Pt、Co和TiO_2一维纳米阵列的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对于一维纳米材料的研究主要集中在三个方面:第一,探索可控制备一维纳米材料的方法。第二,研究单个纳米单元的基本性质,探讨在低维材料体系中的物理、化学规律。第三,以一维纳米结构为基本单元,探索纳米材料在低功耗、高性能、集成化的功能性器件中的应用。本论文着眼纳米科技的发展趋势,以阳极氧化法制备多孔的Al_2O3(AAO)和TiO_2(ATO)薄膜为基础,在以上三个方面进行了有益的探索。
     通过改进的阳极氧化技术,开发了具有规则锯齿形分枝孔道的AAO薄膜。其制备方法简单易行,操作电压在10~80 V范围内可调。通过分析实验结果,深入研究了氧化膜的成分和结构特点。结合高场电导理论、阴离子在氧化膜中的迁移机理以及场致流动模型,并以有限元法多物理场建模与分析为辅助手段,解释了其特殊结构的形成机制。规则锯齿形孔道的形成和发展归因于阳极氧化过程中O_2气泡的产生以及氧化膜中的塑性变形。随后,利用多步阳极氧化技术,交替在磷酸和草酸溶液中进行阳极氧化,制备了多层堆垛的三维周期性结构。在熟悉AAO的结构特点、深入了解不同形貌AAO的实验技术的基础上,以AAO为模板制备了一系列不同的材料体系,研究了Pt纳米线阵列的电催化活性和Co纳米线/纳米管阵列的磁性能。
     利用电沉积技术,分别在具有光滑孔道和锯齿形孔道的AAO模板中制备了不同形貌的Pt纳米线阵列。对于锯齿形Pt纳米线,其锯齿之间的距离(Db),锯齿的长度(lb)以及纳米线的总长度分别约为250 nm,250 nm和4μm。结构分析表明,Pt纳米线具有多晶结构,晶粒大小在5~9 nm范围内。结合实验结果和多物理场建模与分析,对Pt纳米线在甲醇溶液中的电催化性能进行了研究。结果表明,由于锯齿形结构的存在,纳米线周围的电场强度显著增强,纳米线电极表面具有更多的活性区域,因而其电催化活性明显优于具有光滑表面的Pt纳米线。
     以具有光滑孔壁的AAO为模板,通过控制实验参数分别制备了Co纳米线和纳米管阵列。对于纳米线的分析表明,Co纳米线为六角密堆积(hcp)的单晶结构,其c轴垂直于纳米线的长轴方向。纳米线的电阻率约为75μ?·cm。磁滞回线研究表明,高的长径比使形状各向异性能占据主导优势,因而其长轴方向为易磁化方向。在对纳米线的磁力显微分析中发现,纳米线两端存在一对强烈的磁偶极子,同时沿纳米线方向有一个周期性的空间磁化调制现象。该现象是由于平行于纳米线方向的形状各向异性能和垂直于纳米线方向的磁晶各向异性能的竞争所致。
     随后,利用电沉积技术在两端开口的纳米孔道中成功地制备了高填充率的Co纳米管阵列。结构分析表明,Co纳米管同样具有结晶质量较高的单晶hcp结构,其c轴垂直于纳米管的长轴方向。综合考虑纳米管中的形状各向异性能、磁晶各向异性能、交换作用能和塞曼能,磁矩在卷曲态的时候系统能量最低。因此当施加磁场的方向平行于纳米管时,磁化反转是一个缓慢的过程,磁滞回线呈现出一个扁平的环。同时,磁力显微分析也只测量到非常微弱的磁信号。从而,从实验的角度证实了这种卷曲模型,即在无外加磁场时,磁矩绕着纳米管管壁排列,并与管壁相切,组成一个封闭的环。
     基于AAO的研究基础,利用类似的二次阳极氧化技术在NH4F的乙二醇溶液中制备了TiO_2纳米管阵列。在60 V的阳极电压下,纳米管的生长速率约为167 nm/min。元素分析表明,TiO_2纳米管中含有少量的F元素。这是由于阳极氧化过程中F-离子对TiO_2的溶解所致。经过退火处理,无定形的TiO_2纳米管转变为结晶态的锐钛矿相,并伴有少量的金红石结构。同时退火处理使其电导提高了3个数量级。随后利用原位的还原掺杂技术对纳米管底部阻挡层处理,从而选择性地进一步提高了纳米管底部的电导率。
     研究开发了以TiO_2纳米管阵列为光阳极制备染料敏化太阳能电池(DSSCs)的技术。通过对TiO_2纳米管的热处理和TiCl4修饰处理工艺,DSSCs的光电转换效率达到了2.94 %。值得注意的是,纳米管底部封闭的阻挡层结构使DSSCs中的串联电阻较大,从而一定程度上阻碍了电池的光电转换效率的提高。随后,利用底部经还原掺杂的TiO_2纳米管为光阳极制备了DSSCs。由于串联电阻的减小,其短路光电流提高了约7 %,达到8.28 mA/cm2;总的光电转换效率提高了34 %,达到3.95 %。
     纳米管底部阻挡层电导率的提高使在TiO_2中电沉积纳米线成为可能。并且,基于TiO_2本身的功能性,三维结构的复合材料有望在光电转换及能量储存领域显示出更优异的性能。利用电沉积技术成功地将p型半导体Cu_2O填充进TiO_2纳米管阵列中,构筑了三维结构的Cu_2O/TiO_2 p-n结薄膜。其光电转换效率达到0.009 %。这种新型的全固态金属氧化物电池全部是在溶液中利用电化学方法制备出来的,环境友好、原材料丰富、性能稳定、成本极低。因此如果能进一步通过优化工艺提高电池效率,有希望成为新型的固态廉价太阳能电池。同时三维结构的Cu_2O/TiO_2 p-n结还有可能具有更优异的光催化性能。
Significant research progresses of one-dimensional (1-D) systems have been achieved in the past decades. Researchers have been focusing on the following three areas. First, explore controllable synthesis approaches on 1-D materials. Second, study the fundamental physical and chemical properties on individual units. Third, assemble the 1-D nanomaterials as building blocks in low power consumption, high performance and highly integrated devices. In this study, we devote our efforts on the three different but close-related areas based on the novel structures of porous anodic aluminum and titanium oxides.
