功能糖化合物的合成及活性研究;硅氧烷体系还原缩醛及羰基衍生物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:通过“点击化学”合成手段,高效制备了系列糖功能化合物,其中大部分具有良好的生物活性或光电活性。
     ◆苯二酰胺或苯二酸酯基团桥联的三氮唑芳香糖衍生物通过Cu+催化的叠氮-炔环加成反应(点击化学)制备,发现8个化合物对蛋白酪氨酸磷酸酯酶1B (PTP-1B)具备微摩尔级别的抑制活性,并对同族PTP酶有多倍选择性。半乳糖、葡萄糖、甘露糖衍生物表现出不同的的生物活性,推测是由单糖的差向异构效应引起。
     ◆通过点击化学合成芳香糖水杨酸类似物,同时靶向PTP-1B的催化位点和周边位点,设计用不同长度的脂肪碳链桥联羟基苯甲酸衍生物与芳香糖。2个化合物对PTP-1B有微摩尔级的抑制活性,并对同源酶TCPTP、SHP-1、SHP-2和LAR有选择性。计算机模拟了PTP-1B酶与抑制剂结合的模式。
     ◆通过点击化学高效地制备三氮唑乙酰糖基蒽醌化合物59。在微量Cu2+的存在下,59在紫外-可见光检测中发生明显蓝移,吸收度大大增强;同时59的荧光淬灭。这种现象推测由分子内电荷转移引起。比起其它金属离子,Cu2+表现出很强的选择性。根据荧光离子滴定和核磁共振滴定推测,配体-离子络合物以2:1的模式结合。Cu2+的存在还显著改变了59的电化学信号,说明59是光电两性分子探针。
     第二部分:在有机还原反应中,常使用硼、铝氢化物还原有机官能团,但这些还原剂较危险,反应条件剧烈,并产生过量无机盐。根据“绿色化学”原则,发展安全、廉价的硅工业副产物硅氧烷1,1,3,3-四甲基二硅氧烷(TMDS)高效、选择性地还原了多类有机官能团。TMDS在反应结束后生成的硅化合物可回收用作疏水材料。
     ◆本研究工作发展了还原脂肪、芳香缩醛成醚的方法。反应由三氟甲磺酸铋Bi(OTf)3或Cu(OTf)2催化,在室温条件下高效制备目标化合物。在还原缩醛底物时不影响羟基、硝基、芳香环、酯和腈基。这种方法仅用少量的还原试剂TMDS和催化剂,原子经济性优势明显,同时避免使用Pd-C等昂贵的金属还原剂。
     TMDS和Cu(OTf)2或AICl3-一起使用,可选择性地将吡喃糖4,6-0-缩醛开环,得到4位醚或6位醚。此方法兼容葡萄糖苷、半乳糖苷、甘露糖苷,苄基、酰基等保护基团,还可直接有效还原存在裸露羟基的糖缩醛。长碳链糖醚可通过这种方法被简便地制备,该类化合物具有表面活性和抗菌活性。
     TMDS和催化量的Cu(OTf)2可高产率、高选择性地一步将脂肪、芳香羧酸还原成伯醇,解决了其它方法使用过量、危险还原剂,需两步反应或无法有效还原芳香羧酸的局限。TMDS/Cu(OTf)2体系同时可在温和反应条件下将醛、酮转化成对称醚,成为Williamson醚化的一种替代方法。
Part1:We take advantage of the merits of sugar to develop products with good properties via efficient synthetic methods including "Click Chemistry".
     Dimeric and monomeric benzylated glycosyl benzenes were prepared through copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). These products were identified as inhibitors of protein tyrosine phosphatase1B (PTP-1B), which showed at least several fold selectivity over other homologous PTPases. The galactosyl, glucosyl and mannosyl inhibitors displayed different biological properties, so the monosaccharides may be used as chiral scaffolds to probe the spatial preference of PTP-1B.
     To develop new PTP-1B inhibitors based on sugar structures, a library of benzyl6-triazolo(hydroxy)benzoic glucosides was constructed through copper(Ⅰ)-catalyzed azide-alkyne cycloaddition. Between the (hydroxy)-benzoic moieties and carbohydrate, these glycoconjugates bear aliphatic chain length-varied bridges. They were identified as PTP-1B inhibitors with selectivity over TCPTP, SHP-1, SHP-2and LAR. The plausible binding modes of these sugar-based inhibitors with PTP-1B were then elaborated by molecular docking study.
     A new triazole-linked acetyl-glucosyl anthraquinone59was synthesized via straightforward click chemistry. The glycoconjugate59displayed an obvious quenching fluorescence and blue shift absorption in the presence of trace amounts of Cu2+. It is presumably due to intramolecular charge transfer (ICT), which also exhibited high selectivity over a panel of other cations tested in MeCN. It is suggested by the result of fluorescence spectroscopy titration that a2:1ligand-to-cation complex was formed, which was also reflected via NMR spectroscopy titration. Furthermore, the addition of Cu2+to59remarkably changed its electrochemical behavior, which was demonstrated by differential pulse voltammetry (DPV) measurements.
     Part2:In compliance with the principles of Green Chemistry, we developed several methodologies to reduce various organic functional groups efficiently and selectively. A safe and cheap siloxane1,1,3,3-tetramethyldisiloxane (TMDS) was employed.
     A protocol is shown for the reduction of aliphatic and aromatic acetals to ethers, which was catalyzed by Bi(OTf)3or Cu(OTf)2in excellent yields at room temperature, without affecting hydroxyl groups, nitrile, aromatic rings, ester and nitro groups. This system makes an improvement concerning atom economy in comparison with the previous methods, by remarkably decreasing the quantity of the reducing reagent TMDS, and using a relatively small amount of catalyst.
     TMDS was developed as an excellent dual-purpose reducing reagent for the regioselective ring opening of a series of hexopyranosyl4,6-O-acetals in the presence of Cu(OTf)2or AICl3, leading to the corresponding primary or secondary ethers. Its application to the convenient preparation of carbohydrate-based long alkyl chain ethers is highlighted.
     A reagent system is described for the reduction of carboxylic acids to the corresponding primary alcohols using TMDS and a catalytic quantity of Cu(OTf)2. Alkyl and aromatic carboxylic acids are reduced in good yields and high selectivity. TMDS/Cu(OTf)2protocol has also been demonstrated to be very efficient in the synthesis of symmetrical ethers from aldehydes and ketones under mild conditions.
引文
[1]C. R. Bertozzi, L. L. Kiessling, Chemical Glycobiology [J]. Science,2001,291: 2357-2364.
    [2]a), T. Collins, A. Williams, G. I. Johnston, J. Kim, R. Eddy, T. Shows, M. A. Gimbrone, M. P. Bevilacqua, Structure and Chromosomal Location of the Gene for Endothelial-Leukocyte Adhesion Molecule 1 [J]. J. Biol. Chem.,1991,266:2466-2473. b). W. S. Somers, J. Tang, G. D. Shaw, R. T. Camphausen, Insights into the Molecular Basis of Leukocyte Tethering and Rolling Revealed by Structures of P-and E-Selectin Bound to SLe(X) and PSGL-1 [J]. Cell,2000,103:467-479.
