基于一维金属纳米阵列染料敏化太阳能电池电极的制备与组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池价格相对低廉,制作工艺简单,拥有潜在的高光电转换效率,极有可能取代传统硅系太阳能电池,成为未来太阳能电池的主导。本文将一维纳米线模板法制备技术与染料敏化太阳能电池相结合,将分散均匀的纳米二氧化钛颗粒溶胶浸入金属纳米线阵列中,组装得到新型染料敏化太阳能电池电极阵列结构。该金属线阵列可伸入光电转化层,且与纳米二氧化钛粒子紧密连接,减少了激发电子到达电极的路程,有效防止因传输路径过长而造成的电子湮灭。有望提高电池光电转换效率,具有重要的理论及应用价值。
     本文首先对阳极氧化铝膜(AAO)模板的紫外光刻技术进行了探讨。实验使用BP-212型紫外正性光刻胶,及波长365nm紫外光源。发现紫外曝光时间50s,前烘温度65℃下,可完全复制掩膜图案。
     采用恒压电化学沉积法,分别以AAO模板及图案化AAO二次模板为基底,成功制备了一维铜纳米线阵列及图案化铜纳米线阵列。在-0.2V恒压电沉积条件下,沉积30min所得铜纳米线阵列规整有序,线成束,且具有微米级空隙,有望应用于组装微型器件。换用图案化AAO模板为工作电极,沉积时间15min所得阵列线长10um左右,结构最为规整,圆孔及QDU图案均能良好复制。
     以多聚磷酸钠及聚丙烯酸钠复合分散剂,并在冷冻作用下进行分散实验,得到颗粒粒径均不超过20nm且具有较高的稳定性的纳米TiO2溶胶。通过多次浸润图案化线束的方法,最终组装得到DSSC电极阵列结构。
With comparatively low cost and easy preparation process, dye-sensitized solar cells (DSSC) could yield high photoelectric conversion efficiency and be the leading solar cells in the future. In this thesis, one-dimensional metal nanowires, based on template method, and DSSC were combined together to have new-type DSSC electrode after the arrays were sinked into titanium dioxide colloidal sol. The metal nanowires can reach to the photoelectric layer and have close interaction with TiO2 nanoparticles, so the path of excited electrons to photoelectrode is shortened and electron annihilation can be avoided. In this way, photoelectric conversion efficiency can be enhanced hopefully. As a result, this research has important value theoretically and practically.
     First, ultraviolet radiation photolithographic methods of anodic aluminum oxide (AA O) template were discussed. BP-212 positive photoresist and ultraviolet source with wave length 365nm were utilized. The scanning electron microscopy (SEM) shows that the mas k pattern can totally duplicated with exposure time of 50s and pyrolysis temperature of 65℃.
     With electrochemical deposition method, one-dimensional Cu nanowires and patterned Cu nanowires were prepared successfully based on AAO and patterned AAO template. Under constant voltage electrochemical deposition of-0.2V, ordered Cu nanowire arrays with micro-sized space can be obtained after 30min deposition, which can be used in microdevice. Patterned Cu nanowires can also be produced after 15min deposition with wire length of lOum.
     Nanoparticals of TiO2 can be dispersed orderly with compound dispersant of STTP and PAAS in low temperature. After sinking into the patterned nanowire arrays, DSSC electrode structure was finally obtained.
引文
[1]Brian O'Regan, Michael Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature 1991(353):737-740
    [2]Micheal Gratzel. Photoelectrochemical cells[J]. Nature,2001,414,338-344.
    [3]C.J. Brabec, N.S. Sariciftci, Polymeric Photovoltaic Devices [J]Mater. Today (2000) 3-6.
    [4]Micheal Gratzel. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J]. J. Photochem. Photobio. A:Chem.,2004,164:3-14.
    [5]Anderson Hagfeldt, Michael Gratzel. Melecular photovoltaics[J]. Acc. Chem. Res. 2000,33:269-277.
    [6]He Jianjun, Gabor Benko,Ferenc Korodi, et al. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode[J]. J. Am. Chem. Soc.,2002, 124(17):4922-4932.
    [7]U. Bach, Y. Tachibana, et al. Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells J. Am. Chem. Soc.121 (1999) 7445-7446.