     A unique and robust method is developed to design and fabricate anodic aluminum oxide (AAO) membranes with serrated nanochannels in phosphoric acid solution. The synthesis can be carried out under room temperature and in a wide operation voltage (10~80 V). Due to high field conduction and anionic incorporation, an increase of anodizing voltage leads to the increase of the impurity levels as well as the electric field across the barrier layer. The initialization and formation of serrated channels are attributed to the evolution of oxygen gas bubbles followed by plastic deformation in the oxide film based on both experiment and simulation results. Alternating anodization in oxalic and phosphoric acids is applied to construct multilayered membranes with smooth and serrated channels, which demonstrates three-dimensional hierarchical system with controllable morphology and composition.
     To reveal the inside serrated channel structure, platinum is electrodeposited into the template. The interval distances, branch length, and total length of the as-synthesized serrated nanowires are about 250 nm, 250 nm, and 4μm, which are in accordance with the serrated channel spacing, length, and template thickness, respectively. X-ray diffraction (XRD) pattern and high resolution transmission electron microscope (HRTEM) image indicate that the crystal size is in the range of 5~9 nm. The electrocatalytic activities for methanol oxidation are evaluated on serrated nanowires in a conventional three-electrode system, which exhibits superior electrocatalytic activity compared to the straight nanowires. Combined with finite-element numerical simulation, we believe that the strengthened electric field around the serrated tips contributes predominantly to the enhanced electrocatalytic activities in addition to the increased surface area per unit Pt mass.
     The AAO with smooth channels are used as templates to synthesize ferromagnetic cobalt nanowires and nanotubes. HRTEM and XRD results on Co nanowires (diameter~90 nm) show predominantly single crystal hexagonal close-packed (hcp) structure with the magnetocrystalline easy axis (c-axis) perpendicular to the wire axis. The conductivity of Co nanocrystal performed on an individual wire is around 75μ? ? cm. Hysteresis loops illustrate the dominance of shape anisotropy. Furthermore, the magnetic structures of Co nanowires are studied using magnetic force microscopy (MFM), which reveals a strong dipole at the two ends of the wire, together with a spatial magnetization modulation along the wire. Based on theoretical modeling, such intrinsic modulation is attributed to magnetization frustration due to the competition between the magnetocrystalline polarization along the easy axis and the shape anisotropy along the wire axis.
     Subsequently, Co nanotubes are demonstrated by direct electroplating method inside the through-hole AAO membranes. The results manifest that the nanotubes are mainly hcp single crystals with the c-axis perpendicular to the tube axis. MFM imaging shows a weak magnetic signal and SQUID measurement reveals sheared hysteresis responses for field applied along the tube axis. Combined with theoretical modeling taking into account the shape demagnetization, crystal anisotropy, magnetic exchange, and external magnetic interaction energies, our measurements confirm that the magnetization curls circumferentially around the tube in order to minimize the total magnetic energy for small external fields.
     Based on our successful achievement on the AAO, self-organized TiO_2 nanotube arrays are demonstrated by two-step anodization method in NH4F based electrolyte. The growth rate of TiO_2 nanotubes is ~167 nm/min under 60 V bias voltage in fresh electrolyte. The energy dispersive X-ray analysis (EDX) on TiO_2 nanotubes indicates trace amount F element resulting from the dissolution effect of NH4F. After the annealing treatment under 500℃for 6 h, the amorphous TiO_2 is converted to dominant anatase phase and trace amount of thermally grown rutile structure. Moreover, a conductive AFM tip coated with Ti/Au is contacted on an individual nanotube for the conductance measurement which exhibits three orders of magnitude higher than that of amorphous nanotubes. In order to further increase the conductance at the nanotube bottom, reductive doping method is adopted to facilitate more conductive barrier layer.
     TiO_2 nanotube membranes are employed as photoanode in dye-sensitized solar cells (DSSCs). The energy conversion efficiency is achieved to be 2.94 % by optimizing the annealing parameters and TiCl4 treatment. The condensed barrier layer at nanotube bottom causes a relative high series resistance, corresponding to the low fill factor and conversion efficiency. Thus, the reductive doping of TiO_2 nanotubes is performed before the solar cell assembling. The packaged device exhibits improved performance with higher short circuit current density (8.28 mA/cm2) and energy conversion efficiency (3.95 %).
     The enhanced conductivity of TiO_2 nanotube bottom makes it feasible to electrochemically deposit desired materials. Due to the 1-D structure and functionality of TiO_2 itself, three-dimensional core-shell structures is promising to exhibit superior performance in photovoltaics and energy storage devices. Herein, p-type Cu_2O is successfully filled into TiO_2 nanotube channels by electrodeposition. The three-dimensional Cu_2O/TiO_2 p-n junction films exhibit an energy conversion efficiency up to 0.009 %, which is much enhanced compared to the two-dimensional Cu_2O/TiO_2 films. The improved photovoltaic performances benefit from the high junction interface as well as the 1-D carriers’pathway due to the radial hetero-junction nature. Conclusively, the presented Cu_2O/TiO_2 system would be a promising candidate of solid-state low cost solar cell and photocatalyst due to their abundant, inexpensive and environmental friendly nature once the efficiency could be further improved by optimizing the device parameters.
引文
[1] H. Gleiter, Nanostructured materials: Basic concepts and microstructure, Acta Mater. 2000, 48(1): 1-29.
    [2] C.R. Chang, C.M. Lee, J.S. Yang, Magnetization Curling Reversal for an Infinite Hollow Cylinder, Phys. Rev. B 1994, 50(9): 6461-6464.
    [3] O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells, Nat. Nanotechnol. 2009, 4: 592-597.
    [4] L.F. Cui, R. Ruffo, C.K. Chan, H.L. Peng, Y. Cui, Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes, Nano Lett. 2009, 9(1): 491-495.
    [5] J. Hahm, C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Lett. 2004, 4(1): 51-54.
    [6] F. Patolsky, G.F. Zheng, O. Hayden, M. Lakadamyali, X.W. Zhuang, C.M. Lieber, Electrical detection of single viruses, Proc. Natl. Acad. Sci. U. S. A. 2004, 101(39): 14017-14022.
    [7] M. Law, J. Goldberger, P.D. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 2004, 34: 83-122.
    [8] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature 1991, 354(6348): 56-58.