    [3]D. P. Galonic, D. Y. Gin, Chemical Glcosylation in the Synthesis of Glycoconjugate Antitumour Vaccines [J]. Nature,2007,446:1000-1007.
    [4]C. N. Scanlan, J. Offer, N. Zitzmann, R. A. Dwek, Exploiting the Defensive Sugars of HIV-1 for Drug and Vaccine Design [J]. Nature,2007,446:1038-1045.
    [5]G. W. Hart, M. P. Housley, C. Slawson, Cycling of O-Linked β-N-Acetylglucosamine on Nucleocytoplasmic Proteins [J]. Nature,2007,446:1017-1022.
    [6]a). K. C. Nicolaou, H. J. Mitchell, Adventures in Carbohydrate Chemistry:New Synthetic Technologies, Chemical Synthesis, Molecular Design, and Chemical Biology [J]. Angew. Chem. Int. Ed.,2001,40:1576-1624. b). K. Toshima, K. Tatsuta, Recent Progress in O-Glycosylation Methods and Its Application to Natural Products Synthesis [J]. Chem. Rev.,1993,93:1503-1531.
    [7]R. R. Schmidt, J. Michel, Facile Synthesis of a-and β-O-Glycosyl Imidates; Prepartion of Glycosides and Disaccharides [J]. Angew. Chem. Int. Ed. Engl.,1980,19:731-732.
    [8]H. C. Kolb, M. G. Finn, K. B. Sharpless, Click Chemistry:Diverse Chemical Function from a Few Good Reactions [J]. Angew. Chem. Int. Ed.,2001,40:2004-2021.
    [9]a). R. Huisgen,1,3-Dipolar Cycloaddition Chemistry (Ed.:A. Padwa) [M]. Wiley:New York,1984, pp.1-176. b). A. Padwa, Comprehensive Organic Synthesis, Vol.4 (Ed.:B. M. Trost) [M]. Pergamon:Oxford,1991, pp.1069-1109.
    [10]a). M. Meldal, C. W. Torn(?)e, Cu-Catalyzed Azide-Alkyne Cycloaddition [J]. Chem. Rev., 2008,108:2952-3015. b). V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, A Stepwise Huisgen Cycloaddition Process:Copper(Ⅰ)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes [J]. Angew. Chem. Int. Ed.,2002,41:2596-2599.
    [11]B. C. Boren, S. Narayan, L. K. Rasmussen, L. Zhang, H. Zhao, Z. Lin, G. Jia, V. V. Fokin, Ruthenium-Catalyzed Azide-Alkyne Cycloaddition:Scope and Mechanism [J]. J. Am. Chem. Soc.,2008,130:8923-8930.
    [12]F. Kloss, U. Kohn, B. O. Jahn, M. D. Hager, H. Gorls, U. S. Schubert, Metal-Free 1,5-Regioselective Azide-Alkyne [3+2]-Cycloaddition [J]. Chem. Asian J.,2011,6: 2816-2824.
    [13]O. Altintas, U. Tunca, Synthesis of Terpolymers by Click Reactions [J]. Chem. Asian J., 2011,6:2584-2591.
    [14]Y. Li, C. Cai, Click Chemistry-Based Functionalization on Non-Oxidized Silicon Substrates [J]. Chem. Asian J.,2011,6:2592-2605.
    [15]S. Yigit, R. Sanyal, A. Sanyal, Fabrication and Functionalization of Hydrogels through "Click" Chemisry [J]. Chem. Asian J.,2011,6:2648-2659.
    [16]S. G. Agalave, S. R. Maujan, V. S. Pore, Click Chemistry:1,2,3-Triazoles as Pharmacophores [J]. Chem. Asian J.,2011,6:2696-2718.
    [17]M. Elchebly, P. Payette, E. Michaliszyn, et al., Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-IB Gene [J]. Science,1999, 283:1544-1548.
    [18]A. J. Barr, E. Ugochukwu, W. H. Lee, O. N. King, P. Filippakopoulos, I. Alfano, P. Savisky, N. A. Burgess-Brown, S. Muller, S. Knapp, Large-Scale Structure Analysis of the Classical Human Protein Tyrosine Phosphatome [J]. Cell, 2009,136:352-363.
    [19]J. F. Wang, K. Gong, D. Q. Wei. et al., Molecular Dynamic Studies on the Interactions of PTP1B with Inhibitors:From the First Phosphate-Bingding Site to the Second One [J]. Protein Eng. Des. Sel.,2009,22:349-355.
    [20]K. M. Picha, S. S. Patel, S. Mandiyan, et al., The Role of the C-Terminal Domain of Protein Tyrosine Phosphatase-1B in Phosphatase Activity and Substrate Binding [J]. J. Biol. Chem.,2007,282:2911-2917.
    [21]Z. Song, X. P. He, C. Li, et al., Preparation of Triazole-Linked Glycosylated a-Ketocarboxylic Acid Derivatives as New PTP1B Inhibitors [J]. Carbohydr. Res.,2011, 346:140-145.
    [22]B. R. Bhattarai, B. Kafle, J.-S. Hwang, et al., Thiazolidinedione Derivatives as PTP1B Inhibitors with Antihyperglycemic and Antiobesity Effects [J]. Bioorg. Med. Chem. Lett.. 2009,19:6161-6165.
    [23]A. K. Saxena, G. Pandey, S. Gupta, et al., Synthesis of Protein Tyrosine Phosphatase 1B Inhibitors:Model Validation and Docking Studies [J]. Bioorg. Med. Chem. Lett.,2009,19: 2320-2323.
    [24]a). R. Ottana, R. Maccari, R. Ciurleo, et al., 5-Arylidene-2-phenylimino-4-thiazolidinones as PTP1B and LMW-PTP Inhibitors [J]. Bioorg. Med. Chem. Lett.,2009,17:1928-1937. b). R. Kumar, R. N. Shinde, D. Ajay, et al., Probing Interaction Requirements in PTP1B Inhibitors:A Comparative Molecular Dynamics Study [J]. J. Chem. Inf. Model.,2010,50:1147-1158.
    [25]a).D. Popov, Novel Protein Tyrosine Phosphatase 1B Inhibitors:Interaction Requirements for Improved Intracellular Efficacy in Type 2 Diabetes Mellitus and Obesity Control [J]. Biochem. Biophys. Res. Commun.,2011,410:377-381. b). V. V. Vintonyak, A. P. Antonchick, D. Rauh, H. Waldmann, The Therapeutic Potential of Phosphatase Inhibitors [J]. Curr. Opin. Chem. Biol.,2009,13:272-283.
    [26]X.-P. He, J. Xie, Y. Tang, J. Li, G.-R. Chen, CuAAC Click Chemistry Accelerates the Discovery of Novel Chemical Scaffolds as Promising Protein Tyrosine Phosphatases Inhibitors [J]. Curr. Med. Chem.,2012,19:2399-2405.
    [27]R. Srinivasan, M. Uttamchandani, S. Q. Yao, Rapid Assembly and in situ Screening of Bidentate Inhibitors of Protein Tyrosine Phosphatases [J]. Org. Lett.,2006,8:713-716.
    [28]X. Zhang, Y. He, S. Liu, Z. Yu, Z.-X. Jiang, Z. Yang, Y. Dong, S. C. Nabinger, L. Wu, A. M. Gunawan, L. Wang, R. J. Chan, Z.-Y. Zhang, Salicylic Acid Based Small Molecule Inhibitor for the Oncogenic Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP-2) [J]. J. Med. Chem.,2010,53:2482-2493.