    [8]M. K. Naverruddin, et al. A. Kay. Conversion of Light to Electricity by cis-XzBis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(11) Charge-Transfer Sensitizers (X= C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes J. Am. Chem. Soc., 1993,115,6382-6390.
    [9]M.K. Nazeeruddin, A. Kay, I. Rodicio, et al. Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers(X= Cl-, Br-, I-, CN-, and SCN") on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc. 1993,115,6382-6390.
    [10]Mohammad K.Nazeeruddin, Peter Pechy, Thierry Renouard, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells[J]. J. Am. Chem.Soc.2001,123:1613-1624.
    [11]Kohjiro Hara, Kazuhiro Sayama, Yasuyo Ohga, et al. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%[J]. Chem. Commun.,2001:569-570
    [12]Kohjiro Hara, Mitsuhiko Kurashige, Yasufumi Dan-oh, et al. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells[J]. New J. Chem.,2003,27(5):783-785.
    [13]J. Fang, L. Su, J. Wu, Y. Shen, Z. Lu, Fabrication, characterization and photovoltaic studies of dye co-modified TiO2 electrodes[J]. N. J. Chem.270 (1997) 145-150.
    [14]R. Plass, S. Pelet, M. Gratzel, Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem B 106 (2002) 7578-7580.
    [15]孟庆波,林原,戴松元.染料敏化纳米晶薄膜太阳电池.物理,2004,33(3):177.
    [16]N. Papageorgiou, Y. Athanassov, M. Gratzel, The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications.J. Electrochem. Soc.143 (1996)3099-3108.
    [17]S. Murai, S. Mikoshiba, Quasi-solid dye sensitised solar cells filled with phase-separated chemically cross-linked ionic gels.Chem. Commun. (2003) 1534-1535.
    [18]W. Kubo, T. Kitamura, Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chem Commun. (2002) 374-375.
    [19]H. Matsumoto, T. Kitamura, Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells:Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine. J. Phys. Chem. B,2001,105 (51),12809-12815.
    [20]P. Wang, S.M. Zakeeruddin, M. Gratzel, High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun. (2002) 2972-2973.
    [21]P. Wang, S.M. Zakeeruddin, M. Gratzel, Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells.J. Am. Chem. Soc. 125(2003)1166-1167.
    [22]Wang Peng, et al. Nature Materials, Published online:29 June 2008; doi:10.1038/nmat2224
    [23]Nelson,J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes Phys. Rev. B 1999 (59):15374-15380.
    [24]J. Van de Lagemaat, N.G. Park, Comparison of Dye-Sensitized Rutile-and Anatase-Based TiO2 Solar Cells J. Phys. Chem. B 104 (38),8989-8994.
    [25]L. Dloczik, O. Ileperuma, Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells:Characterization by Intensity-Modulated Photocurrent Spectroscopy J. Phys. Chem. B 1997 (101):10281-10289
    [26]W.U. Huynh, J.J. Dittmer, Hybrid nanorod-polymer solar cells. Science 2002 (295) 2425-2427
    [27]A. Hagfeldt, M. Gratzel, Molecular Photovoltaics. Acc. Chem. Res.2000 (33) 269-277.
    [28]张立德.我国纳米材料研究现状.中国粉体技术,2001,7(5):1-5.
    [29]Li Y. D.,Artificial lamellar mesostructures to WS2 nanotubes. J. Chem. Am. Soc, 2002124(7):1411-1416.
    [30]Heath J. R., Legoues F. K., A liquid solution synthesis of single crystal germanium quantum wires. Chem. Phys. Lett.,1993,208:263-268.
    [31]Wang X., Li Y., Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. J. Chem. Am. Soc,2002,124(12):2880-2881.
    [32]Gudiksen M. S., Lieber C. M., Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc.,2000,122(36):8801-8802.
    [33]Gudiksen M. S., Lieber C. M., Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B,2001,105(19):4062-4064.
    [34]Cui Y, Lauhon L. J., Diameter-controleed synthesis of single-crystal silicon nanowires. Appl. Phys. Lett,2001,78(15):2214-2216.