    [9] J. Martinez, R.V. Martinez, R. Garcia, Silicon Nanowire Transistors with a Channel Width of 4 nm Fabricated by Atomic Force Microscope Nanolithography, Nano Lett. 2008, 8(11): 3636-3639.
    [10] G.E. Moore, Cramming more components onto integrated circuits, Proc. IEEE 1998, 86: 82 (Reprinted from Electronics, pp. 114–117, April 119, 1965).
    [11] Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, C.M. Lieber, Logic gates and computation from assembled nanowire building blocks, Science 2001, 294(5545): 1313-1317.
    [12] J.G. Lu, P.C. Chang, Z.Y. Fan, Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications, Mater. Sci. Eng. R. 2006, 52(1-3): 49-91.
    [13] R.S. Wagner, W.C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Appl. Phys. Lett. 1964, 4: 89-90.
    [14] R.S. Wagner, W.C. Ellis, K.A. Jackson, S.M. Arnold, Study of the Filamentary Growth of Silicon Crystals from the Vapor, J. Appl. Phys. 1964, 35(10): 2993-3000.
    [15] Y. Cui, L.J. Lauhon, M.S. Gudiksen, J.F. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires, Appl. Phys. Lett. 2001, 78(15): 2214-2216.
    [16] S.Y. Bae, H.W. Seo, J.H. Park, Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition, J. Phys. Chem. B 2004, 108(17): 5206-5210.
    [17] J.M. Wu, H.C. Shih, W.T. Wu, Y.K. Tseng, I.C. Chen, Thermal evaporation growth and the luminescence property of TiO2 nanowires, J. Cryst. Growth 2005, 281(2-4): 384-390.
    [18] L. Dai, X.L. Chen, J.K. Jian, M. He, T. Zhou, B.Q. Hu, Fabrication and characterization of In2O3 nanowires, Applied Physics a-Materials Science & Processing 2002, 75(6): 687-689.
    [19] X.F. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires, Adv. Mater. 2000,12(4): 298-302.
    [20] P.C. Chang, Z.Y. Fan, D.W. Wang, W.Y. Tseng, W.A. Chiou, J. Hong, J.G. Lu, ZnO nanowires synthesized by vapor trapping CVD method, Chem. Mater. 2004, 16(24): 5133-5137.
    [21] Y.Y. Wu, P.D. Yang, Direct observation of vapor-liquid-solid nanowire growth, J. Am. Chem. Soc. 2001, 123(13): 3165-3166.
    [22] N. Wang, Y. Cai, R.Q. Zhang, Growth of nanowires, Materials Science & Engineering R-Reports 2008, 60(1-6): 1-51.
    [23] M.S. Gudiksen, C.M. Lieber, Diameter-selective synthesis of semiconductor nanowires, J. Am. Chem. Soc. 2000, 122(36): 8801-8802.
    [24] T. Kuykendall, P.J. Pauzauskie, Y.F. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P.D. Yang, Crystallographic alignment of high-density gallium nitride nanowire arrays, Nat. Mater. 2004, 3(8): 524-528.
    [25] G.D. Yuan, W.J. Zhang, J.S. Jie, X. Fan, J.X. Tang, I. Shafiq, Z.Z. Ye, C.S. Lee, S.T. Lee, Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays, Adv. Mater. 2008, 20(1): 168-173.
    [26] Q. Zhao, X. Xu, H. Zhang, Y. Chen, J. Xu, D. Yu, Catalyst-free growth of single-crystalline alumina nanowire arrays, Applied Physics a-Materials Science & Processing 2004, 79(7): 1721-1724.
    [27] S.M. Arnold, S.E. Koonce, Filamentary Growths on Metals at Elevated Temperatures, J. Appl. Phys. 1956, 27(8): 964-964.
    [28] J.M. Blakely, K.A. Jackson, Growth of Crystal Whiskers, J. Chem. Phys. 1962, 37: 428-430.
    [29] A. Vantomme, Z.Y. Yuan, G.H. Du, B.L. Su, Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods, Langmuir 2005, 21(3): 1132-1135.
    [30] T. Gao, Q.H. Li, T.H. Wang, Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites, Chem. Mater. 2005, 17(4): 887-892.
    [31] G.F. Zou, H. Li, Y.G. Zhang, K. Xiong, Y.T. Qian, Solvothermal/hydrothermal route to semiconductor nanowires, Nanotechnology 2006, 17(11): S313-S320.
    [32] J.H. Choy, E.S. Jang, J.H. Won, J.H. Chung, D.J. Jang, Y.W. Kim, Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser, Adv. Mater. 2003, 15(22): 1911-1914.
    [33] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nanowire dye-sensitized solar cells, Nat. Mater. 2005, 4(6): 455-459.
    [34] C.R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach Science 1994, 266(5193): 1961-1966.
    [35] A.P. Li, F. Müller, A. Birner, K. Nielsch, U. G?sele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 1998, 84(11): 6023-6026.
    [36] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett. 1997, 71(19): 2770-2772.
    [37] J.A. Czaban, D.A. Thompson, R.R. LaPierre, GaAs Core-Shell Nanowires for Photovoltaic Applications, Nano Lett. 2009, 9(1): 148-154.
    [38] W. Lee, K. Nielsch, U. G?sele, Self-ordering behavior of nanoporous anodic aluminum oxide (AAO)in malonic acid anodization, Nanotechnology 2007, 18: 475713.
    [39] S.J. Hurst, E.K. Payne, L.D. Qin, C.A. Mirkin, Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods, Angew. Chem. Int. Ed. 2006, 45(17): 2672-2692.
    [40] F. Keller, M.S. Hunter, D.L. Robinson, Structural features of oxide coatings on aluminium, J. Electrochem. Soc. 1953, 100: 411-419.
    [41] J.F.Murphy, C.E.Michelson., in Conference on anodizing of aluminium, Anodizing aluminum proceedings; Aluminum development association, Nottingham 1961, 83.
    [42] J.P. O'sulliavan, Wood, The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium, Proc. R. Soc. Lond. A 1970, 317(1531): 511-543.
    [43] G.E. Thompson, R.C. Furneaux, G.C. Wood, J.A. Richardson, J.S. Goode, Nucleation and growth of porous anodic films on aluminium, Nature 1978, 272: 433 - 435.
    [44] J. Siejka, C. Ortega, An O18 Study of Field-Assisted Pore Formation in Compact Anodic Oxide Films on Aluminum, J. Electrochem. Soc. 1977, 124: 883-891.