    [29]J. Xie, C. T. Seto, A Two Stage Click-Based Library of Protein Tyrosined Phosphatase Inhibitors [J]. Bioorg. Med. Chem.,2007,15:458-473.
    [30]W. Meutermans, G. T. Le, B. Becker, Carbohydrates as Scaffolds in Drug Discovery [J]. ChemMedChem,2006,1:1164-1194.
    [31]L. Lin, Q. Shen, G.-R. Chen, J. Xie, Synthesis of Triazole-Linked P-C-Glycosyl Dimers as Inhibitors of PTP1B [J]. Bioorg. Med. Chem.,2008,16:9757-9763.
    [32]A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem. Rev.,1997,97:1515-1566.
    [33]B. Valeur, I. Leray, Design Principles of Fluorescent Molecular Sensors for Cation Recognition [J]. Coord. Chem. Rev.,2000,205:3-40.
    [34]L. Cui, Y. Zhong, W. Zhu, Y. Xu, X. Qian, Selective and Sensitive Detection and Quantification of Arylamine N-Acetyltransferase 2 by a Ratiometric Fluorescence Probe [J]. Chem. Commun.,2010,46:7121-7123.
    [35]L. Cui, Y. Zhong, W. Zhu, Y. Xu, Q. Du, X. Wang, X. Qian, Y. Xiao, A New Prodrug-Derived Ratiometric Fluorescent Probe for Hypoxia:High Selectivity of Nitroreductase and Imaging in Tumor Cell [J]. Org. Lett.,2011,13:928-931.
    [36]S. Ou, Z. Lin, C. Duan, H. Zhang, Z. Bai, A Sugar-Quinoline Fluorescent Chemosensor for Selective Detection of Hg2+Ion in Natural Water [J]. Chem. Commun.,2006, 4392-4294.
    [37]J. Xie, M. Menand, S. Maisonneuve, R. Metivier, Synthesis of Bispyrenyl Sugar-Aza-Crown Ethers as New Fluorescent Molecular Sensors for Cu(II) [J]. J. Org. Chem.,2007,72:5980-5985.
    [38]X.-P. He, Z. Song, Z.-Z. Wang, X.-X. Shi, K. Chen, G.-R. Chen, Creation of 3,4-bis-Triazolocoumarin-Sugar Conjugates via Flourogenic Dual Click Chemistry and Their Quenching Specificity with Silver(I) in Aqueous Media [J]. Tetrahedron,2011,67: 3343-3347.
    [39]Y.-H. Tang, Y. Qu, Z. Song, X.-P. He, J. Xie, J. Hua, G.-R. Chen. Discovery of a Sensitive Cu(II)-Cyanide "Off-On" Sensor Based on New C-Glycosyl Triazolyl bis-Amino Acid Scaffold [J]. Org. Biomol. Chem.,2012,10:555-560.
    [40]N. Jayaraman, Multivalent Ligand Presentation as a Central Concept to Study Intricate Carbohydrate-Protein Interactions [J]. Chem. Soc. Rev.,2009,38:3463-3483.
    [41]X.-P. He, X.-W. Wang, X.-P. Jin, H. Zhou, X.-X. Shi, G.-R. Chen, Y.-T. Long, Epimeric Monosaccharide-Quinone Hybrids on Gold Electrodes toward the Electrochemical Probing of Specific Carbohydrate-Protein Recognitions [J]. J. Am. Chem. Soc.,2011,133: 3649-3657.
    [42]a). F. D. Lewis, A. K. Thazhathveetil, T. A. Zeidan, J. Vura-Weis, M. R. Wasielewski, Dynamics of Ultrafast Singlet and Triplet Charge Transfer in Antrhaquinone-DNA Conjugates [J]. J. Am. Chem. Soc.,2010,132:444-445. b). A. T. M. Zafrul Azam, T. Moriguchi, K. Shinozuka, Modified a-β Chimeric OligoDNA Bearing a Multi-Conjugate of 2,2-bis(Hydroxymethyl)propionic Acid-Anthraquinone-Poylamine Exhibited Improved and Stereo-Nonspecific Triplex-Forming Ability [J]. Chem. Commun.,2006, 335-337. c). R. M. F. Batista, E. Oliveira, S. P. G. Costa, C. Lodeiro, M. M. Raposo, Synthesis and Ion Sensing Properties of New Colorimetric and Fluorimetric Chemosensors Based on Bithienyl-Imidazo-Anthraquinone Chromophores [J]. Org. Lett., 2007,9:3201-3204. d). E. Ranyuk, C. M. Douaihy, A. Bessmertnykh, F. Denat, A. Averin, I. Beletskaya, R. Guilard, Diaminoanthraquinone-Linked Polyazamacrocycles: Efficient and Simple Colorimetric Sensor for Lead Ion in Aqueous Solution [J]. Org. Lett.,2009.11:987-990.
    [43]A. Zon, M. Palys, Z. Stojek, H. Sulowsk, T. Ossowskib, Supramolecular Derivatives of 9,10-Anthraquinone Electrochemistry at Regular-and Low Ionic Strength and Complexing Properties [J]. Electroanalysis,2003,15:579-585.
    [44]S. H. Kim, H. S. Choi, J. Kim, S. J. Lee, D. T. Quang. J. S. Kim, Novel Optical/Electrochemical Selective 1,2,3-Triazole Ring-Appended Chemosensor for the Al3+Ion [J]. Org. Lett.,2010,12:560-563.
    [45]a). B.M. J. M. Suijkerbuijk. B. N. H. Aerts, H. P. Dijkstra, M. Lutz, A. L. Spek, G. van Koten, R. J. M. Klein Gebbink, "Click" 1,2,3-Triazoles as Tunable Ligands for Late Transition Metal Complexes [J]. Dalton Trans.,2007,1273-1276. b). H.-C. Hung, C.-W. Cheng, Y.-Y. Wang, Y.-J. Chen, W.-S. Chung, Highly Selective Fluorescent Sensors for Hg2+and Ag+Based on bis-Triazole-Coupled Polyoxyethylenes in MeOH Solution [J]. Eur. J. Org. Chem.,2009,1515-1521.
    [46]a). M. Mizuno, T. Shioiri, Efficient Method for the One-Pot Azidation of Alcohols Using bis(p-Nitrophenyl) Phosphorazidate [J]. Chem. Commun.,1997,2165-2166. b). H. Sharghi, R. Khalifeh, M. M. Doroodmanda, Copper Nanoparticles on Charcoal for Multicomponent Catalytic Synthesis of 1,2,3-Triazole Derivatives from Benzyl Halides or Alkyl Halids, Terminal Alkynes and Sodium Azide in Water as a "Green" Solvent [J]. Adv. Syn. Cat.,2009,351:207-218.
    [47]W. C. Vosburgh, G. R. Cooper, Complex Ions. I. The Identification of Complex Ions in Solution by Spectrophotometric Measurements [J]. J. Am. Chem. Soc.,1941,63: 437-442.
