, Roth W J, et al. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature, 1992, 359(6397): 710~712
    6. Sing K S W, Everett D H, Haul R A W, et al. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984). Pure Appl. Chem., 1985, 57: 603~619
    7. Sakthivel A, Huang S J, Chen W H. Direct Synthesis of highly stable mesoporous molecular sieves containing zeolite building units. Adv. Funct. Mater., 2005, 15(2): 253~258
    8. He X, Antonelli D. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves. Angew. Chem. Int. Ed., 2002, 41(2): 214 ~ 229
    9. Ciuparu D, Chen Y, Lim S, et al. Mechanism of cobalt cluster size control in Co-MCM-41 during single-wall carbon nanotubes synthesis by CO disproportionation. J. Phys. Chem. B., 2004, 108(40): 15565~15571
    10. Rodrigues S, Uma S, Martyanov I N, et al. AgBr/Al-MCM-41 visible-light photocatalyst for gas-phase decomposition of CH3CHO. J. catal., 2005, 233(2): 405~410
    11. Jermy B R, Pandurangan A. Catalytic application of Al-MCM-41 in the esterification of acetic acid with various alcohols. Appl. Catal. A: Gen., 2005, 288(1-2): 25~33
    12. Mrak M, Tusar N N, Logar N Z, et al. Titanium containing microporous mesoporous composite (Ti, Al)-Beta/MCM-41: Synthesis and characterization Micropor. Mesopor. Mater., 2006, 95(1-3): 76~85
    13. Hu Y, Wada N, Tsujimaru K, et al. Photo-assisted synthesis of V and Ti-containing MCM-41 under UV light irradiation and their reactivity for the photooxidation of propane. Catal. Today, 2007, 120(2): 139~144
    14. Pena M L, Dejoz A, Fornes V, et al. V containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase. Appl. Catal. A: Gen., 2001, 209(1-2): 155~164
    15. Lim S., Haller G L. Gas phase methanol oxidation on V MCM-41, Appl. Catal. A: Gen., 1999, 188(1-2): 277~286
    16. Vetrivel S, Pandurangan A. Vapour phase oxidation of ethylbenzene with air over Mn-containing MCM-41 mesoporous molecular sieves, Appl. Catal. A: Gen., 2004, 264(2): 243~252
    17. Ko J R, Ahn W S. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts. J. Nanosci. Nanotechnol., 2006, 6 (11): 3442~3445
    18. Tuel A, Gontier S. Synthesis and characterization of trivalent metal containing mesoporous silicas obtained by a neutral templating route. Chem. Mater., 1996, 8(1): 114~122
    19. Vinu A, Ariga K, Saravanamurugan S, et al. Synthesis of highly acidic and well ordered Mg/Al-MCM-41 and its catalytic performance on the isopropylation of m-cresol. Micropor. Mesopor. Mater., 2004, 76(1-3): 91~98
    20. Li L., Yu S T, Liu F S, et al. Reactions of turpentine using Zr-MCM-41 family mesoporous molecular sieves, Catal. Lett., 2005, 100(3-4): 227~233
    21. Wan Y, Ma J X, Wang Z, et al. On the mechanism of selective catalytic reduction of NO by propylene over Cu-Al-MCM-41. Appl. Catal. B: Environ., 2005, 59(3-4): 235~242
    22. Takeguchi T, Kim J B, Kang M, et al. Synthesis and characterization of Alkali-free, Ga-substituted MCM-41 and its performance for n-Hexane conversion, J. Catal., 1998(1): 175: 1~6
    23. Kosslick H, Lischke G, Walther G, et al. Physico-chemical and catalytic properties Al-, Ga-and Fe-substituted mesoporous materials related to MCM-41, Micropor. Mater., 1997, 9(1-2): 13~33
    24. Chatterjee M, Iwasaki T, Hayashi H, et al. Room-Temperature Formation of Thermally Stable Aluminium-Rich Mesoporous MCM-41. Catal. Lett., 1998, 52(1-2): 21~23
    25. Szegedi A, Popova M, Mavrodinova V, et al. Synthesis and characterization of Ni-MCM-41 materials with spherical morphology and their catalytic activity in toluene hydrogenation. Micropor. Mesopor. Mater., 200799 (1-2): 149-158
    26. 徐如人, 庞文琴. 分子筛与多孔材料化学, 北京: 科学出版社, 2004, 1
    27. Conner W C, Tompsett G, Lee K H, et al. Microwave synthesis of zeolites: 1. Reactor engineering. J. phys. Chem. B., 2004, 108(37): 13913~13920
    28. Wu C G, Bein T. Microwave Synthesis of Molecular Sieve MCM-41. Chem. Commun., 1996, (8): 925~926
    29. Tang X H, Liu S W, Wang Y Q, et al. Rapid synthesis of highly quality MCM-41 silica with ultrasound radiation. Chem. Commun., 2000, (21): 2119~2120
    30. Gallis K W, Landry C C. Synthesis of MCM-48 by a Phase Transformation Process. Chem. Mater., 1997, 9(10): 2035~2038
    31. Yang P D, Zhao D Y, Margolese D I, et al. Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework. Chem. Mater., 1999, 11(10): 2813~2826
    32. Lin W Y, Chen J S, Sun Y, et al. Bimodal Mesopore Distribution in a Silica Prepared by Calcining a Wet Surfactant-Containing Silicate Gel. J. Chem. Soc. Chem Commun., 1995, (23): 2367~2368
    33. Mukhopadhyay K, Ghosh A, Kumar R. Heteropolyacids aided rapid and convenient theses of highly ordered MCM-41 and MCM-48: exploring the accelerated process by 29Si Mas NMR and powder x-ray diffraction studies. Chem. Commun., 2002, (20): 2404~2405
    34. Ratnamala A, Durgakumari V, Lalitha K, et al. Unique vapor phase synthesis of 1, 2, 3, 5, 6, 7-hexahydrodicyclopenta [b, e] pyridine selectively over Co-Al-MCM-41. Catal. Commun., 2007, 8 (3): 267-274
    35. Chiranjeevi T, Kumaran G M, Gupta J K. Effect of Si/Al ratio of HMS support on catalytic functionalities of Mo, CoMo, NiMo hydrotreating catalysts. Catal. Commun., 2005, 6(2): 101~106