    [45] G.E. Thompson, Porous anodic alumina: Fabrication, characterization and applications, Thin Solid Films 1997, 297(1-2): 192-201.
    [46] O. Jessensky, F. Müller, U. G?sele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. 1998, 72(10): 1173-1175.
    [47] S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina induced by local current concentration: Burning, Electrochemical and Solid State Letters 2004, 7(7): B21-B24.
    [48] S.Z. Chu, K. Wada, S. Inoue, M. Isogai, A. Yasumori, Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization, Adv. Mater. 2005, 17(17): 2115-2119.
    [49] W. Lee, R. Ji, U. Gosele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Materials 2006, 5(9): 741-747.
    [50] Y. Li, M. Zheng, L. Ma, W. Shen, Fabrication of highly ordered nanoporous alumina films by stable high-field anodization, Nanotechnology 2006, 17(20): 5101-5105.
    [51] P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Rubianes, C.E. Blanco-Pinzon, A tracer study of porous anodic alumina, Electrochem. Solid-State Lett. 2006, 9(11): B47-B51.
    [52] S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, A flow model of porous anodic film growth on aluminium, Electrochim. Acta 2006, 52(2): 681-687.
    [53] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura, Square and triangular nanohole array architectures in anodic alumina, Adv. Mater. 2001, 13(3): 189-192.
    [54] Z. Fan, H. Razavi, J.-w. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, Steven Neale1, Kyoungsik Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates, Nat. Mater. 2009, 8: 648-653.
    [55] S. Ono, M. Saito, M. Ishiguro, H. Asoh, Controlling factor of self-ordering of anodic porous alumina, J. Electrochem. Soc. 2004, 151(8): B473-B478.
    [56] K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. G?sele, Self-ordering regimes of porous alumina: The 10% porosity rule, Nano Lett. 2002, 2(7): 677-680.
    [57] W. Lee, R. Ji, U. G?sele, K. Nielsch, Fast fabrication of long-range ordered porous aluminamembranes by hard anodization, Nat. Mater. 2006, 5(9): 741-747.
    [58] G.E. Possin, A Method for Forming Very Small Diameter Wires, Rev. Sci. Instrum. 1970, 41(5): 772-774.
    [59] C.R. Martin, Membrane-Based Synthesis of Nanomaterials, Chem. Mater. 1996, 8(8): 1739-1746.
    [60] C.K. Preston, M. Moskovits, Optical characterization of anodic aluminum oxide films containing electrochemically deposited metal particles. 1. Gold in phosphoric acid anodic aluminum oxide films, The Journal of Physical Chemistry 1993, 97(32): 8495–8503.
    [61] B.B. Lakshmi, C.J. Patrissi, C.R. Martin, Sol-gel template synthesis of semiconductor oxide micro- and nanostructures, Chem. Mater. 1997, 9(11): 2544-2550.
    [62] H.Q. Cao, L.D. Wang, Y. Qiu, Q.Z. Wu, G.Z. Wang, L. Zhang, X.W. Liu, Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays, Chemphyschem 2006, 7(7): 1500-1504.
    [63] C.W. Xu, H. Wang, P.K. Shen, S.P. Jiang, Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells, Adv. Mater. 2007, 19(23): 4256-4259.
    [64] L.F. Liu, W.Y. Zhou, S.S. Xie, L. Song, S.D. Luo, D.F. Liu, J. Shen, Z.X. Zhang, Y.J. Xiang, W.J. Ma, Y. Ren, C.Y. Wang, G. Wang, Highly efficient direct electrodeposition of Co-Cu alloy nanotubes in an anodic alumina template, J. Phys. Chem. C 2008, 112(7): 2256-2261.
    [65] M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chem. Phys. Lett. 2002, 363(1-2): 123-128.
    [66] K.Y. Shi, B.F. Xin, Y.J. Chi, H.G. Fu, Assembling porous Fe2O3 nanowire arrays by electrochemical deposition in mesoporous silica SBA-16 films, Acta Chim. Sinica 2004, 62(19): 1859-1861.
    [67] X.M. Liu, Y.C. Zhou, Electrochemical deposition and characterization of Cu2O nanowires, Applied Physics a-Materials Science & Processing 2005, 81(4): 685-689.
    [68] A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Detection of CO and O2 Using Tin Oxide Nanowire Sensors, Adv. Mater. 2003, 15(12): 997-1000.
    [69] B.B. Lakshmi, P.K. Dorhout, C.R. Martin, Sol-gel template synthesis of semiconductor nanostructures, Chem. Mater. 1997, 9(3): 857-862.
    [70] A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, ZnO nanotube based dye-sensitized solar cells, Nano Lett. 2007, 7(8): 2183-2187.
    [71] C.S. Rout, K. Ganesh, A. Govindaraj, C.N.R. Rao, Sensors for the nitrogen oxides, NO2, NO and N2O, based on In2O3 and WO3 nanowires, Applied Physics a-Materials Science & Processing 2006, 85(3): 241-246.
    [72] C.C. Chen, Y. Bisrat, Z.P. Lu, R.E. Schaak, C.G. Chao, D.C. Lagoudas, Fabrication of single-crystal tin nanowires by hydraulic pressure injection, Nanotechnology 2006, 17(2): 367-374.
    [73] Z.Y. Fan, D. Dutta, C.J. Chien, H.Y. Chen, E.C. Brown, P.C. Chang, J.G. Lu, Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays, Appl. Phys. Lett. 2006, 89(21): 213110.
    [74] B. Cheng, E.T. Samulski, Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3, J. Mater. Chem. 2001, 11(12): 2901-2902.
    [75] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. G?sele, Synthesis of vertical high-densityepitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template, Adv. Mater. 2007, 19(7): 917-920.
    [76] G.P. Sklar, K. Paramguru, M. Misra, J.C. LaCombe, Pulsed electrodeposition into AAO templates for CVD growth of carbon nanotube arrays, Nanotechnology 2005, 16(8): 1265-1271.
    [77] Y. Lei, W.K. Chim, H.P. Sun, G. Wilde, Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties, Appl. Phys. Lett. 2005, 86(10): 1-3.
    [78] G.Q. Ding, W.Z. Shen, M.J. Zheng, D.H. Fan, Synthesis of ordered large-scale ZnO nanopore arrays, Appl. Phys. Lett. 2006, 88(10): 103106.