    [48]S. Kaur, S. Kumar, Photoactive Chemosensors 4:A Cu2+Protein Cavity Mimicking Fluorescent Chemosensor for Selective Cu2+Recognition [J]. Tetrahedron Lett.,2004,45: 5081-5085.
    [49]L.-Y. He, J.-G. Cheng, T. Wang, C.-M. Li, Z. Gong, H. Liu, B.-B. Zeng, H.-L. Jiang, W.-L. Zhu, Cation-pi Complexes Formed between Cyclooctatetraene and Alkaline Earth Metals:Predicted and Recorded NMR Features [J]. Chem. Phys. Lett.,2008,462:45-48.
    [50]S. R. Miller, D. A. Gustowski, Z.-H. Chen, G. W. Gokel, L. Echegoyen, A. E. Kaifer, Rationalization of the Unusual Electrochemical Behavior Observed in Lariat Ethers and Other Reducible Macrocyclic Systems [J]. Anal. Chem.,1988,60:2021-2024.
    [51]P. T. Anastas, J. C. Warner. Green Chemistry:Theory and Practice [M], Oxford University Press:New York,1998.
    [52]a). N. Assimomytis, Y. Sariyannis, G. Stavropoulos, P. G. Tsoungas, G. Varvounis, P. Cordopatis, Anionic ortho-Fries Rearrangement, a Facile Route to Arenol-Based Mannich Bases [J]. Synlett,2009,2777-2782. b). K. Fuchibe, Y. Ohshima, K. Mitomi, T. Akiyama, Low-Valent Niobium-Catalyzed Reduction of a,a,a-Trifluorotoluenes [J]. Org. Lett.,2007,9:1497-1499. c). P. Gigier, W. A. Herrmann, F. E. Kuhn, Efficient Synthesis of Substituted Diarylsilanes [J]. Synthesis,2010,1431-1432.
    [53]a). M.-C. P. Yeh, Y.-C. Lee, T.-C. Young, A Facile Approach to the Synthesis of Allylic Spiro Ethers and Lactones [J]. Synthesis,2006,3621-3624. b). R. S. Porto, M. L. A. A. Vasconcellos, E. Ventura, F. Coelho, Diastereoselective Epoxidation of Allylic Diols Derived from Baylis-Hillman Adducts [J]. Synthesis,2005,2297-2306. c). Y. Lee, K. Akiyama, D. G. Gillingham, M. Kevin Brown, A. H. Hoveyda, Highly Site-and Enantioselective Cu-Catalyzed Allylic Alkylation Reactions with Easily Accessible Vinylaluminum Reagents [J]. J. Am. Chem. Soc.,2008,130:446-447. d). F. Gao, A. H. Hoveyda, a-Selective Ni-Catalyzed Hydroalumination of Aryl-and Alkyl-Substituted Terminal Alkynes:Practical Syntheses of Internal Vinyl Aluminums, Halides, or Boronates [J]. J. Am. Chem. Soc.,2010,132:10961-10963. e). C. A. Busacca, R. Raju, N. Grinberg, N. Haddad, P. James-Jones, H. Lee, J. C. Lorenz, A. Saha, C. H. Senanayake, Reduction of Tertiary Phosphine Oxides with DIBAL-H [J]. J. Org. Chem.,2008,73: 1524-1531.
    [54]a). N. Bajwa, M. P. Jennings, An Efficient 1,2-Chelation-Controlled Reduction of Protected Hydroxy Ketones via Red-Al [J]. J. Org. Chem.,2008,73:3638-3641. b). C. T. Meta, K. Koide, Trans-Selective Conversions of γ-Hydroxy-α,β-Alkynoic Esters to y-Hydroxy-α,β-Alkenoic Esters [J]. Org. Lett.,2004,6:1785-1787.
    [55]a). M. Taibakhsh, R. Hosseinzadeh, H. Alinezhad, S. Ghahari, A. Heydari, S. Khaksar, Catalyst-Free One-Pot Reductive Alkylation of Primary and Secondary Amines and N.N-Dimethylation of Amino Acids Using Sodium Borohydride in 2,2,2-Trifluoroethanol [J]. Synthesis,2011,490-496. b). S.-H. Xiang, J. Xu, H.-Q. Yuan, P.-Q. Huang, Amide Activation by Tf2O:Reduction of Amides to Amines by NaBH4 under Mild Conditions [J]. Synlett,2010,1829-1832. c). A. R. Jagdale, A. S. Paraskar. A. Sudalai, Cobalt(II) Chloride Hexahydrate-Diisopropylamine Catalyzed Mild and Chemoselective Reduction of Carboxylic Esters with Sodium Borohydride [J]. Synthesis,2009,660-664. d). J. M. Khurana, R. Arora, Rapid Chemoselective Deprotection of Benzyl Esters by Nickel Boride [J]. Synthesis,2009,1127-1130. e). C. G. Frost, S. D. Penrose, R. Gleave, A Practical Synthesis of α-Substituted tert-Butyl Acrylates from Meldrum's Acid and Aldehydes [J]. Synthesis,2009,627-635. f). Y. Jiang, Y. Qin, S. Xie, X. Zhang, J. Dong, D. Ma, A General and Efficient Approach to Aryl Thiols:Cul-Catalyzed Coupling of Aryl Iodides with Sulfur and Subsequent Reduction [J]. Org. Lett.,2009,11:5250-5253.
    [56]a). Maegawa, A. Akashi, H. Sajiki, A Mild and Facile Method for Complete Hydrogenation of Aromatic Nuclei in Water [J]. Synlett,2006,1440-1442. b). C. P. Casey, H. Guan, An Efficient and Chemoselective Iron Catalyst for the Hydrogenation of Ketones [J].J. Am. Chem. Soc.,2007,129:5816-5817. c). T. W. Baughman, J. C. Sworen, K. B. Wagener, The Facile Preparation of Alkenyl Metathesis Synthons [J]. Tetrahedron, 2004,60:10943-10948. d). X. Cheng, Q. Zhang, J.-H. Xie. L.-X. Wang. Q.-L. Zhou, Highly Rigid Diphosphane Ligands with a Large Dihedral Angle Based on a Chiral Spirobifluorene Backbone [J]. Angew. Chem. Int. Ed,2005,44:1118-1121. e). S. Li, S.-F. Zhu, C.-M. Zhang, S. Song, Q.-L. Zhou, Iridium-Catalyzed Enantioselective Hydrogenation of a,β-Unsaturated Carboxylic Acids [J]. J. Am. Chem. Soc.,2008,130: 8584-8585. f). C. Li, B. Villa-Marcos, J. Xiao, Metal-Brensted Acid Cooperative Catalysis for Asymmetric Reductive Amination [J]. J. Am. Chem. Soc.,2009,131: 6967-6969. g). H. Lebel, C. Ladjel, Reductive One-Carbon Homologation of Aldehydes and Ketones [J]. J. Org. Chem.,2005,70:10159-10161. h). C.-J. Wang, X. Sun, X. Zhang, Highly Enantioselective Hydrogenation of a-Keto Esters Catalyzed by Ru-Tunephos Complexes [J]. Synlett,2006,1169-1172.
    [57]H. H. Anderson, Reactions of Triethylsilane and Diethylsilane with Inorganic Halides and Acids [J]. J. Am. Chem. Soc.,1958,80:5083-5085.