    36. Tanev P T, Pinnavai T J. A neutral templating route to mesoporous molecular sieves. Science, 1995, 267(5199): 865~867
    37. Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc. Chem. Commun., 1993, 680~682
    38. Hunter H M, Wright P A. Synthesis and characterization of the mesoporous silicate SBA-2 and its performance as an acid catalyst. Micropor. Mesopor. Mater., 2001, 43(3): 361~373
    39. Sakamoto Y, Kaneda M, Terasaki O, et al. Direct imaging of the pores and cages ofthree-dimensional mesoporous materials. Nature, 2000, 408(6811): 449~453
    40. Sakamoto Y, Diaz I, Terasaki O, et al. Stucky three-dimensional cubic mesoporous structures of SBA-12 and related materials by electron crystallography. J. Phys. Chem. B., 2002, 106(12): 3118~3123
    41. Prouzet E, Cot F, Nabias G., et al. Assembly of mesoporous silica molecular sieves based on nonionic ethoxylated sorbitan esters as structure directors. Chem. Mater., 1999, 11(6): 1498~1503
    42. Kim S S, Pauly T R, Pinnavaia T J. Non-Ionic Surfactant Assembly of Ordered, Very Large Pore Molecular Sieve Silicas from Water Soluble Silicates. Chem. Commun., 2000, (17): 1661~1662
    43. Kim S S, Pauly T R, Pinnavaia T J. Non-Ionic Surfactant Assembly of Wormhole Silica Molecular Sieves from Water Soluble Silicates. Chem. Commun., 2000, (10): 835~836
    44. Ryoo R, Kim J M, Ko C H, et al. Disordered Molecular Sieve with Branched Mesoporous Channel Network. J. Phys. Chem. B., 1996, 100(145): 17718~ 17721
    45. 李亚男. 掺杂过渡金属的 MCM-41 介孔分子筛的制备、表征及其对 CO:乙烷氧化脱氢制乙烯的研究, 吉林大学博士学位论文, 2006
    46. Gao C B, Qiu H B, Zeng W, et al. Formation mechanism of anionic surfactant-templated mesoporous silica. Chem. Mater., 2006, 18(16): 3904~3914
    47. Attard G S, Glyde J C, G?ltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature, 1995, 378(6555): 366~368
    48. Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants, Science, 1995, 269(5288): 1242~1244
    49. Huo Q S, Margolese D I, Ciesla U, et al. Stocky. Organization of organic molecules with inorganic molecular species into nanocomposite diphase arrays. Chem. Mater., 1994, 6: 1176~1191
    50. Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular-sieves . Science, 1995, 267(5199): 865~867
    51. Vartuli J C, Schmitt K D, Kresge C T, et al. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications, Chem. Mater, 1994, 6(12): 2317~2326
    52. Cheng C F, Luan Z H, Klinowski J. The role of surfactant micelles in the synthesis of the mesoporous molecular-sieve MCM-41. Langmuir, 1995, 11(7): 2815~2819
    53. Vartufi J C, Kresge C T, Leonowicz M E. Synthesis of Mesoporous Materials: Liquid-Crystal Templating versus Intercalation of Layered Silicates. Chem. Mater., 1994, 6: 2070~2077
    54. Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic surfactant and biomimetic assemblies. Science, 1995, 267(5201), 1138~1143.
    55. Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater., 1996, 8(5): 1147~1160.
    56. Firouzi A, Atef F, Oertli A G, et al. Alkaline lyotropic silicate-surfactant liquid crystals. J. Am. Chem. Soc., 1997, 119(15): 3596~3610
    57. Stucky C, Huo Q, Firouzi A, et al. Directed synthesis of organic/inorganic composite structures, Stud. Surf. Sci. Catal., 1997, 105(A-C): 3~28
    58. Huo Q S, Leon R, Petroff P M, et al. Mesostructure Design with Gemini Surfactants-Supercage Formation in a 3-Dimensional Hexagonal Array. Science, 1995, 268(5215): 1324~1327
    59. Chen X Y, Ding G Z, Chen H Y,et al. Formation at low surfactant concentrations and characterization of mesoporous MCM-41. Sci. China Ser. B: Chem., 1997, 40(3): 278~285
    60. Steel A, Carr S W, Anderson M W. 14NMR study of surfactant mesophases in the synthesis of mesoporous silicates. J. Chem. Soc. Chem. Commun., 1994: 1571~1572
    61. Chen C Y, Burkett S L, Li H X, et al. Studies on Mesoporous Materials. II. Synthesis Mechanism of MCM-41. Micropor. Mater., 1993, 2: 27~34
    62. Monnier A, Schiith F, Hua Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 1993, 261: 1299~1303
    63. Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater., 1996, 8(5): 1147~1160
    64. Biln J L, Herrier G, Otjacques, et al. Effects of alkanes on synthesis of MCM-41. Stud. Surf. Sci. Catal., 2000, 129(1): 57~64
    65. Sayari A, Liu P, Jaroniec K M. Cheracterization of large-pore MCM-41 molecular sieves obtained via hydrothermal restructuring. Chem. Mater., 1997, 9(11): 2499~2506
    66. Bagshaw S A, Prouzet E, Pinnavaia T J. templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science, 1995, 269(5228): 1242~1244
    67. Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548~552
    68. Chen L Y, Jaenicke S, Chuah G. K. Thermal and hydrothermal stability of framework-substitued MCM-41 mesoporous materials. Micropor. Mater., 1997, 12(4-6): 323~330
    69. Wang S, Doua T, Li Y P, et al. Synthesis, characterization,and catalytic properties of stable mesoporous molecular sieve MCM-41 prepared from zeolite mordenite. J. Solid State Chem., 2004, 177(12): 4800~4805
    70. Chen H X, Wang Y C. Preparation of MCM-41 with high thermal stability and complementary textural porosity. Ceram. Int., 2002, 28(5): 541~547