    [79] G.M. Regan B O, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991, 353(24): 737-739.
    [80] S. Horikoshi, F. Hojo, H. Hidaka, N. Serpone, Environmental remediation by an integrated microwave/UV illumination technique. 8. Fate of carboxylic acids, aldehydes, alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO2 particles under UV irradiation, Environ. Sci. Technol. 2004, 38(7): 2198-2208.
    [81] M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M.G. Gratzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 2005, 127(48): 16835-16847.
    [82] D.A. Wang, Y. Liu, C.W. Wang, F. Zhou, W.M. Liu, Highly Flexible Coaxial Nanohybrids Made from Porous TiO2 Nanotubes, ACS Nano 2009, 3(5): 1249-1257.
    [83] S.K. Mohapatra, S. Banerjee, M. Misra, Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe, Nanotechnology 2008, 19(31): 315601.
    [84] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal. 1999, 27(7): 629-637.
    [85] D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 2001, 16(12): 3331-3334.
    [86] M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, Anodic growth of highly ordered TiO2 nanotube arrays to 134μm in length, J. Phys. Chem. B 2006, 110(33): 16179-16184.
    [87]黄成德,低维纳米材料在质子交换膜燃料电池电催化反应中的应用,化学通报2005, 68(8): 608-612.
    [88] M. Beltowska-Brzezinska, J. Heitbaum, On the anodic oxidation of formaldehyde on Pt, Au and Pt/Au-alloy electrodes in alkaline solution, J. Electroanal. Chem. 1985, 183(1-2): 167-181.
    [89] J. Clavilier, C. Lamy, J.M. Leger, Electrocatalytic Oxidation of Methanol on Single-Crystal Platinum-Electrodes - Comparison with Polycrystalline Platinum, J. Electroanal. Chem. 1981, 125(1): 249-254.
    [90] E. Ticanelli, J.G. Beery, M.T. Paffett, S. Gottesfeld, An electrochemical, ellipsometric, and surface science investigation of the PtRu bulk alloy surface, J. Electroanal. Chem. 1989, 258(1): 61-77.
    [91] C.J. Zhong, J. Luo, B. Fang, B.N. Wanjala, P.N. Njoki, R. Loukrakpam, J. Yin, Nanostructured catalysts in fuel cells, Nanotechnology 2010, 21(6): -.
    [92] P.A. Christensen, A. Hamnett, G.L. Troughton, The role of morphology in the methanol electro-oxidation reaction, J. Electroanal. Chem. 1993, 362(1-2): 207-218.
    [93] G.Y. Zhao, C.L. Xu, D.J. Guo, H. Li, H.L. Li, Template preparation of Pt-Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation, J. Power Sources 2006, 162(1): 492-496.
    [94]徐明丽.纳米线阵列电极的制备及其对甲醇电催化氧化特性的研究[博士论文].昆明:昆明理工大学. 2007.
    [95] S. Mahima, R. Kannan, I. Komath, M. Aslam, V.K. Pillai, Synthesis of platinum Y-junction nanostructures using hierarchically designed alumina templates and their enhanced electrocatalytic activity for fuel-cell applications, Chem. Mater. 2008, 20(3): 601-603.
    [96] T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Fabrication and Magnetic-Properties of Arrays of Metallic Nanowires, Science 1993, 261(5126): 1316-1319.
    [97] Y. Peng, H.L. Zhang, S.L. Pan, H.L. Li, Magnetic properties and magnetization reversal of alpha-Fe nanowires deposited in alumina film, J. Appl. Phys. 2000, 87(10): 7405-7408.
    [98]高禄梅,宋晓平,王胖胖,杨森,铁钴合金纳米线有序阵列的制备及其磁性表征,西安交通大学学报2006, 40(10): 1139-1143.
    [99] K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. G?sele, S.F. Fischer, H. Kronmuller, Hexagonally ordered 100 nm period nickel nanowire arrays, Appl. Phys. Lett. 2001, 79(9): 1360-1362.
    [100] H. Pozidis, W. Haberle, D. Wiesmann, U. Drechsler, M. Despont, T.R. Albrecht, E. Eleftheriou, Demonstration of thermomechanical recording at 641 Gbit/in(2), IEEE Trans. Magn. 2004, 40(4): 2531-2536.
    [101]姚素薇,宋振兴,王宏智, Co/Cu多层纳米线阵列的制备与磁性能,物理化学学报2007, 23(8): 1306-1310.
    [102] T. Ohgai, X. Hoffer, L. Gravier, J.E. Wegrowe, J.P. Ansermet, Bridging the gap between template synthesis and microelectronics: spin-valves and multilayers in self-organized anodized aluminium nanopores, Nanotechnology 2003, 14(9): 978-982.
    [103] Y.C. Sui, R. Skomski, K.D. Sorge, D.J. Sellmyer, Nanotube magnetism, Appl. Phys. Lett. 2004, 84(9): 1525-1527.
    [104] J. Escrig, P. Landeros, D. Altbir, E.E. Vogel, P. Vargas, Phase diagrams of magnetic nanotubes, J. Magn. Magn. Mater. 2007, 308(2): 233-237.
    [105] P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir, E.E. Vogel, Reversal modes in magnetic nanotubes, Appl. Phys. Lett. 2007, 90(10): 102501.
    [106] D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Gr?tzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells, ACS Nano 2008, 2(6): 1113-1116.
    [107] O.K. Varghese, C.A. Grimes, Metal oxide nanoarchitectures for environmental sensing, J. Nanosci. Nanotechnol. 2003, 3(4): 277-293.
    [108] S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki, Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications, Nano Lett. 2007, 7(5): 1286-1289.
    [109] G.F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, J.L. Tirado, T. Djenizian, TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries, Electrochim. Acta 2009, 54(17):4262-4268.
    [110] M.S. Kim, T.W. Lee, J.H. Parka, Controlled TiO2 Nanotube Arrays as an Active Material for High Power Energy-Storage Devices, J. Electrochem. Soc. 2009, 156(7): A584-A588.
    [111] J.M. Macak, H. Tsuchiya, A. Ghicov, P. Schmuki, Dye-sensitized anodic TiO2 nanotubes, Electrochem. Commun. 2005, 7(11): 1133-1137.