    [58]G L. Larson, J. L. Fry, Ionic and Organometallic-Catalyzed Organosilane Reductions [M]. John Wiley & Sons, Inc.:New Jersey,2010.
    [59]a). S. C. Berk, S. L. Buchwald, An Air-stable Catalyst System for the Conversion of Esters to Acohols [J]. J. Org. Chem.,1992,57:3751-3753. b). A. S. Wells, On the Perils of Unexpected Silane Generation [J]. Org. Process Res. Dev.,2010,14:484.
    [60]a). One review about PMHS:N. J. Lawrence, M. D. Drew, S. M. Bushell, Polymethylhydrosiloxane:a Versatile Reducing Agent for Organic Synthesis [J]. J. Chem. Soc, Perkin Trans.1,1999,3381-3391; For the use of PMHS in hydrosilylation reactions, see:[Cu] b). V. Jurkauskas, S. L. Buchwald, Dynamic Kinetic Resolution via Asymmetric Conjugate Reduction:Enantio-and Diastereoselective Synthesis of 2,4-Dialkyl Cyclopentanones [J]. J. Am. Chem. Soc.,2002,124:2892-2893. c). P. Chiu, S. K., Leung, Stoichiometric and Catalytic Reductive Aldol Cyclizations of Alkynediones Induced by Stryker's Reagent [J]. Chem. Commun.,2004,2308-2309. d). C. Deutsch, N. Krause, B. H. Lipshutz, CuH-Catalyzed Reactions [J]. Chem. Rev.,2008,108:2916-2927. e). B. H. Lipshutz, Rediscovering Organocopper Chemistry Through Copper Hydride. It's All About the Ligand [J]. Synlett,2009,4:509-524. [Ti] f). S. Chandrasekhar, Ch. Raji Reddy, R. Jagadeeshwar Rao, J. Madhusudana Rao, Efficient and Chemoselective Deoxygenation of Amine N-Oxides Using Polymethylhydrosiloxane [J]. Synlett,2002,2: 349-351. [Pd] g). R. J. Rahaim, R. E. Maleczka, Room Temperature Dehalogenation of Chloroarenes by Polymethylhydrosiloxane (PMHS) under Palladium Catalysis [J]. Tetrahedron Lett.,2002,43:8823-8826. h). R. J. Rahaim, R. E. Maleczka, Pd-Catalyzed Silicon Hydride Reductions of Aromatic and Aliphatic Nitro Groups [J]. Org. Lett.,2005, 7:5087-5090. i). S. Chandrasekhar, D. Basu, C. R. Reddy, Palladium-Catalyzed Reduction of N-(tert-Butoxycarbonyl)indoles by Polymethylhydrosiloxane [J]. Synthesis, 2007,10:1509-1512. [Sn] j). R. M. Lopez, G. C. Fu, A Mild, Convenient, and Inexpensive Method for Converting Imines into Amines:Tin-Catalyzed Reduction with Polymethylhydrosiloxane (PMHS) [J]. Tetrahedron,1997,53:16349-16354. k). N. J. Lawrence, S. M. Bushell, An Efficient Protocol for the Reduction of Ketones with Tin(II) Complexes and PMHS [J]. Tetrahedron Lett.,2000,41:4507-4512.1). G. Chelucci, D. Muroni, I. Manca, Enantioselective Reduction of Acetophenone with PMHS and Tin(II) Complexes of Chiral Pyridine Ligands [J]. J. Mol. Catalysis A:Chemical, 2005,225:11-14. [Zn] m). H. Mimoun, J.-Y. de Saint Laumer, L. Giannini, R. Scopelliti, C. Floriani, Enantioselective Reduction of Ketones by Polymethylhydrosiloxane in the Presence of Chiral Zinc Catalysts [J]. J. Am. Chem. Soc.,1999,121:6158-6166. n). H. Mimoun, Selective Reduction of Carbonyl Compounds by Polymethylhydrosiloxane in the Presence of Metal Hydride Catalysts [J]. J. Org. Chem.,1999,64:2582-2589. o). V. Bette, A. Mortreux, C. W. Lehmann, J.-F. Carpentier, Direct Zn-Diamine Promoted Reduction of C=O and C=N Bonds by Polymethylhydrosiloxane in Methanol [J]. Chem. Commun.,2003,332-333. p). T. Ireland, F. Fontanet, G.-G. Tchao, Identification of New Catalysts for the Asymmetric Reduction of Imines into Chiral Amines with Polymethylhydrosiloxane Using High-Throughput Screening [J]. Tetrahedron Lett.,2004, 45:4383-4387. q) S. Gerard, Y. Pressel, O. Riant, Application of N,S-Chelating Chiral Ligands and Zinc Complexes in Catalytic Asymmetric Hydrosilylation Using Polymethylhydrosiloxane [J]. Tetrahedron:Asym.,2005,16:1889-1891. [Fe] r). N. S. Shaikh, K. Junge, M. Beller, A Convenient and General Iron-Catalyzed Hydrosilylation of Aldehydes [J]. Org. Lett.,2007,9:5429-5432. s). H. Nishiyama, A. Furuta, An Iron-Catalysed Hydrosilylation of Ketones [J]. Chem. Commun.,2007,760-762. t). Y. Sunada, H. Kawakami, T. Imaoka, Y. Motoyama, H. Nagashima, Hydrosilane Reduction of Tertiary Carboxamides by Iron Carbonyl Catalysts [J]. Angew. Chem. Int. Ed.,2009, 48:9511-9514. [In] u). K. Miura, M. Tomita, Y. Yamada, A. Hosomi, Indium-Catalyzed Radical Reductions of Organic Halides with Hydrosilanes [J]. J. Org. Chem.,2007,72: 787-792. [B] v). S. Chandrasekhar, Ch. Raji Reddy, B. Nagendra Babu, Rapid Defunctionalization of Carbonyl Group to Methylene with Polymethylhydrosiloxane-B(C6F5)3 [J]. J. Org. Chem.,2002,67:9080-9082. w). S. Chandrasekhar, S. Jhatun, G. Rajesh, Ch. Raji Reddy, B(C6F5)3:an Efficient Catalyst for Reductive Alkylation of Alkoxy Benzenes and for Synthesis of Triarylmethanes Using Aldehydes [J]. Tetrahedron Lett.,2009,50:6693-6697. [F-] x). C. Chuit, R. J. P. Corriu. R. Perz, C. Reye, Improved Procedure for the Selective Reduction of Carbonyl Compounds and Carboxylic Acid Esters by Potassium Salt-Induced Hydrosilylation [J]. Synthesis,1982,11:981-984. y). Y. Kobayashi, E. Takahisa, M. Nakano, K. Watatani, Reduction of Carbonyl Compounds by Using Polymethylhydro-Siloxane:Reactivity and Selectivity [J]. Tetrahedron,1997,53:1627-1634. z). D. Nadkarni, J. Hallissey. C. Mojica, Diastereoselectivity in the Reduction of α-Oxy-and α-Amino-Substituted Acyclic Ketones by Polymethylhydrosiloxane [J]. J. Org. Chem.,2003,68:594-596.