    71. He J, Duan X, Li C Y. Improving the stability of MCM-41 by monolayer dispersion of a metal oxide. Mater. Chem. Phys., 2001, 71(3): 221~225
    72. Jun S, Kim J M, Ryoo R, et al. Hydrothermal stability of MCM-48 improved by postsynthesis restructuring in salt solution. Micropor. Mesopor. Mater., 2000, 41(1-3): 119~127
    73. Zhao D Y, Nie C, Zhou Y M, et al. Comparison of disordered mesoporous aluminosilicates with highly ordered Al-MCM-41 on stability, acidity and catalytic activity. Catal. Today, 2001, 68(1-3): 11~20
    74. Biz S, White M G.. Effect of post-synthesis hydrothermal treatments on the adsorptive volume of surfactant-templated mesostructures. Micropor Mesopor Mater., 2000, 40(1-3): 159~171
    75. Liu J M, Liao S J, Jiang G D, et al. Preparation, characterization and catalytic activity of Zr embedded MSU-V with high thermal and hydrothermal stability. Micropor. Mesopor. mater., 2006, 95 (1-3): 306~311
    76. Li C L, Wang Y Q, Guo Y L, et al. Synthesis of highly ordered, extremely hydrothermal stable SBA-15/Al-SBA-15 under the assistance of sodium chloride. Chem. Mater., 2007, 19(2): 173~178
    77. Ryoo R, Jun S. Improvement of Hydrothermal Stability of MCM-41 Using Salt Effectsduring the Crystallization Process. J. Phys. Chem. B., 1997, 101(3): 317~320
    78. Kim J M, Jun S, Ryoo R. Improvement of hydrothermal stability of mesoporous silica using salts: reinvestigation for time-dependent effects. J. Phys. Chem. B., 1999, 103(30): 6200~6205
    79. Yu J, Shi J L, Chen H R, et al. Effect of Inorganic Salt Addition During Synthesis on Pore Structure and Hydrothermal Stability of Mesoporous Silica. Micropor. Mesopor. Mater., 2001, 46: 153~162
    80. Mokaya R, Jones W. Aluminosilicate Mesoporous Molecular Sieves with Enhanced Stability Obtained by Reacting MCM-41 with Aluminium Chlorohydrate. Chem. Commun., 1998, (17): 1839~1840
    81. Pang J B, Qiu K Y, Wei Y. A Novel Nonsurfactant Pathway to Hydrothermally Stable Mesoporous Silica Materials. Micropor. Mesopor. Mater., 2000, 40(1-3): 299~304
    82. Das D, Tsai C M, Cheng S. Improvement of Hydrothermal Stability of MCM-41 Mesoporous Molecular Sieve. Chem. Commun., 1999, (5): 473~474
    83. Kawi S, Shen S C. Effects of structural and non-structural a1 species on the stability of MCM-41 materials in boiling water. Mater. Lett., 2000, 42(1-2): 108~112
    84. Zhao X S, Lu G Q, Whittaker A K, et al. Comprehensive Study of Surface Chemistry of MCM-41 Using Si-29 CP/MAS NMR, FT-IR, Pyridine-TPD, and TGA. J. Phys. Chem. B., 1997, 101(33): 6525~6531
    85. Zhao X S, Lu G Q. Modification of MCM-41 by Surface Silylation with trimethylchlorosilane and Adsorption Study. J. Phys. Chem. B., 1998, 102(9) : 1556~1561
    86. Chen L Y, Horiuchi T, Mori T, et al. Post synthesis hydrothermal restructing of M41s mesoporous molecular sieves in water. J. Phys. Chem. B., 1999, 103(8): 1216~1222
    87. Mokaya R. Hydrothermally stable restructured mesoporous silica. Chem. Commun., 2001, (10): 933~934
    88. Karlsson A, Stocker M, Schafer K. Enhanced hydrothermal stability obtained for in situ synthesized micro- and mesoporous MFI/MCM-41 like phases. Stud. Surf. Sci Catal., 1999, 125(A-C): 61~67
    89. Karlsson A, Stocker M, Schmidt R. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach.Micropor. Mesopor. Mater., 1999, 27(2-3): 181~192
    90. Zhang Z T, Han Y, Zhu L, et al. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angew Chem. Int. Ed., 2001, 40(7): 1258~1262
    91. Han Y, Li N, Zhao L, et al. Understanding of the high hydrothermal stability of the mesoporous materials prepared by the assembly of triblock copolymer with preformed zeolite precursors in acidic media. J. Phys. Chem. B., 2003, 107(31): 7551~7556
    92. Huang L M, Guo W P, Deng P, et al. Investigation of Synthesizing MCM-41/ZSM-5 Composites. J. Phys. Chem. B., 2000, 104(13): 2817-2823
    93. Ryoo R, Kim J M, Ko C H, et al. Disordered molecular sieve with branched mesoporous channel network. J. Phys. Chem. B., 1996, 100(45): 17718~17721
    94. Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548~552
    95. Kim S S, Liu Y, Pinnavaia T J. Ultrastable MSU-G molecular sieve catalysts with lamellar framework structure and a vesicle-like particle texture. Micropor. Mesopor. Mater., 2001, 44-45(SI): 489~498
    96. Chow B, Tsai J L, Cheng S. Cu-substituted molecular sieves as liquid phase oxidation catalysts. Micropor. Mesopor. Mater., 2001, 48(1-3): 309~317
    97. Corma A. From Microporous to Mesoporous Molecular Sieve Materials and their use in Catalysis. Chem. Rev., 1997, 97(6): 2373~2420
    98. Oberhagemann U, Jeschke M, Papp H. Synthesis of highly ordered boron-containing B-MCM-41 and pure silica MCM-41. Micropor. Mesopor. Mater., 1999, 33(1-3): 165~172
    99. Blasco T, Corma A, Navarro M T et al. Synthesis, characterization and catalytic activity of Ti-MCM-41 structures. J. Catal., 1995, 156(1): 65~74
    100. Jia M J, Valenzuela R X, Amorós P et al. Direct Oxidation of isobutane to methacrolein over V-MCM-41 Catalysts. Catal. Today, 2004, 91(2): 43~47