    [35]A. Huczko, Template-base synthesis of nanomaterials, Appl. Phys. A.2000 (70) 365-376
    [36]Ito T., Okazaki S. Pushing the limits of lithography. Nature 2000(406):1027-1031
    [37]Willson C., Trinque B., The evolution of materials for the photolithographic process. J. Photopolym. Sci. Technol.2003,16,621-627
    [38]Rothschild M. Bloomstein T., Liquid immersion lithography:Why, how, and when? J. Vac. Sci. Technol. B 2004(22):2877-2881
    [39]Gil D., Brunner T., Immersion lithography:New opportunities for semiconductor manufacturing. J. Vac. Sci. Technol. B 2004(22) 3431-3438
    [40]Thorsen, T., Maerkl, S. J., Quake, S. R., Microfluidic large-scale integration. Science 2002,298,580-584
    [41]Pe'renne's, F.; Marmiroli, B.; Matteucci, M.; Tormen, M.; Vaccari, L.; Di, Fabrizio, E. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol J. Micromech. Microeng.2006,16,473
    [42]Tan, J. L.; Tien, J.; Pirone, D. M.; Gray, D. S.; Bhadriraju, K.; Chen, C. S. Proc. Natl. Acad. Sci. U.S.A.2003,100,1484-1489
    [43]Mata, A.; Boehm, C.; Fleischman, A. J.; Muschler, G.; Roy, S. Growth of connective tissue progenitor cells on microtextured polydimethyl siloxane surfaces. J. Biomed. Mater. Res.2002,62,499-506
    [44]Kemkemer, R.; Csete, M.; Schrank, S.; Kaufmann, D.; Spatz, J. Force-Induced Cell Polarisation is Linked to RhoA-Driven, Microtubule-Independent Focal Adhesion SlidingMat. Sci. Eng., C 2003,23:437-443
    [45]Callow, M. E.; Jennings, A. R.; Brennan, A. B.; Seegert, C. E.; Gibson, A.; Wilson, L. Feinberg, A.; Baney, R.; Callow, ShaPe eontrolled synthesisof Eolloidal Platinumnano Partieles. J. A. Biofouling 2002,18,237-240:
    [46]Lee, W.; Jin, M.-K.; Yoo, W.-C.; Lee, J.-K. Mechanism softhesha Peevolution of Cd sennaoeyrstals. Langmuir 2004,20,7665-7669.
    [47]Gorb, S.; Jiao, Y. K.; Scherge, M. C叮satlline silver nanowiers by sotf solution Poreessing. J. Comput. Physiol A 2000,186,82-8261.
    [48]Geim, A. K.; Dubonos, S. V.; Grigorieva, I. V.; Novoselov, K. S.; Zhukov, A. A.; Shapoval, S. Y. Nat. Fabrieation cterizationando Ptieal theory faluminum nanometal/ano Porousmem barnehtin film eom Posites. Mater.2003,2,461-466.
    [49]Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L. Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force. AdV. Mater.2005,17, 1977-1982.
    [50]Sitti, M.; Fearing, R. S. Self-Peeling Reversible Dry Adhesive System. J. Adhesion Sci. Technol.2003,17,1055-1060.
    [51]Pfaff, G, Reynders, P. Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments. Chem. Rev.1999,99(7),1963-1982.
    [52]Salvador, A. Pascual-Marti, M.C. Zallen R., Moret M.P. Solid State Commun.2006, 137,154-158.
    [53]Zallen R., Moret M.P. High-Quality Brookite TiO2 Flowers: Synthesis,Characterization, and Dielectric PerformanceSolid State Commun.2006,137, 154-160.
    [54]Braun J. H., Baidins, A., Photocell using covalently-bound dyes on semiconductor surfaces Prog. Org. Coat.1992,20,105-110.
    [55]Yuan S.A., Chen W.H., Mater. Visible light photocatalytic properties of polymorphic brookite titaniaSci. Eng. C 2005,25,479-483.
    [56]Fujishima, A., Honda K., Electrochemical Photolysis of Water at a Semiconductor Electrode Nature 1972,37,238-245.
    [57]Fujishima A., Rao T.N., Thermally induced phase and photocatalytic activity evolution of polymorphous titania J. Photochem. Photobiol. C,2001,1,1-5.