    [61]For the use of TMDS in hydrosilylation reactions, see:a). J. M. Aizpurua, B. Lecea, C. Palomo, Reduction of Carbonyl Compounds Promoted by Silicon Hydrides under the Influence of Trimethylsilyl-Based Reagents [J]. Can. J. Chem.,1986,64:2342-2347. b). P. Chiu, Organosilanes in Copper-Mediated Conjugate Reductions and Reductive Aldol Reactions [J]. Synthesis,2004,13:2210-2215. c). V. V. Zuev, D. A. de Vekki, A. E. Kuchaev, M. V. Vorob'ev, N. K. Skvortsov, Reaction of 1,1,3,3-Tetramethyldisiloxane with p-Substituted Acetophenones in the presence of Platinum and Rhodium Complexes [J]. Russ. J. Gen. Chem.,2004,74:1679-1685. d). S. Rendler, M. Oestreich, Polishing a Diamond in the Rough:"Cu-H" Catalysis with Silanes [J]. Angew. Chem. Int. Ed,.2007, 46:498-504.
    [62]a).S. Laval, W. Dayoub, A. Favre-Reguillon, M. Berthod, P. Demonchaux, G. Mignani, M. Lemaire, A Mild and Efficient Method for the Reduction of Nitriles [J]. Tetrahedron Lett., 2009,50:7005-7007. b). S. Laval, W. Dayoub, L. Pehlivan, E. Metay, A. Favre-Reguillon, D. Delbrayelle, G. Mignani, M. Lemaire, Hydrosiloxane-Ti(OzPr)4:An Efficient System for the Reduction of Primary Amines as Their Hydrochloride salts [J]. Tetrahedron Lett.,2011,52:4072-4075.
    [63]S. Laval, W. Dayoub, A. Favre-Reguillon, P. Demonchaux, G. Mignani, M. Lemaire, A Mild Titanium-Based System for the Reduction of Amides to Aldehydes [J]. Tetrahedron Lett.,2010,51:2092-2094.
    [64]a). L. Pehlivan, E. Metay, S. Laval, W. Dayoub, A. Favre-Reguillon, P. Demonchaux, G. Mignani, M. Lemaire, Iron-Catalyzed Selective Reduction of Nitro Compounds to Amines [J]. Tetrahedron Lett.,2010,51:1939-1941. b). L. Pehlivan, E. Metay, S. Laval, W. Dayoub, P. Demonchaux, G. Mignani, M. Lemaire, Alternative Method for the Reduction of Aromatic Nitro to Amine Using TMDS-Iron Catalyst System [J]. Tetrahedron,2011,67:1971-1976.
    [65]Y. Shi, W. Dayoub, G.-R. Chen, M. Lemaire, TMDS-Pd/C:A Convenient System for the Reduction of Acetals to Ethers [J]. Tetrahedron Lett.,2011,52:1281-1283.
    [66]a). C. Petit, A. Favre-Reguillon, G. Mignani, M. Lemaire, A Straightforward Synthesis of Unsymmetrical Secondary Phosphine Boranes [J]. Green Chem.,2010,12:326-330; b). M. Berthod, A. Favre-Reguillon, J. Mohamad, G. Mignani, G. Docherty, M. Lemaire, A Catalytic Method for the Reduction of Secondary and Tertiary Phosphine Oxides [J]. Synlett,2007,10:1545-1548; c). C. Petit, A. Favre-Reguillon, B. Albela, L. Bonneviot, G. Mignani, M. Lemaire, Mechanistic Insight into the Reduction of Tertiary Phosphine Oxides by Ti(O/Pr)4/TMDS [J]. Organometallics,2009,28:6379-6382.
    [67]R. N. Hazeldine, J. M. Kidd, Perfluoroalkyl Derivatives of Sulphur. Part I. Trifluoromethanesulphonic Acid [J]. J. Chem. Soc.,1954,4228-4232.
    [68]C. Hertweck, Copper(II) Triflate in Organic Synthesis [J]. J. Prakt. Chem.,2000,342: 316-321.
    [69]H. M. Doukas, T. D. Fountaine, Cleavage of Sapogenin Terminal Rings With Lithium Aluminum Hydride [J]. J. Am. Chem. Soc.,1951,73:5917-5918.
    [70]a). E. L. Eliel, M. N. Rerick, Communications Reduction of Acetals to Ethers by Means of Lithium Aluminum Hydride-Aluminum Chloride [J]. J. Org. Chem.,1958,23:1088. b). E. L. Eliel, V. G. Badding, M. N. Rerick, Reduction with Metal Hydrides.Ⅻ. Reduction of Acetals and Ketals with Lithium Aluminum Hydride-ALuminum Chloride [J]. J. Am. Chem. Soc.,1962,84:2371-2377.
    [71]a). P. J. Kocienski. Protecting Groups [M], Thieme:New York,1994. b). T. W. Greene, P. G. M. Wuts. Protective Groups in Organic Synthesis (3rd Ed.) [M], Jone Wiley & Sons: New York,1999.
    [72]a). S. Oscarson. Protective Group Strategies in The Organic Chemistry of Sugars (Eds.: D. E. Levy, P. Fugedi) [M], Taylor & Francis:Boca Raton,2006, pp.53-87. b). P. Galinaud, J. Gelas. In Preparative Carbohydrate Chemistry (Ed.:S. Hanessian) [M], Marcel Dekker:New York,1996, pp.3-33. c). M. Ohlin, R. Johnsson, U. Ellervik, Regioselective Reductive Openings of 4,6-Benzylidene Acetals:Synthetic and Mechanistic Aspects [J]. Carbohydr. Res.,2011,346:1358-1370.
    [73]S. S. Bhattacharjee, P. A. Gorin, Hydrogenolysis of Carbohydrate Acetals, Ketals, and Cyclic Orthoesters with Lithium Aluminium Hydride-Aluminium Trichloride [J]. Can. J. Chem.,1969,47:1195-1206.
    [74]A. Liptak, I. Jodal, P. Nanasi, Stereoselective Ring Cleavage of 3-O-Benzyl-and 2,3-di-O-Benzylidenehexopyranoside Derivatives with the LiAlH4/AlCl3 Reagent [J]. Carobohydr. Res.,1975,44:1-11.
    [75]P. J. Garegg, H. Hultberg, A Novel, Reductive Ring-Opening of Carbohydrate Benzylidene Acetals, with Unusual Regioselectivity [J]. Carbohydr. Res.,1981,93: C10-C11.
    [76]A. I. Zinin, N. N. Malysheva, A. M. Shpirt, V. I. Torgov, L. O. Kononov, Use of Methanesulfonic Acid in the Reductive Ring-Opening of O-Benzylidene Acetals [J]. Carbohydr. Res.,2007,342:627-630.
    [77]N. L. Pohl, L. L. Kiessling, Para-Chlorobenzyl Protecting Groups as Stabilizers of the Gylcosidic Linkage:Synthesis of the 3'-O-Sulfated Lewis X Trisaccharide [J]. Tetrahedron Lett.,1997.38:6985-6988.
    [78]a). R. Johansson, B. Samuelsson, Regioselective Reductive Ring-Opening of 4-Methoxybenzylidene Acetals of Hexopyranosides. Access to a Novel Protecting-Group Strategy. Part 1 [J].J. Chem. Soc., Perkin Trans.1,1984,2371-2374. b). R. Johansson, B. Samuelsson, Regioselective Reductive Ring Opening of 4-Methoxybenzylidene Acetals of Hexopyranosides. Access to a Novel Protective Group Strategy [J]. J. Chem. Soc. Chem. Comm.,1984,201-202.