    101. Amama P B, Lim S, Ciuparu D et al. Synthesis, characterization, and stability of Fe-MCM-41 for production of carbon nanotubes by acetylene pyrolysis, J. Phys. Chem. B., 2005, 109(7): 2645~2656
    102. Lim S, Haller G. L. Preparation of Highly Ordered Vanadium-Substituted MCM-41:Stability and Acidic Properties, J. Phys. Chem. B., 2002, 106(33): 8437~8448
    103. Gontier S, Tuel A. Novel zirconium containing mesoporous silicas for oxidation reactions in the liquid phase. Appl.Cata1. A: Gen., 1996, 143(1): 125~135
    104. Karthik M, Tripathi A K, Gupta N M, et al. Characterization of Co, Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol. Appl. Catal. A: Gen., 2004, 268(1-2): 139~149
    105. Chen Y W, Lu Y H. Characteristics of V-MCM-41 and Its Catalytic Properties in Oxidation of Benzene. Ind. Eng. Chem. Res., 1999, 38(5): 1893~1903
    106. Qian G, Ji D, Lu GM, et al. Bismuth-containing MCM-41: synthesis, characterization, and catalytic behavior in liquid-phase oxidation of cyclohexane. J Catal., 2005, 232 (2): 378~385
    107. Xu J Q, Chu W, Luo S Z. Synthesis and characterization of Mesoporous V-MCM-41 Molecular Sieves with good hydrothermal and thermal stability. J. Mol. Catal. A: Chem., 2006, 256(1-2): 48~56
    108. Dongare M K, Sabde D P, Shaikh R A, et al. Synthesis, characterization and catalytic properties of ZrAPO-5. Catal.Today, 1999, 49(1-3): 267~276
    109. Kovalchuk TV, Sflhi H, Korchev AS, et al. Synthesis, structure, and acidic properties of MCM-41 functionalized with phosphate and titanium phosphate groups. J. Phys. Chem. B., 2005, 109 (29): 13948~13956
    110. Yang YH, Lim S, Du GA, et al. Synthesis and characterization of highly ordered Ni-MCM-41 mesoporous molecular sieves. J. Phys. Chem. B., 2005, 109(27): 13237~13246
    111. Ryczkowski J, Goworek J, Gac W, et al. Temperature removal of templating agent from MCM-41 silica materials. Thermochim. Acta, 2005, 434 (1-2): 2~8
    112. Dattelbaum A M, Amweg M L, Ruiz J D, et al. Surfactant removal and silica condensation during the photochemical calcination of thin film silica mesophases. J. Phys. Chem. B., 2005, 109(30): 14551~14556
    113. Hulea V, Fajula F. Ni-exchanged A1-MCM-41 an efficient bifunctional catalyst for ethylene oligomerization. J. Catal., 2004, 225(1): 213~222
    114. Kumar N, Nieminen V, Lindfors et al. Cu-H-MCM-41,H-MCM-41 and Na-MCM-41 mesoporous molecular sieve catalysts for isomerization of 1-butene to isobutene. Catal. Lett.,2002, 78(1-4): 105~110
    115. 陈华, 黎耀忠, 李东文, 等. 水溶性均相络合催化研究进展. 化学进展, 1998, 10(2): 146~157
    116. Umamaheswari V, Palanichamy M, Murugesan V, et al. Vapour phase alkylation of ethylbenzene with t-butyl alcohol over mesoporous Al-MCM-41 molecular sieves. P. Indian AS-Chem. Sci., 2002, 114(3): 203~212
    117. Gunnewegh E A, Gopie S S, Bekkum H V. MCM-41 type molecular sieves as catalysts for the Friedel-Crafts acyltion of 2-metheoxynaphthalene. J. Mol. Catal. A: Chem., 1996, 106(1-2): 151~158
    118. Koch H, Reschetilowski W. Is the catalytic activity of Al-MCM-41 sufficient for hydrocarbon cracking? Micropor. Mesopor. Mater., 1998, 25(1-3): 127~129
    119. Yu R B, Xiao F S, Wang D, et al. Catalytic performance in phenol hydroxylation by hydrogen peroxide over a catalyst of V-Zr-O complex. Catal. Today, 1999, 51(1):392~461
    120. 伏再辉, 尹笃林. TS 分子筛催化性能研究 I. TS-2 分子筛催化 1, 2-丙二醇液相氧化反应的研究. 分子催化, 1996, 10(6): 469~472
    121. Paul P P, Miller M A, Heimrich M J. Emissiion control catalyst derived from mesoporous molecular sieves. Mater. Res. Soc. Symposium Proc., 1996, 431(8-11): 117~121
    122. Thangaraj A, Sivasanker S, Ratnasamy P. Catalytic properties of crystalline titanium silicates III. Ammoximation of cyclohexanone, J. Catal., 1991, 131: 394~400
    123. Corma A, Navarro M T, et al. From Micro to Mesoporous Molecular Sieves: Adapting Composition and Structure for Catalysis. Stud. Surf. Sci. Catal., 2002, 142(A-B): 487~501
    124. Zhang Q , Wang Y, Itsuki S, et al. Fe-MCM-41 for selective epoxidation of styrene with hydrogen peroxide. Chem. Lett., 2001, 5(9): 946~947
    125. 罗勇. Ti-MCM-41 分子筛的合成与催化氧化性能的研究. 上海: 华东理工大学, 2002, 77~84
    126. Srinivas D, Manikandan P, Laha S C, et al. Reactive oxo-titanium species in titanosilicate molecular sieves: EPR investigations and structure-activity correlations. J. Catal., 2003, 217(1): 160~171
    127. 李守贵, 房铭, 庞文琴. 钌卟啉/ MCM-41 催化剂的制备、表征及性质. 催化学报. 1999, 20(2): 161~165
    128. Ma J H, Li R F, Xie K C. Fesalen complexes entrapped in zeolite MCM-22. J. Fuel Chem. Technol., 2001, 29(2): 116~118
    129. Kong F Z, Jiang J Y, Jin Z L. Ammonium salts with polyether-tail: new ionic liquids for rhodium catalyzed two-phase hydroformylation of 1-te-tradecene. Catal. Lett., 2004, 96 (1/2): 63~65
    130. 陈华, 黎耀忠, 程溥明等. 两相催化体系中烯烃氢甲酰化的高区域选择性. 催化学报, 1999, 20 (50): 573~576
    131. Cornils B, Beller M, Frohning C D, et al. Progress in hydroformylation and carbonylation. J. Mol. Catal. A: chem., 1995, 104: 17~85
    132. 张宇, 袁友珠, 廖新丽, 等. 酸碱存在下水溶性铑膦配合物的 NMR 表征及氢甲酰化性能研究. 高等学校化学学报, 1999, 20 (10): 1589~1594
    133. Huang L, He Y, Kawi S. Catalytic studies of aminated MCM-41-tethered rhodium complexes for hydroformylation 1-hexene and styrene. J. Mol. Catal. A. Chem., 2004, 213(2): 241~249.