    [112] M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, C.A. Grimes, Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells, Journal of Physics D-Applied Physics 2006, 39(12): 2498-2503.
    [113] O.K. Varghese, M. Paulose, K. Shankar, G.K. Mor, C.A. Grimes, Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays, J Nanosci Nanotechno 2005, 5(7): 1158-1165.
    [114] Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol, J. Phys. Chem. C 2008, 112(1): 253-259.
    [115] Q. Zheng, B.X. Zhou, J. Bai, L.H. Li, Z.J. Jin, J.L. Zhang, J.H. Li, Y.B. Liu, W.M. Cai, X.Y. Zhu, Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand, Adv. Mater. 2008, 20(5): 1044-+.
    [116] B.Y. Yu, A. Tsai, S.P. Tsai, K.T. Wong, Y. Yang, C.W. Chu, J.J. Shyue, Efficient inverted solar cells using TiO2 nanotube arrays, Nanotechnology 2008, 19(25): 255202.
    [117] Y. Hou, X.Y. Li, X.J. Zou, X. Quan, G.C. Chen, Photoeletrocatalytic Activity of a Cu2O-Loaded Self-Organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation, Environ. Sci. Technol. 2009, 43(3): 858-863.
    [118] J.M. Macak, B.G. Gong, M. Hueppe, P. Schmuki, Filling of TiO2 nanotubes by self-doping and electrodeposition, Adv. Mater. 2007, 19(19): 3027–3031.
    [119] J. Li, C. Papadopoulos, J. Xu, Nanoelectronics - Growing Y-junction carbon nanotubes, Nature 1999, 402(6759): 253-254.
    [120] G.W. Meng, Y.J. Jung, A.Y. Cao, R. Vajtai, P.M. Ajayan, Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires, Proc. Natl. Acad. Sci. U. S. A. 2005, 102(20): 7074-7078.
    [121] C. Papadopoulos, A. Rakitin, J. Li, A.S. Vedeneev, J.M. Xu, Electronic transport in Y-junction carbon nanotubes, Phys. Rev. Lett. 2000, 85(16): 3476-3479.
    [122] V.P. Parkhutik, V.I. Shershulsky, Theoretical Modeling of Porous Oxide-Growth on Aluminum, J. Phys. D: Appl. Phys. 1992, 25(8): 1258-1263.
    [123] G.E. Thompson, G.C. Wood, Porous anodic film formation on aluminium, Nature 1981, 290: 230-232.
    [124] H. Takahashi, K. Fujimoto, M. Nagayama, Effect of Ph on the Distribution of Anions in Anodic Oxide-Films Formed on Aluminum in Phosphate Solutions, J. Electrochem. Soc. 1988, 135(6): 1349-1353.
    [125] J.E. Houser, K.R. Hebert, Modeling the potential distribution in porous anodic alumina films during steady-state growth, J. Electrochem. Soc. 2006, 153(12): B566-B573.
    [126] J.E. Houser, K.R. Hebert, The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films, Nat. Mater. 2009, 8: 415-420.
    [127] S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina formed in organic acidelectrolytes, Electrochim. Acta 2005, 51(5): 827-833.
    [128] V.P. Parkhutik, V.I. Shershulsky, Theoretical modelling of porous oxide growth on aluminium J. Phys. D: Appl. Phys. 1992, 25(8): 1258-1263.
    [129] A.C. Crossland, H. Habazaki, K. Shimizu, P. Skeldon, G.E. Thompson, G.C. Wood, X. Zhou, C.J.E. Smith, Residual flaws due to formation of oxygen bubbles in anodic alumina, Corros. Sci. 1999, 41(10): 1945-1954.
    [130] X.F. Zhu, D.D. Li, Y. Song, Y.H. Xiao, The study on oxygen bubbles of anodic alumina based on high purity aluminum, Mater. Lett. 2005, 59(24-25): 3160-3163.
    [131] W. Lee, R. Scholz, U. G?sele, A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum, Nano Lett. 2008, 8(8): 2155-2160.
    [132] D.D. Macdonald, On the Formation of Voids in Anodic Oxide Films on Aluminum, J. Electrochem. Soc. 1993, 140(3): L27-L30.
    [133] P. Skeldon, G.E. Thompson, G.C. Wood, X. Zhou, Evidence of oxygen bubbles formed within anodic films on aluminium-copper alloys, Philos. Mag. A 1997, 76(4): 729-741.
    [134] P.C. Chang, H.Y. Chen, J.S. Ye, F.S. Sheu, J.G. Lu, Vertically aligned antimony nanowires as solid-state pH sensors, ChemPhysChem 2007, 8(1): 57-61.
    [135] F. Liu, J.Y. Lee, W.J. Zhou, Template preparation of multisegment PtNi nanorods as methanol electro-oxidation catalysts with adjustable bimetallic pair sites, J. Phys. Chem. B 2004, 108(46): 17959-17963.
    [136] M.E. Domine, E.E. Iojoiu, T. Davidian, N. Guilhaume, C. Mirodatos, Hydrogen production from biomass-derived oil over monolithic Pt- and Rh-based catalysts using steam reforming and sequential cracking processes, Catal. Today 2008, 133-135: 565-573
    [137] A. Baranov, S. Fanchenko, L. Calliari, G. Speranza, L. Minati, S. Kharitonov, D. Fedoseenkov, A. Shorokhov, A. Nefedov, Thin film a-C/Pt nanocomposite catalysts for toxic gas sensors, Surf. Interface Anal. 2006, 38(4): 823-827.
    [138] R. Manoharan, J.B. Goodenough, Methanol Oxidation in Acid on Ordered Niti, J. Mater. Chem. 1992, 2(8): 875-887.
    [139] W. Vielstich, P.A. Christensen, S.A. Weeks, A. Hamnett, Evidence for Coh as an Adsorbed Intermediate in the Anodic-Oxidation of Methanol by Ecdtms and Sniftirs, J. Electroanal. Chem. 1988, 242(1-2): 327-333.
    [140] K.-I. Ota, Y. Nakagawa, M. Takahashi, Reaction products of anodic oxidation of methanol in sulfuric acid solution, J. Electroanal. Chem. 1984, 179(1-2): 179-186.
    [141] V.S. Bagotzkya, Y.B. Vassilieva, O.A. Khazovaa, Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals, J. Electroanal. Chem. 1977, 81(2): 229-238.