    [58]Tyrk D.A., Fujishima A., Regeneration of nano-ZnO photocatalyst by the means of soft-mechanochemical ion exchange method Electrochem. Acta 2000,45,2363-2370.
    [59]Gratzel M., Preparation of graded materials by laterally controlled template synthesis Nature 2001,414,338-242.
    [60]Hagfeldt A., Gratzel M. Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase Chem. Rev.1995,95.49-92.
    [61]Linsebigler A.L., Lu G., photocatalysis on TiO2 surfaces:Principles, Mechanisms, and Selected Results.Chem. Rev.1995,95,735-770.
    [62]Millis A., Le Hunte S. Dye-sensitized solar cells using TiO2 nanoparticles transformed from nanotube arrays, J. Photochem. Photobiol., A 1997,1.108-112,
    [63]Pierre A.C., Pajonk G.M. Millis A., Le Hunte S. An overview of semiconductor photocatalysis J. Photochem. Photobiol., A 1997,108,1.Chem. Rev.2002,102, 4243-4256.
    [64]Lu Z.L., Lindner E., A Highly Efficient and Recyclable Silica-Based Scandium(Ⅲ) Interphase Catalyst for Cyanosilylation of Carbonyl Compounds Chem. Rev.2002,102, 3543-3555.
    [65]Bessekhouad Y, Robert D., Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions J. Photochem. Photobiol.,2003,157,47-52.
    [66]Lee, S.; Jeon, C.; Park, Y. Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor,. Chem Mater.2004,16,4292-4298.
    [67]Pradhan, S. K.; Reucroft, P. J.; Preparation of graded materials by laterally controlled template synthesis,Cryst. Growth 2003,83,256-260
    [68]Liu, S.; Huang, K. Metal complex sensitizers in dye-sensitized solar cells Sol. Energy Mater. Sol. Cells 2004,85,125-130
    [69]R. Templeton-Knight, The role of initiation in the synthesis of silica/poly(methyl methacrylate) nanocomposite latex particles through emulsion polymerizationChem. Ind. 1990,16,512-518.
    [70]Feng Zhu, Jing Zhang et al. Preparation of graded materials by laterally controlled template synthesis Physica E 2005,27,457-461.
    [71]Hiroaki Tada, Osamu Nishio, Naoko Kubo, et al. Dispersion stability of TiO2 nanoparticles covered with SiOx monolayers in water,.Journal of Colloid and Interface Science 2007,306 274-280
    [72]Yanbing Luo, Xiuli Wang et al. Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions,.Applied Surface Science 255 (2009) 6795-6801
    [73]Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M. Organized Mesoporous TiO2 Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells,.Nano Lett.2005,5,1789-1792
    [74]Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S. J,. Applications of colloidal spheres in photonic crystals, photocatalysis and dye-sensitized solar cellsElectrochem. Soc.2003, 150,G488-492
    [75]Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Schmuki, P. Electrochemical Li insertion into self-organized TiO2 nanotubes Electrochem. Commun.2005,7,1133-1140
    [76]Ohsaki, Y.; Masaki, N.; Kitamura, T.; Wada, Y.; Okamoto, T.; Sekino, T.; Niihara, K.; Yanagida, S. The effect of ionic "charge on the adsorption of organic dyes onto titanate nanotubesPhys. Chem. Chem. Phys.2005,7,4157-41560
    [77]Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells Nano Lett.2006,6, 215-220
    [78]Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Hardin, B.; Grimes, C. A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells,.Nanotechnology 2006,17,1-8.