    134. Huang L, He Y, Kawi S. Catalytic studies of aminated MCM-41-tethered rhodium complexes for 1-hexene hydroformylation. Appl. Catal. A: Gen., 2004, 265(2): 247~257
    135. 杨勇, 彭庆蓉, 袁友珠. 有机官能团化介孔分子筛固载铑膦配合物的制备及其对己烯-氢甲酰化的催化性能. 2004, 25 (5): 421~425
    136. 董永治, 徐奕德, 刘安明, 等. Rh/L 和 Rh-Zn/L 分子筛催化剂上乙烯的氢甲酰化反应. 催化学报, 1994, 15: 207~211
    137. Takahashi N, Mijin A, Suematsu H, et al. An infrared study of Rh-Y zeolite related to activity for ethylene hydroformylation. J. Catal., 1989, 117: 348~354
    138. Xiong C R, Chen Q L , Lu W R , et al. Novel Fe-based complex oxide catalaysts for hydroxylation of phenol. Catal. Lett., 2000, 69(3-4): 231~236
    139. Xiao F S, Sun J M, Meng X J , et al. Synthesis and structure of copper hydroxyphosphate and its high catalytic activity in hydroxylation of phenol by H2O2. Appl. Catal. A: Gen., 2001, 207(1-2) :267~271
    140. Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US:4410501, 1983, 10~13
    141. Reddy J S, Reddy R. S, Kumar R, et al. Sulfoxidation of thiothers using titaniumsilicatemolecular sieves catalysts, J. Chern. Soc. Chern. Cornrnun., 1992: 84~85
    142. Keshavaraja A, Ramaswamy V, Soni H S, et al. Synthesis, characterization, and catalytic properties of micro-mesoporous, amorphous titanosilicate catalysts, J. Catal., 1995, 157(2), 501~511
    143. Chaudhari K, Das T K,Rajmohanan P R , et al. Synthesis, characterization and catalytic properties of mesoporous Tin-containing analogs of MCM-41. J. Catal., 1999, 183(2):281~291
    144. 孙建敏, 孟祥举, 王润伟, 等. Cu 修饰的 MCM-41 的合成、表征及对芳烃羟化反应催化作用的研究. 高等学校化学学报, 2000, 21(9): 1451~1454
    145. Tatsumi T, Nakamura M, Negishi S, et al. Shape-selective oxidation of alkanes with H2O2 catalysed by titanosilicate. J. Chem. Soc. Chem. Commun., 1990: 476~477
    146. Huybrechts D R C, De Bruycher L, Jacobs P A. Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite. Nature, 1990, 345: 240~242
    147. Clerici M. G.: Oxidation of saturated hydrocarbons with hydrogen peroxide catalysed by titanium silicate. Appl. Catal. A: Gen., 1991, 68(1-2): 249~261
    148. Corma A, Martinez A, Martinezsoria V J. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts. J. Catal., 1997, 169(2): 480~489
    149. Kloetstra K R, Vanbekkum H. Base and acid catalysis by the alkali-containing MCM-41 mesoporous molecular-sieve. Chem. Commun., 1995, (10): 1005~1006
    150. Kim S W, Son S U, Sang I, et al. Cobalt on mesoporous silica: the first heterogeneous Pauson-Khand catalyst .J. Am. Chem. Soc., 2000, 122(7): 1550~1551
    1. Xu Junqiang, Chu Wei, Luo Shizhong. Synthesis and characterization of Mesoporous V-MCM-41 Molecular Sieves with good hydrothermal and thermal stability. J. Mol. Catal. A: Chem., 2006, 256(1-2): 48~56
    2. 许俊强, 储 伟, 陈慕华, 罗仕忠, 张涛. 介孔分子筛 V-MCM-41 的水热法制备与合成机理. 催化学报, 2006,27(8): 671~677
    3. 徐如人, 庞文琴. 分子筛与多孔材料化学, 北京: 科学出版社, 2004
    4. 沈钟. 胶体与表面化学, 北京: 化学工业出版社, 2004
    5. 储伟. 催化剂工程, 成都: 四川大学出版社, 2006
    6. 陈宗淇, 王光信, 徐桂英. 胶体与表面化学, 北京: 高等教育出版社, 2001.
    7. 陈诵英, 孙予罕, 丁云杰, 等. 吸附与催化. 河南科学技术出版社, 2001.
    1. Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by liquid crystal temp late mechanism. Nature, 1992, 359(22): 710~712.
    2. 许俊强, 储伟, 陈慕华. 苯乙烯环氧化反应分子筛催化剂的研究进展. 化工进展, 2005, 24(09): 981~984
    3. 李亮, 施剑林. 介孔与介孔主客体材料在催化领域的应用, 催化学报, 2005, 26(02): 159~170
    4. 于健强, 李灿, 许磊, 等. 以硅溶胶和三氯化钛为原料合成 Ti-MCM-41 分子筛 Ⅱ .Ti-MCM-41 分子筛的表征, 催化学报, 2001, 22(04): 331~334
    5. Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves. Science, 1995, 267(5199): 865~867
    6. Vartuli J C, Schmitt K D, Kresge C T, et al. Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications, Chem. Marer, 1994, 6(12):2317~2326
    7. Luechinger M, Frunz L, Pirngruber G D, et al. A mechanistic explanation of the formation of high quality MCM-41 with high hydrothermal stability Micropor Mesopor Mater. 2003: 64 (1-3): 203~211
    8. 张兆荣, 索继栓, 张小明, 李树本. 介孔硅基分子筛研究新进展, 化学进展, 1999, 11(1): 11~20
    9. Chatterjee M, Iwasaki T, Hayashi H, et al. Room-Temperature Formation of Thermally Stable Aluminium-Rich Mesoporous MCM-41. Catal. Lett., 1998, 52(1-2): 21~23.
    10. Tang X H, Liu S W, Wang Y Q, et al. Rapid Synthesis of Highly Quality MCM-41 Silica with Ultrasound Radiation. Chem. Commun., 2000, (21): 2119~2120
    11. Zhang Q H, Yang W, Wang X X, et al. Coordination structures of vanadium and iron in MCM-41 and the catalytic properties in partial oxidation of methane. Micropor. Mesopor. Mater., 2005, 77(2-3): 223~234
    12. Kawi S, Shen S C. Effects of structural and non-structural Al species on the stability of MCM-41 materials in boiling water. Mater. Lett., 2000, 42(1-2): 108~112
    13. Wang Y, Zhang Q H, Shishido T, et al. Characterization of Iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. J. Catal., 2002,209(01): 186~196
    14. Qian G, Ji D, Lu GM, et al. Bismuth-containing MCM-41: synthesis, characterization, and catalytic behavior in liquid-phase oxidation of cyclohexane. J. Catal., 2005, 232 (2): 378~385
    15. Farzaneh F, Zamanifar E, Williams CD. V-MCM-41 as selective catalyst for epoxidation of olefins and trans-2-hexene-1-ol J. Mol. Catal. A: Chem., 2004, 218(2): 203~209
    16. Shylesh S, Singh A P. Vanadium-containing ordered mesoporous silicates: Does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41? J. Catal., 2005, 233(2): 359~371
    17. Uphade B S, Akita T, Nakamura T, et al. Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti-MCM-48. J. Catal., 2002, 209(2): 331~340.