    [142] B. Beden, C. Lamy, A. Bewick, K. Kunimatsu, Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed co species, J. Electroanal. Chem. 1981, 121: 343-347.
    [143] F. Hahn, B. Beden, F. Kadirgan, C. Lamy, Electrocatalytic oxidation of ethylene glycol : Part III. In-situ infrared reflectance spectroscopic study of the strongly bound species resulting from its chemisorption at a platinum electrode in aqueous medium, 1987, 216(1-2): 169-180.
    [144] A. Kumar, S. Fahler, H. Schlorb, K. Leistner, L. Schultz, Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates, Phys. Rev. B 2006, 73(6): 064421.
    [145] F.B. Mancoff, N.D. Rizzo, B.N. Engel, S. Tehrani, Phase-locking in double-point-contact spin-transfer devices, Nature 2005, 437(7057): 393-395.
    [146] G.S.D. Beach, C. Nistor, C. Knutson, M. Tsoi, J.L. Erskine, Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires, Nat. Mater. 2005, 4(10): 741-744.
    [147] S.S. E. H. Frei, D. Treves, Critical Size and Nucleation Field of Ideal Ferromagnetic Particles, Physical Review 1957, 106(3): 446-455.
    [148] K. Yamada, W.E. Bailey, C. Fery, S.X. Wang, In-situ conductance measurement of surface specularity of NiFe, Co, Cu, Ag and Ta thin films, IEEE Trans. Magn. 1999, 35(5): 2979-2981.
    [149] G. Bergmann, J.G. Lu, Y.Q. Tao, R.S. Thompson, Frustrated magnetization in Co nanowires: Competition between crystal anisotropy and demagnetization energy, Phys. Rev. B 2008, 77(5): 054415.
    [150] A. Fert, L. Piraux, Magnetic nanowires, J. Magn. Magn. Mater. 1999, 200(1-3): 338-358.
    [151] R.C. O'Handley, Modern Magnetic Materials: Principles and Applications, John Wiley & Sons, Inc., New York 2000.
    [152] W. Lee, M. Alexe, K. Nielsch, U. G?sele, Metal membranes with hierarchically organized nanotube arrays, Chem. Mater. 2005, 17(13): 3325-3327.
    [153] M.S. Sander, M.J. Cote, W. Gu, B.M. Kile, C.P. Tripp, Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates, Adv. Mater. 2004, 16(22): 2052-2057.
    [154] A. Kros, R.J.M. Nolte, N.A.J.M. Sommerdijk, Conducting polymers with confined dimensions: Track-etch membranes for amperometric biosensor applications, Adv. Mater. 2002, 14(23): 1779-1782.
    [155] M.H. Yang, J.H. Jiang, Y.H. Lu, Y. He, G.L. Shen, R.Q. Yu, Functional histidine/nickel hexacyanoferrate nanotube assembly for biosensor applications, Biomaterials 2007, 28(23): 3408-3417.
    [156] J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications, Appl. Phys. Lett. 1999, 75(3): 367-369.
    [157] S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. S?derlund, C.R. Martin, Antibody-based bio-nanotube membranes for enantiomeric drug separations, Science 2002, 296(5576): 2198-2200.
    [158] H.Q. Cao, Z. Xu, H. Sang, D. Sheng, C.Y. Tie, Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanotubules, Adv. Mater. 2001, 13(2): 121-123.
    [159] Y.C. Sui, R. Skomski, K.D. Sorge, D.J. Sellmyer, Magnetic nanotubes produced by hydrogen reduction, J. Appl. Phys. 2004, 95(11): 7151-7153.
    [160] K. Nielsch, F.J. Castano, C.A. Ross, R. Krishnan, Magnetic properties of template-synthesized cobalt/polymer composite nanotubes, J. Appl. Phys. 2005, 98(3): 034318.
    [161] K. Nielsch, F.J. Castano, S. Matthias, W. Lee, C.A. Ross, Synthesis of cobalt/polymer multilayer nanotubes, Adv. Eng. Mater. 2005, 7(4): 217-221.
    [162] J.C. Bao, C.Y. Tie, Z. Xu, Q.F. Zhou, D. Shen, Q. Ma, Template synthesis of an array of nickel nanotubules and its magnetic behavior, Adv. Mater. 2001, 13(21): 1631-1633.
    [163] W. Lee, R. Scholz, K. Niesch, U. G?sele, A template-based electrochemical method for the synthesisof multisegmented metallic nanotubes, Angew. Chem. Int. Ed. 2005, 44(37): 6050-6054.
    [164] M. Steinhart, Z.H. Jia, A.K. Schaper, R.B. Wehrspohn, U. G?sele, J.H. Wendorff, Palladium nanotubes with tailored wall morphologies, Adv. Mater. 2003, 15(9): 706-709.
    [165] Y. Luo, S.K. Lee, H. Hofmeister, M. Steinhart, U. G?sele, Pt nanoshell tubes by template wetting, Nano Lett. 2004, 4(1): 143-147.
    [166] W.C. Yoo, J.K. Lee, Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes, Adv. Mater. 2004, 16(13): 1097-1101.
    [167] J. Escrig, M. Daub, P. Landeros, K. Nielsch, D. Altbir, Angular dependence of coercivity in magnetic nanotubes, Nanotechnology 2007, 18(44): 445706.
    [168] P.E. de Jongh, D. Vanmaekelbergh, Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles, Phys. Rev. Lett. 1996, 77(16): 3427-3430.
    [169] P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.-M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nature Mater. 2006, 5(7): 567-573.
    [170] B.H. Meekins, P.V. Kamat, Got TiO2 Nanotubes? Lithium Ion Intercalation Can Boost Their Photoelectrochemical Performance, ACS Nano 2009, 3(11): 3437-3446.
    [171] Y.T. Sul, C.B. Johansson, Y. Jeong, T. Albrektsson, The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes, Med Eng Phys 2001, 23(5): 329-346.
    [172] M.M. Lohrengel, Thin anodic oxide layers on aluminium and other valve metals: high field regime, Materials Science and Engineering: R: Reports 1993, 11(6): 243-294
    [173] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach, Electrochim. Acta 1999, 45(6): 921-929.
    [174] J.M. Macak, H. Tsuchiya, P. Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew. Chem. Int. Ed. 2005, 44(14): 2100-2102.