    [79]Somani, P. R.; Dionigi, C.; Murgia, M.; Palles, D.; Nozar, P.; Ruani, G.3D Hierarchical Porous TiO2 Films from Colloidal Composite Fluidic Deposition,.Sol. Energy Mater. Sol. Cells 2005,87,513-519
    [80]Han, H.; Zan, L.; Zhong, J.; Zhao, X. J. Dye-sensitized solar cells using TiO2 nanoparticles transformed from nanotube arrays Mater. Sci.2005,40,4921-4925
    [81]Kang, T. S.; Moon, S. H.; Kim, K. J. Preparation of graded materials by laterally controlled template synthesis J. Electrochem. Soc.2002,149,155-160
    [82]Hagfeldt, A.; Gratzel, M.; Nogueria, A. F.; Furtado, L. F. O.; Formiga,A. L. B.; Nakamura, M.; Araki, K.; Toma, H. E.; Panigrahi, S.; Pal,T. Sensitization of TiO2 by Supramolecules Containing Zinc Porphyrins and Ruthenium-Polypyridyl Complexes Chemtracts 2004,17,175-180
    [83]Bisquert, J.; Garcia-Belmonte, G.; Fabregat-Santiago, F. Doubling Exponent Models for the Analysis of Porous Film Electrodes by Impedance.,Relaxation of TiO2 Nanoporous in Aqueous Solution J. Solid State Electrochem.1999,3,337-340.
    [84]Hagfeldt, A.; Lindquist, S. E.; Gratzel, Charge carrier separation and charge transport in nanocrystalline junctions M. Sol. Energy Mater. Sol.Cells 1994,32, 245-250.
    [85]Zaban, A.; Meier, A.; Gregg, B. A. Wissenschaftlicher und technischer Status der elektrochemischen Farbstoff-Solarzelle J. Phys. Chem. B 1997, 101,7985-7989.
    [86]Kavan, L.; Gratzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, H. J. Intrinsic n-type Defect Formation in TiO2:A Comparison of Rutile and Anatase from GGA+U Calculations J. Am. Chem. Soc.1996,118,6716-6720.
    [87]Tennakone, K.; Kumara, G. R. R. A.; Kottegoda, I. R. M.; Perera, V. P. S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc,.Chem. Commun.1999,15.269-275
    [88]Chappel, S.; Grinis, L.; Ofir, A.; Zaban, A. Preparation of graded materials by laterally controlled template synthesis,.J. Phys. Chem. B 2005,109,1643-1648
    [89]Ferber, J.; Luther, Modeling of Photo voltage and Photocurrent in Dye-Sensitized Titanium Dioxide Solar CellsJ. Sol. Energy Mater. Sol. Cells 1998,54,265-260.
    [90]Rothenberger, G.; Comte, P.; Gratzel, M. Sol. A contribution to the optical design of dye-sensitized nanocrystalline solar cellsEnergy Mater. Sol.Cells 1999,58,321-324.
    [91]Dumitru,I.;Li,F.;Patterned Metal NanowireArraysfrom Photolithographically Modified Templates Wiley,J.B. IEEE Trans. Magn.2005,127,3268-3272.
    [92]M.E. Toimil-Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, and J. Vetter:Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv. Mater.2001.13, 62-66
    [93]Y. Konishi, M. Motoyama, H. Matsushima, Y. Fukunaka, R. Ishii, and Y. Ito: Electrodeposition of Cu nanowire arrays with a template. J. Electroanal. Chem.2003.559, 149-156
    [94]M.L. Tian, J.U. Wang, J. Kurtz, T.E. Mallouk, and M.H.W. Chan:Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett.3,919 (2003).
    [95]T. Gao, G.W. Meng, J. Zhang, Y.W. Wang, C.H. Liang, J.C. Fan, and L.D. Zhang:Template synthesis of single-crystal Cu nanowire arrays by electrodeposition. Appl. Phys. A-Mater.2001.73,251-256
    [96]T. Sehayek, A. Vaskevich, and I. Rubinstein:Preparation of graded materials by laterally controlled template synthesis. J. Am. Chem. Soc.2003.125,4718-4722.
    [97]I. Lisiecki, A. Filankembo, H. Sack-Kongehl, K. Weiss, M.P. Pileni, and J. Urban: Structural investigations of copper nanorods by high-resolution TEM. Phys. Rev. B. 2000,61,4968-4972.
    [98]J. Tanori and M.P. Pileni:Change in the shape of copper nanoparticles in ordered phases. Adv. Mater.1995,7,862-868.
    [99]J. Tanori and M.P. Pileni:Control of the shape of copper metallic particles by using a colloidal system as template. Langmuir 1997.13,639-642
    [100]M.P. Pileni, T. Guilk-Krzywicki, J. Tanori, A. Filankembo, and J.C. Dedieu: Template design of microreactors with colloidal assemblies:Control the growth of copper metal rods. Langmuir 1998,14,7359-7363.