    18. Solsona B, Blasco T, Nieto J M L, et al. Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes. J. Catal., 2001, 203(2): 443~452.
    1. Pasquale F F, Stanisaw P, Mietek J. Short-time synthesis of SBA-15 using various silica sources. J. Coll. Interfac. Sci., 2005, 287(2) :717~720
    2. Gaydhankar T R, Taralkar U S, Jha R K, et al. Textural/structural, stability and morphological properties of mesostructured silicas (MCM-41 and MCM-48) prepared using different silica sources. Catal. Commun., 2005, 6(5): 361~366
    3. Reda M M, Hisham M A, Mohamed F E S, et al. Effect of the silica sources on the crystallinity of nanosized ZSM-5 zeolite. Micropor. Mesopor. Mater., 2005, 79(1-3): 7~12
    4. Léonard A, Blin J L, Jacobs P A, et al. Chemistry of silica at different concentrations of non-ionic surfactant solutions: effect of pH of the synthesis gel on the preparation of mesoporous silicas. Micropor. Mesopor. Mater., 2003, 63(1-3): 59~73
    5. Kim S D, Noh S H, Kim W J. Alkali effect and kinetic studies on the crystallization of a small pored titanium silicate molecular sieve, ETS-4 using different sources of silica and titanium under stirring. Micropor. Mesopor. Mater., 2003, 65(2-3): 165~175
    6. De Moor P P E A, Beelen T P M, Van Santen R A. In situ observation of nucleation and crystal growth in zeolite synthesis. A small-angle X-ray scattering investigation on Si-TPA-MFI. J. phys. Chem. B., 1999, 103 (10): 1639~1650
    7. Shylesh S, Mirajkar S P, Singh A P. Influence of silica source in the catalytic activity and heterogenity of mesoporous vanadosilicates. J. Mol. Catal. A: Chem., 2005, 239(1-2): 57~63
    8. Shylesh S, Singh A P. Vanadium-containing ordered mesoporous silicates: Does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41? J. Catal., 2005, 233(2): 359~371
    9. 苏建峰, 陈晓晖, 魏可镁. 不同硅源合成 Bi-MCM-41 分子筛及其催化性能. 化学工业与工程. 2006, 23(1): 33~36
    10. Mu Z J, Li Y X, Chen B H, et al. Synthesis of zeolite MCM-22 by vapor phase transport method from different silica sources. J. Beijing Univ. Chem. Technol., 2004, 31(2): 6~8
    11. Chatterjee M, Naska M Kr. Sol–gel synthesis of lithium aluminum silicate powders: The effect of silica source. Ceram. Int., 2006, 32(6): 623~632
    12. Placidus B A, Sangyun L, Dragos C, et al. Haller Hydrothermal synthesis of MCM-41 using different ratios of colloidal and soluble silica. Micropor. Mesopor. Mater., 2005, 81(1-3): 191~200
    13. Mintova S, Valtchev V. Effect of the silica source on the formation of nanosized silicalite-1:an in situ dynamic light scattering study. Micropor. Mesopor. Mater., 2002, 55(2):171~179
    14. Kida T, Kojima K, Ohnishi H, et al. Synthesis of large silicalite-1 single crystals from two different silica sources. Ceram. Int., 2004, 30(5): 727~732
    15. Xu J Q, Chu W, Luo S Z. Synthesis and characterization of Mesoporous V-MCM-41 Molecular Sieves with good hydrothermal and thermal stability. J. Mol. Catal. A: Chem., 2006, 256(1-2): 48~56
    16. 刘百军, 候辉娟. 以硅溶胶为硅源高效合成 MCM-22 分子筛. 石油化工, 2004, 33(6): 527~530
    1. Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by liquid crystal temp late mechanism. Nature, 1992, 359(22): 710~712
    2. Kim J M, Jun S, Ryoo R. Improvement of hydrothermal stability of mesoporous silica using salts: reinvestigation for time-dependent effects. J. Phys. Chem. B., 1999, 103 (30): 6200~6205
    3. Mokaya R. Improving the stability of mesoporous MCM-41 silica via thicker more highly condensed pore walls. J. Phys. Chem. B., 1999, 103(46): 10204~10208
    4. Yu J, Shi J L, Chen H R. Effect of inorganic salt addition during synthesis on pore structure and hydrothermal stability of mesoporous silica. Micropor. Mesopor. Mater., 2001, 46(2-3): 153~162
    5. On D T, Kaliaguine S. Ultrastable and highly acidic, zeolite-coated mesoporous aluminosilicates. Angew. Chem. Int. Ed., 2002, 41(6): 1036~1040
    6. Huang L M, Guo W P, Deng P. Investigation of synthesizing MCM-41/ZSM-5 composites J. Phys. Chem. B., 2000, 104 (13): 2817~2823
    7. Kim J M, Ryoo R. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium. J. Chem. Soc. Chem. Commun., 1995, (8): 711~712
    8. Ryoo R, Jun S. Improvement of hydro thermal stability of MCM-41 using salt effects during crystallization process. J. Phys. Chem. B., 1997, 101(3): 317~320
    9. Das D, Tsai C M, Cheng S. Improvement of hydrothermal stability of MCM-41 mesoporous molecular sieve. J. Chem. Soc. Chem. Commun., 1999, (5): 473~474
    10. Chen L Y, Jaenicke S, Chuah G K, Thermal and hydrothermal stability of framework-substituted MCM-41 mesoporous materials. Micropor. Mater., 1997, 12 (4-6): 323~330
    11. Chen L Y, Horiuchi T, Mori T, et al. Postsynthesis hydrothermal restructuring of M41s mesoporous molecular sieves in water. J. Phys. Chem. B., 1999, 103(8): 1216~1222
    12. Wang S, Dou T, Li Y P. Synthesis, characterization, and catalytic properties of stable mesoporous molecular sieve MCM-41 prepared from zeolite mordenite J. Solid State Chem., 2004, 177(12): 4800~4805
    13. Zhang Z T, Han Y, Zhu L. Strongly acidic and high temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angew. Chem. Int. Ed., 2001, 40 (7) :1258~1262