    [79]M. Ek, P. J. Garegg, H. Hultberg, S. Oscarson, Reductive Ring Openings of Carbohydrate Benzylidene Acetals Using Boran-Trimethylamine and Aluminium Chloride. Regioselectivity and Solvent Dependance [J]. J. Carbohydr. Chem.,1983,2: 305-311.
    [80]C.-R. Shie, Z.-H. Tzeng, C.-C. Wang, S.-C. Hung, Metal Trifluoromethanesulfonate-Catalyzed Regioselective Reductive Ring Opening of Benzylidene Acetals [J]. J. Chin. Chem. Soc.,2009,56:510-523.
    [81]M. Oikawa, W.-C. Liu, Y. Naki, S. Koshida, K. Fukase, S. Kusumoto, Regioselective Reductive Opening of 4,6-O-Benzylidene Acetals of Glucose or Glucosamine Derivatives by BH3·NHMe2-BF3·OEt2 [J]. Synlett,1996,1179-1180.
    [82]K. Tanaka, K. Fukase, Efficient Procedure for Reductive Opening of Sugar 4,6-O-Benzylidene Acetals in a Microfluidic System [J]. Synlett,2007,164-166.
    [83]S. Tani, S. Sawadi, M. Kojima, S. Akai, K.-i. Sato, A Novel Method for Regioselcetive Ring-Opening Reduction of 4,6-O-Benzylidene Hexopyranoside Derivatives using CoCl2 and BH3·THF [J]. Tetrahehdron Lett.,2007,48:3103-3104.
    [84]S. Deng, U. Gangadharmath, C.-W. T. Chang, Sonochemistry:A Powerful Way of Enhancing the Efficiency of Carbohydrate Synthesis [J]. J. Org. Chem.,2006,71: 5179-5185.
    [85]P. J. Garegg. In Peparative Carbohydrate Chemistry (Ed.:S. Hanessian) [M], Marcel Dekker:New York,1996, pp.53-67.
    [86]K. Daragics, P. Fugedi, Regio-and Chemoselective Reductive Cleavage of 4,6-O-Benzylidene-Type Acetals of Hexopyranosides Using BH3-THF-TMSOTf [J]. Tetrahedron Lett.,2009,50:2914-2916.
    [87]a). R. Johnsson, D. Olsson, U. Ellervik, Reductive Openings of Acetals:Explanation of Regioselectivity in Borane Reductions by Mechanistic Studies [J]. J. Org. Chem.,2008, 73:5226-5232. b). R. Johnsson, M. Ohlin, U. Ellervik, Reductive Openings of Benzylidene Acetals Revisited:A Mechanistic Scheme for Regio-and Stereoselectivity [J].J. Org. Chem.,2010,75:8003-8011.
    [88]M. El Gihani, H. Heaney, A Convenient Alternative Route to Trimethylsilylfluorosulfonate for Use in Catalytic Reactions [J]. Synlett,1993,583-584.
    [89]a). H. Kotsuki, Y. Ushio, I. Kadota, M. Ochi, Stereoselective Reduction of Bicyclic Ketals. A New. Enantioselective Synthesis of Isolaurepinnacin and Lauthisan Skeletons [J]. J. Org. Chem.,1989,54:5153-5161. b.) H. Kotsuki, Y. Ushio, I. Kadota, M. Ochi, Stereoselective Reduction of Bicyclic Ketals. An Efficient Synthesis of (-)-(R,R)-(cis-6-Methyltetrahydropyran-2-yl)acetic Acid, an Enantiomer of Civet Cat Constituent [J]. Chem. Lett.,1988,927-930. c). T. Harada, T. Hayashiya, I. Wada, N. Iwaake, A. Oku, Enantioselective Functionalization of Prochiral Diols via Chiral Spiroketals:Preparation of Optically Pure 2-Substituted 1,3-Propanediol Derivatives and Asymmetric Synthesis of Chroman Ring and Side Chain of.alpha.-Tocopherol [J]. J. Am. Chem. Soc.,1987,109:527-532. d). A. Mori, K. Ishihara, H. Yamamoto, Reductive Cleavages of Chiral Acetals Using Lewis Acid-Hydride System [J]. Tetrahedron Lett., 1986,27:987-990. e). K. Ishihara, A. Mor, H. Yamamoto, Stereoselective Reduction of Acetals. A Method For Reductive Generation of Heterocyclic Ring Systems [J]. Tetrahedron,1990,46:4595-4612.
    [90]M. Onaka, K. Higuchi, H. Nanami, Y. Izumi. Reduction of Carbonyl Compounds with Hydrosilanes on Solid Acid and Solid Base [J]. Bull. Chem. Soc. Jpn.,1993,66: 2638-2645.
    [91]G. A. Olah, T. Yamato, P. Iyer, G. K. S. Prakash, Catalysis by Solid Super Acids.20. Nafion-H Catalyzed Reductive Cleavage of Acetals and Ketals to Ethers with Triethylsilane [J]. J. Org. Chem.,1986,51:2826-2828.
    [92]E. Bisagni, M. Rautureau, M. Croisy-Delcey, C. Huel, Nouvelle Synthese de Chloro-1 Methyl-5 Isoquinoleines Fusionnees a Divers Systemes Aromatiques par Leur Liaison [g] [J]. Can. J. Chem.,1987,65:2027-2030.
    [93]a). D. Rolf, G. R. Gray, Reductive Cleavage of Glycosides [J]. J. Am. Chem. Soc.,1982, 104:3539-3541. b). A. Pelter, R. S. Ward, P. Collins, R. Venkateswarlu, I. T. Kay, A General Synthesis of 2,6-Diary-3,7-dioxabicyclo[3.3.0]octane Lignans Applicable to Unsymmetrically Substituted Compounds [J]. J. Chem. Soc., Perkin Trans.1,1985, 587-594.
    [94]a). K. J. McCullough, A. Masuyama, K. M. Morgan, M. Nojima, Y. Okada, S. Satake, S. Takeda, Syntheses, Structure Analyses, and Reactions of 1,3,5-Trioxepanes and Related Compounds [J]. J. Chem. Soc., Perkin Trans.1,1998,2353-2362. b). T. Tsunoda, M. Suzuki, R. Noyori, Reaction of Acetals and Trialkylsilanes Catalyzed by Trimethylsilyl Trifluoromethanesulfonate [J]. Tetrahedron Lett..1979,20:4679-4680. c). K. Suzuki, T. Nakata, Stereoselective Convergent Synthesis of a trans-Fused Polycyclic Ether Ring System Including a 4-Hydroxy-5-methyl-tetrahydropyran Ring [J]. Org. Lett.,2002,4: 2739-2741. d). Y. Mori, K. Nogami, H. Hayashi, R. Noyori, Sulfonyl-Stabilized Oxiranyllithium-Based Approach to Polycylcic Ethers. Convergent Synthesis of the ABCDEF-Ring System of Yessotoxin and Adriatoxin [J]. J. Org. Chem..2003,68: 9050-9060.