    [101]Z.P. Liu, Y. Yang, J.B. Liang, Z.K. Hu, S. Li, S. Peng, and Y.T. Qian:Synthesis of copper nanowires via a complexsurfactant-assisted hydrothermal reduction process. J. Phys. Chem. B 2003,107,12658-12660.
    [102]R.M. Yadav, A.K. Singh, and O.N. Srivastava:Synthesis and characterization of Cu nanotubes and nanothreads by electrical arc evaporation. J. Nanosci. Nanotechnol.2003,3, 223-226.
    [103]M.H. Cao, C.W. Hu, Y.H. Wang, Y.H. Guo, C.X. Guo, and E.B. Wang:A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem. Commun.2003,15,1884-1888.
    [104]Q. Li and C.R. Wang:Cu nanostructures formed via redox reaction of Zn nanowire and Cu2+containing solutions. Chem. Phys. Lett.2003,375,525-530.
    [105]C.R. Martin:Nanomaterials—A membrane-based synthetic approach. Science 1 1994,266,196-200.
    [106]J.C. Hulteen and C.R. Martin:General template-based method for the preparation of nanomaterials. J. Mater. Chem.1997,7,1075-1080.
    [107]C.R. Sides, N.C. Li, C.J. Patrissi, B. Scrosati, and C.R. Martin:Nanoscale materials for lithium-ion batteries. MRS Bull.2002,27,604-610.
    [108]O. Rabin, P.R. Herz, Y.M. Lin, A.I. Akinwande, S.B. Cronin, and M.S. Dresselhaus: Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Adv. Funct. Mater.13,631 (2003).
    [109]M.S. Sander and L.S. Tan: Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates. Adv. Funct. Mater.2003,13,393-399.
    [110]Maria T, Zdzislaw T. Model Development of High-Frequency Phenomena in Nanocrystalline Copper Conductors, International Conference on Modelling, Identification, and Control; 20060206-08; Lanzarote(ES)
    [111]O'Regan,B.;Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 filmsNature 1991,353,737-740.
    [112]Kopidakis, N.; Schiff, E. A.; Park, N.G. Temperature dependence of the electron diffusion coefficient in electrolyte-filled TiO2 nanoparticle films:Evidence against multiple trapping in exponential conduction-band tails J. Phys. Chem. B 2000,104, 3930-3936.
    [113]Cao, F.; Oskam, G.; Meyer, G. Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO_2 Nanotubes Arrays J. Phys. Chem.1996,100,17021-17025.
    [114]de Jongh, P. E.; Vanmaekelberg, D. Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry Phys. Rev.Lett.1996,77,3427-3432.
    [115]Nelson, J,; Haque, S.A.; Klug, D.R.; Durrant, Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells:A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy J. R. Phys. Rev. B 2001,63,205321-205326.
    [116]Dloczik, L.; Ileperuma, O.; Lauermann, I.; Peter, L. M. Radial Electron Collection in Dye-Sensitized Solar Cells. J. Phys. Chem. B 1997,101,10281-10285.
    [117]Schlichthorl, G.; Park, N.G.; Frank, A.J. Evaluation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells. J. Phys. Chem. B 1999, 103,782-785.
    [118]van de Lagemaat, J.; Frank, A.J. Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films:Transient Photocurrent and Random-Walk Modeling Studies J. Phys. Chem. B 2001,105,11194-11199.
    [119]Benkstein, K. D.; Kopidakis, N.; van de Lagemaat, J.; Frank, A.J. Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells.J. Phys. Chem. B 2003,107,7759-7762.
    [120]M. Adachi,Y. Marata, I. Okada, S., M. Adachi,Y. Marata, I. Okada, S., J. Electrochem. Soc.15(2003) 488-493 M. Adachi,Y. Marata, I. Okada, S., J. Electrochem. Soc.15(2003) 488-493. J. Electrochem. Soc.2003,15,488-493
    [121]Z.R. Tian, J.A. Voigt, Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes. J. Am. Chem. Soc.2003,125,12384-12385
    [122]W.U. Huynh, J.J. Dittmer, Hybrid nanorod-polymer solar cells. Science 2002, 295,242-245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700