    14. Kim W J, Yoo J C, Hayhurst D T, Synthesis of hydrothermally stable MCM-41 with initial adjustment of pH and direct addition of NaF. Micropor. Mesopor. Mater., 2000, 39(1-2) 177~186
    15. Chen H X, Wang Y C, Preparation of MCM-41 with high thermal stability andcomplementary textural porosity .Ceram. Int., 2002, 28(5): 541~547
    16. Tolbert S H, Firouzi A, Stucky G D, et al. Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science, 1997, 278 (5336) 264~268
    17. Zhao D Y, Huo Q S, Feng J, et al. Nonionic Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 1998, 120(24): 6024~6036
    18. Amama P B, Lim S, Ciuparu D et al. Synthesis, Characterization, and Stability of Fe-MCM-41 for Production of Carbon Nanotubes by Acetylene Pyrolysis, J. Phys. Chem. B., 2005, 109(7): 2645~2656
    19. Vinu A, Ariga K, Saravanamurugan S, et al. Synthesis of highly acidic and well ordered Mg/Al-MCM-41 and its catalytic performance on the isopropylation of m-cresol. Micropor. Mesopor. Mater., 2004, 76 (1-3): 91~98
    20. Luechinger M, Frunz L, Pirngruber G D, et al. A mechanistic explanation of the formation of high quality MCM-41 with high hydrothermal stability. Micropor. Mesopor. Mater., 2003, 64 (1-3): 203~211
    21. Kim J M, Ryoo R, Disintegration of mesoporous structures of MCM-41 and MCM-48 in water. Bull. Korea Chem. Soc., 1996, 17(1): 66~68
    22. Xia Q H, Hidajat K, Kawi S, Improvement of the hydrothermal stability of fluorinated MCM-41 material . Mater. Lett., 2000, 42(1-2): 102~107
    23. 罗勇, 卢冠忠, 黄家桢, 等, MCM-41 中孔分子筛的水热稳定性. 华东理工大学学报, 2003, 29(1): 38~42
    24. Monnier A, Schüth F, Huo Q. et al. Cooperative formation of inorganic organic interfaces in the synthesis of silicate mesostructure. Science, 1993, 261: 1299~1301
    25. Schacht P, Norena Franco L, Ancheyta J, et al. Characterization of hydrothermally treated MCM-41 and Ti-MCM-41 molecular sieves. Catal. Today,2004, 98(1-2): 115~121
    26. He J, Duan X, Li C Y, Improving the stability of MCM-41 by monolayer dispersion of a metal oxide. Mater. Chem. Phys., 2001, 71(3): 221~225
    27. Yang Y H, Lim S, Wang C, et al. Multivariate correlation and prediction of the synthesis of vanadium substituted mesoporous molecular sieves. Micropor. Mesopor. Mater., 2004, 67(2-3): 245~257
    28. Kawi S, Shen S C. Effects of structural and non-structural Al species on the stability of MCM-41 materials in boiling water. Mater. Lett., 2000, 42(1-2): 108~112
    29. Jha R K, Shylesh S, Bhoware S S, et al. Oxidation of ethyl benzene and diphenyl methane over ordered mesoporous M-MCM-41 (M = Ti, V, Cr): Synthesis, characterization and structure-activity correlations. Micropor. Mesopor. Mater., 2006, 95 (1-3): 154~163
    1. Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants, Science, 1995, 269(5288): 1242~1244.
    2. Attard G S, Glyde J C, G?ltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature, 1995, 378(6555): 366~368
    3. Cheng C F, Luan Z H, Klinowski J. The role of surfactant micelles in the synthesis of the mesoporous molecular-sieve MCM-41. Langmuir, 1995, 11(7): 2815~2819
    4. Vartuli J C, Schmitt K D, Kresge C T, et al. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications, Chem. Mater., 1994, 6(12):2317~2326
    5. Tanev P T, Pinnavai T J. A Neutral templating Route to Mesoporous Molecular Sieves. Science, 1995, 267(5199): 865~867
    6. Liu X B, Chang F X, Xu L, et al. Preparation of ordered carbon/silica hybrid mesoporous materials with specific pore size expansion. Micropor. Mesopor. Mater., 2005, 79 (1-3): 269~273
    7. Hanrahan J P, Copley M P, Ryan K M, et al. Pore expansion in mesoporous silicas using supercritical carbon dioxide. Chem. Mater., 2004, 16 (3): 424~427
    8. Kruk M, Jaroniec M, Sayari A. A unified interpretation of high-temperature pore size expansion processes in MCM-41 mesoporous silicas. J. Phys. Chem. B., 1999, 103 (22): 4590~4598
    9. 吴秀文. MCM-41 类介孔分子筛的合成反应机理及对 Hg2+吸附性能的研究. 中国地质大学, 北京, 2006
    10. Cheng C F, He H Y, Zhou W Z, Jacek Klinowski. Crystal morphology supports the liquid-crystal formation mechanism for the mesoporous molecular-sieve MCM-41. Chem. Phys. Lett., 1995, 244(1-2): 117~120
    11. Beck J S, VartUli J C, Roth W J, et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710~712
    12. Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science, 1995, 267(5201): 1138~1143.
    13. Monnier A, Schiith F, Hua Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 1993, 261: 1299~1303
    14. Kresge C T, Leonowicz M E, Roth W J, et al. Qrdered mesoporous molecular sieve synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710~712
    15. Beck J S, VartUli J C, Roth W J, et al Schlenkert. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114(27): 10834~10843.
    16. Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater., 1996, 8(5): 1147~1160.
    17. Sayari A, Liu P, Jaroniec K M. Cheracterization of large pore MCM-41 molecular sieves obtained via hydrothermal restructuring. Chem. Mater., 1997, 9(11): 2499~2506.