    [175] J.M. Macak, K. Sirotna, P. Schmuki, Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes, Electrochim. Acta 2005, 50(18): 3679-3684.
    [176] Q.Y. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation, J. Mater. Res. 2005, 20(1): 230-236.
    [177] K.S. Raja, M. Misra, K. Paramguru, Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium, Electrochim. Acta 2005, 51(1): 154-165.
    [178] K. Shankar, G.K. Mor, A. Fitzgerald, C.A. Grimes, Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide - Water mixtures, J. Phys. Chem. C 2007, 111(1): 21-26.
    [179] S. Yoriya, H.E. Prakasam, O.K. Varghese, K. Shankar, M. Paulose, G.K. Mor, T.J. Latempa, C.A. Grimes, Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20μm to 222μm in length, Sensor Letters 2006, 4(3): 334-339.
    [180] H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, A new benchmark for TiO2 nanotube array growth by anodization, J. Phys. Chem. C 2007, 111(20): 7235-7241.
    [181] M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, TiO2 nanotube arrays of 1000μm length by anodization of titanium foil: Phenol red diffusion, J. Phys.Chem. C 2007, 111(41): 14992-14997.
    [182] Z.X. Su, W.Z. Zhou, Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides, Adv. Mater. 2008, 20(19): 3663-3667.
    [183] P.B. Sines. Fabrication of Thin Film Nanoscale Alumina Templates[B.S.]. Morgantown:West Virginia University. 2001.
    [184]徐红. TiO2电极的制备及其光电化学性质研究[硕士].上海:复旦大学. 2004.
    [185] O.K. Varghese, D.W. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, J. Mater. Res. 2003, 18(1): 156-165.
    [186] R. Konenkamp, I. Rieck, Electrical properties of Schottky diodes on nano-porous TiO2 films, Materials Science and Engineering B-Solid State Materials for Advanced Technology 2000, 69: 519-521.
    [187] L.A. Lyon, J.T. Hupp, Energetics of the nanocrystalline titanium dioxide aqueous solution interface: Approximate conduction band edge variations between H-0=-10 and H-=+26, J. Phys. Chem. B 1999, 103(22): 4623-4628.
    [188] H. Pelouchova, P. Janda, J. Weber, L. Kavan, Charge transfer reductive doping of single crystal TiO2 anatase, J. Electroanal. Chem. 2004, 566(1): 73-83.
    [189] N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, Highly hydrophilic surfaces of cathodically polarized amorphous TiO2 electrodes, J. Electrochem. Soc. 2001, 148(10): E395-E398.
    [190] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L.Y. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%, Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2006, 45(24-28): L638-L640.
    [191] M.K. Wang, M.F. Xu, D. Shi, R.Z. Li, F.F. Gao, G.L. Zhang, Z.H. Yi, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, M. Gratzel, High-Performance Liquid and Solid Dye-Sensitized Solar Cells Based on a Novel Metal-Free Organic Sensitizer, Adv. Mater. 2008, 20(23): 4460-4463.
    [192] D. Kuang, S. Uchida, R. Humphry-Baker, S.M. Zakeeruddin, M. Gr?tzel, Organic dye-sensitized ionic liquid based solar cells: Remarkable enhancement in performance through molecular design of indoline sensitizers, Angew. Chem. Int. Ed. 2008, 47(10): 1923-1927.
    [193] Y. Bai, Y.M. Cao, J. Zhang, M. Wang, R.Z. Li, P. Wang, S.M. Zakeeruddin, M. Gratzel, High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts, Nat. Mater. 2008, 7(8): 626-630.
    [194]陶海军. TiO2纳米管阵列的阳极氧化制备及性能研究[博士论文].南京:南京航空航天大学. 2007.
    [195] M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Gr?tzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc. 2001, 123(8): 1613-1624.
    [196] J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, W.A. B., Dyesensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping and transfer of electrons, J. Am. Chem. Soc. 2008, 130: 13364-13372.
    [197] M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, Formation of titania nanotubes and applications fordye-sensitized solar cells, J. Electrochem. Soc. 2003, 150(8): G488-G493.
    [198] X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications, Nano Lett. 2008, 8(11): 3781-3786.
    [199] T.S. Kang, A.P. Smith, B.E. Taylor, M.F. Durstock, Fabrication of Highly-Ordered TiO2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells, Nano Lett. 2009, 9(2): 601-606.
    [200] K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O.K. Varghese, G.K. Mor, T.J. LaTempa, M. Thelakkat, C.A. Grimes, Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye, Nano Lett. 2008, 8(6): 1654-1659.
    [201] P.M. Sommeling, B.C. O'Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, J.A.M. van Roosmalen, Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells, J. Phys. Chem. B 2006, 110(39): 19191-19197.
    [202] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Lett. 2006, 6(2): 215-218.
    [203] A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayanta, Intensity dependence of the back reaction and transport of electrons in dyesensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 2000, 104: 949-958.
    [204] S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS, Chem. Mater. 2008, 20(21): 6784-6791.
    [205] J.A. Seabold, K. Shankar, R.H.T. Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, K.S. Choi, Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays, Chem. Mater. 2008, 20(16): 5266-5273.
    [206] W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.H. Baeck, E.W. McFarland, A CU2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis, Sol. Energy Mater. Sol. Cells 2003, 77(3): 229-237.
    [207] Y. Bessekhouad, D. Robert, J.V. Weber, Photocatalytic activity of CU2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions, Catal. Today 2005, 101(3-4): 315-321.
    [208] Y.G. Zhang, L.L. Ma, J.L. Li, Y. Yu, In situ Fenton reagent generated from TiO2/Cu2O composite film: A new way to utilize TiO2 under visible light irradiation, Environ. Sci. Technol. 2007, 41(17): 6264-6269.
    [209] Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior, Appl. Phys. Lett. 2009, 95(9): 093108.
    [210] P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Cu2O: Electrodeposition and characterization, Chem. Mater. 1999, 11(12): 3512-3517.
    [211] K.P. Musselman, G.J. Mulholland, A.P. Robinson, L. Schmidt-Mende, J.L. MacManus-Driscoll, Low-Temperature Synthesis of Large-Area, Free-Standing Nanorod Arrays on ITO/Glass and other Conducting Substrates, Adv. Mater. 2008, 20(23): 4470-4475.
    [212] B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys. 2005, 97(11): 114302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700