    18. Kruk M, Jaroniec M, Sayari A. New insights into pore-size expansion of mesoporous silicates using long-chain amines. Micropor. Mesopor. Mater., 2000, 35(6): 545~553
    19. Mehn D, Konya Z, Halasz J, et al. Flexibility of the MCM-41 structure: pore expansion and wall-thickening in MCM-41 derivatives. Appl. Catal. A. Gen., 2002, 232 (1-2): 67~76
    20. Lin H P, Mou C Y. Salt effect in post-synthesis hydrothermal treatment of MCM-41. Micropor. Mesopor. Mater., 2002, 55 (1): 69~80
    21. Hanrahan J P, Copley M P, Ryan K M, et al. Pore expansion in mesoporous silicas using supercritical carbon dioxide. Chem. Mater., 2004, 16 (3): 424~427
    22. Sayari A. Unprecedented expansion of the pore size and volume of periodic mesoporous silica. Angew. Chem.Int. Ed., 2000, 39 (16): 2920~2922
    1. Patil N S, Uphade B S, Jana P, et al. Epoxidation of styrene by anhydrous t-butyl hydroperoxide over reusable gold supported on MgO and other alkaline earth oxides. J. Catal., 2004, 223(1): 236~239
    2. Espinal L, Suib S L, Rusling J F. Electrochemical Catalysis of Styrene Epoxidation with Films of MnO2 Nanoparticles and H2O2. J. Am. Chem. Soc., 2004, 126(24): 7676~7682
    3. Ilham K, Francesc M, Xavier R, et al. Epoxidation of styrene with hydrogen peroxide using hydrotalcites as heterogeneous catalysts. Appl. Catal. A: Gen., 2004, 272(1): 175~185
    4. Yadav G D, Pujari A A. Epoxidation of Styrene to Styrene Oxide: Synergism of Heteropoly Acid and Phase-Transfer Catalyst under Ishii-Venturello Mechanism. Organ. Proc. Res. Develop., 2000, 4(2): 88~93
    5. Kirm I, Medina F, Rodr′yguez X. Epoxidation of styrene with hydrogen peroxide using hydrotalcites as heterogeneous catalysts. Appl. Catal. A., 2004, 272(1): 175~185
    6. Meng X J, Sun Z H, Wang R W, et al. Catalytic epoxidation of styrene by molecular oxygen over a novel catalyst of copper hydroxyphosphate Cu2(OH)PO4. Catal. Lett., 2001, 76 (1): 105~109
    7. Luo Y, Lin J. Synthesis and characterization of Co (II) salen functionalized MCM-41-type hybrid mesoporous silicas and their applications in catalysis for styrene oxidation with H2O2. Micropor. Mesopore. Mater., 2005, 86(1-3): 23~30
    8. Yang Q H; Li C; Yuan S D. Epoxidation of Styrene on a Novel Titanium-Silica Catalyst Prepared by Ion Beam Implantation. J. Catal., 1999, 183(1): 128~130
    9. Santiago Z, Evgenia S, Antonio D. Epoxidation of styrene with iodosylbenzene in the presence of Copper(II) Schiff-base complexes. Polyhedron, 2003, 22(13): 1653~1658
    10. Srinivas N, Rani V R, Kulkarni S J, et al. Liquid phase oxidation of anthracene and transstilbene over modified mesoporous (MCM-41) molecular sieves. J. mol. Catal. A: chem., 2002, 179(1-2): 221~231
    11. Wang Y, Zhang Q H, Shishido T, et al. Characterization of Iron-containing MCM - 41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. J. Catal., 2002, 209(1): 186~196
    12. Wang X X, Lefebvre F, Patarin J, et al. Synthesis and characterization of zirconium containing mesoporous silicas. Micropor. Mesopor. Mater., 2001, 42(2-3): 269 ~276
    13. Parvulescu V I, Su B L. Iron, Cobalt or nickel substituted MCM-41 molecular sieves for oxidation of hydrocarbons. Catal. Today, 2001, 69(1-4): 315~322
    14. Sayari A, Yang Y. Highly Ordered MCM-41 Silica Prepared in the Presence of Decyltrimethylammonium Bromide. J. Phys. Chem. B., 2000, 104 (20): 4835~4839
    15. Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114 (10): 834~843
    16. 杜红宾, 屠昆岗, 周群, 等. 微酸性介质中 V-ZSM-5 的合成与结构表征. 高等学校化学学报, 1994, 15(4): 473~477
    17. Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710~718
    18. 张春雷, 吴志芸. 钒硅沸石中钒的存在状态研究. 物理化学学报, 1995, 11(4): 302~307
    19. Schumacher K, Hohenesche von C D F, Unger K K, et al. The Synthesis of Spherical Mesoporous Molecular Sieves MCM-48 with Heteroatoms Incorporated into the Silica Framework. Adv. Mater., 1999, 11(14): 1194~1198
    20. Peixoto A F, Pereira M M, Sousa A F. Improving regioselectivity in the rhodium catalyzed hydroformylation of protoporphyrin-IX and chlorophyll a derivatives. J. Mol. Catal. A: Chem., 2005, 235(1-2): 185~193
    21. Kong F Z, Jiang J Y, Jin Z L. Ammonium salts with polyether-tail: new ionic liquids for rhodium catalyzed two-phase hydroformylation of 1-te-tradecene. Catal. Lett., 2004, 96 (1/2): 63~65
    22. Bronger R P J, Bermon J P, Reek J N H. The immobilisation of phenoxaphosphine-modified xanthene-type ligand on polysiloxane support and application thereof in the hydroformylation reaction. J. Mol. Catal. A: Chem., 2004, 224(1-2): 145~152
    23. Zhang Y, Shinoda M, Shiki Y H. Hydroformylation of 1-hexene for oxygenate fuels via promoted cobalt/active carbon catalysts at low-pressure. Fuel, 2006, 85(9): 1194~1200
    24. Damoense L, Datt M, Green M. Recent advances in high-pressure infrared and NMR techniques for the determination of catalytically active species in rhodium- and cobalt-catalysed hydroformylation reactions. Coordin. Chem. Rev., 2004, 248(21-24): 2393~2407
    25. Han D F, Li X H, Zhang H D. Heterogeneous asymmetric hydroformylation of olefins on chirally modified Rh/SiO2 catalysts. J. Catal., 2006, 243(2): 318~328
    26. Rosa Axet M, Castillon S, Claver C. Rhodium-diphosphite catalysed hydroformylation of allylbenzene and propenylbenzene derivatives. Inorganica Chimica Acta., 2006, 359(9): 2973~2979
    27. Xu Junqiang, Chu Wei, Luo Shizhong. Synthesis and characterization of Mesoporous V-MCM-41 Molecular Sieves with good hydrothermal and thermal stability. J. Mol. Catal. A: Chem., 2006, 256 (1-2):48~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700