    [95]S. Chandrasekhar, Y. R. Reddy, Ch. R. Reddy, Regioselective Reductive Ring Opening of Cyclic 1,2-and 1,3-Benzylidene Acetals [J]. Chem. Lett.,1998,1273-1274.
    [96]H. Al-Mughaid, T. B. Grindley, K. N. Robertson, T. S. Cameron, New Potential Dendritic Cores:Selective Chemistry of Dipentaerythritol [J]. Can. J. Chem.,2003,81:505-516.
    [97]M. P. DeNinno, J. B. Etienne, K. C. Duplantier, A Method for the Selective Reduction of Carbohydrate 4,6-O-Benzylidene Acetals [J]. Tetrahedron Lett.,1995,36:669-672.
    [98]T. Ohta, T. Michibata, K. Yamada, R. Omori, I. Furukawa, Reductive Cleavage of the C-O bond of Acetals and Orthoesters:Reduction by Silane in the Presence of a Rh-PPh3 complex [J]. Chem. Comm.,2003,1192-1193.
    [99]V. Balakumar, A. Aravind, S. Baskaran, A Highly Regio-and Chemoselective Reductive Cleavage of Benzylidene Acetals with EtAlCl2-Et3SiH [J]. Synlett,2004,647-650.
    [100]M. Sakagami, H. Hamana, A Selective Ring Opening Reaction of 4,6-O-Benzylidene Acetals in Carbohydrates Using Trialkylsilane Derivatives [J]. Tetrahedron Lett.,2000, 41:5547-5551.
    [101]C.-R. Shie, Z.-H. Tzeng, S. S. Kulkarni, B.-J. Uang, C.-Y. Hsu, S.-C. Hung, Cu(OTf)2 as an Efficient and Dual-Purpose Catalyst in the Regioselective Reductive Ring Opening of Benzylidene Acetals[J].Angew. Chem., Int. Ed.,2005,44:1665-1668.
    [102]R. Panchadhayee, A. K. Misra, Regioselective Reductive Ring Opening of Benzylidene Acetals Using Triethylsilane and Iodine [J]. Synlett,2010,1193-1196.
    [103]C.-J. Zhu, H. Yi, G.-R. Chen, J. Xie, Synthesis of Novel Photolabile Gylcosides from Methyl 4,6-O-(o-Nitro)benzylidene-a-D-glycopyranosides [J]. Tetrahedron,2008,64: 10687-10693.
    [104]C. Chuit, R. J. P. Corriu, C. Rey, J. C. Young, Reactivity of Penta-and Hexacoordinate Silicon Compounds and Their Role as Reaction Intermediates [J]. Chem. Rev.,1993,93: 1371-1448.
    [105]C. Chuit, R. J. P. Corriu, R. Perz, C. Reye, Improved Procedure for the Selective Reduction of Carbonyl Compounds and Carboxylic Acid Esters by Potassium Salt-Induced Hydrosilylation [J]. Synthesis,1982,981-983.
    [106]a). M. D. Drew, N. J. Lawrence, D. Fontaine, L. Sehkri, W. Watson, S. A. Bowles, A Convenient Procedure for the Reduction of Esters, Carboxylic Acids, Ketones and Aldehydes using Tetrabutylammonium Fluoride (or Triton(?)B) and Polymethylhydrosiloxane [J]. Synlett,1997,989-991. b). Y. Kobayashi, E. Takahisi, M. Nakano, K. Watatani, Reduction of Carbonyl Compounds by Using Polymethylhydrosiloxane:Reactivity and Selectivity [J]. Tetrahedron,1997,53: 1627-1634.
    [107]Y.-J. Zhang, W. Dayoub, G.-R. Chen, M. Lemaire, Environmentally Benign Metal Triflate-Catalyzed Reductive Cleavage of the C-O Bond of Acetals to Ether [J]. Green Chem.,2011,13:2737-2742.
    [108]I. J. A. Baker, B. Matthews, H. Suares, I. Krodkiewska, D. N. Furlong, F. Grieser, C. J. Drummond, Sugar Fatty Acid Ester Surfactants:Structure and Ultimate Aerobic Biodegradability [J]. J. Surfactants Deterg.,2000.3:1-10.
    [109]D. Pilakowska-Pietras, K. Lunkenheimer, A. Piasecki, Synthesis of Novel N,N-di-n-Alkylaldonamides and Properties of Their Surface Chemically Pure Adsorption Layers at the Air/Water Interface [J]. J. Colloid Interface Sci.,2004,271:192-200.
    [110]B. B. Niraula, T. K. Chun, H. Othman, M. Misran, Dynamic-Interfacial Properties of Dodecyl-(3-D-fructofuranosyl-a-D-glucopyranoside at Dodecane/Water Interface [J]. Colloids. Surf,2004,248:157-166.
    [111]a). Egan, A. Philip (Olin Corporation), Nonionic Carbohydrate Based Surfactants [P]. US Patent 4663444,1987. b). E. Nishimura, T. Lihara, K. Nakajima, S. Yanama, Liquid Detergent Compositions with Low Skin Irritation [P]. JP Patent 05255694,1993. c). A. Smith, P. Nobmann, G. Henehan, P. Bourke, J. Dunne, Synthesis and Antimicrobial Evaluation of Carbohydrate and Polyhydroxylated Non-Carbohydrate Fatty Acid Ester and Ether Derivatives [J]. Carbohydr. Res.,2008,343:2557-2566. d). P. Nobmann, A. Smith, J. Dunne, G. Henehan, P. Bourke, The Antimicrobial Efficacy and Structure Activity Relationship of Novel Carbohydrate Fatty Acid Derivatives against Listeria spp. and Food Spoilage Microorganisms [J]. Int. J. Food Microbiol.,2009,128:440-445.
    [112]R. Miethchen, J. Holz, H. Prade, A. Liptak, Amphiphilic and Mesogenic Carbohydrates. Ⅱ. Synthesis and Characterization of Mono-O-(n-Alkyl)-D-Glucose Derivatives [J]. Tetrahedron,1992,48:3061-3068.
    [113]M. P. DeNinno, J. B. Etienne, K. C. Duplantier, A Method for the Selective Reduction of Carbohydrate 4,6-O-Benzylidene Acetals [J]. Tetrahedron Lett.,1995,36:669-672.
    [114]a). A. G. M. Barrett, B. M. Trost, I. Fleming. Comprehensive Organic Synthesis [M], Pergamon:Oxford,1991, pp.235-257. b). R. C. Larock, Comprehensive Organic Transformations (2nd ed.) [M], Wiley-VCH:New York,1999.
    [115]D.-H. He, N. Wakasa, T. Fuchikami, Hydrogenation of Carboxylic Acids Using Bimetallic Catalysts Consisting of Group 8 to 10, and Group 6 or 7 metals [J]. Tetrahedron Lett.,1995,36:1059-1062.
    [116]M. Falorni, G. Giacomelli, A. Porcheddu, M. Taddei, A Simple Method for the Reduction of Carboxylic Acids to Aldehydes or Alcohols Using H2 and Pd/C [J].J. Org. Chem., 1999,64:8962-8964.
    [117]a). Y. Zhou, G. Gao, H. Li, J. Qu, A Convenient Method to Reduce Hydroxyl-Substitued Aromatic Carboxylic Acid with NaBH4/Me2SO4/B(OMe)3 [J]. Tetrahedron Lett.,2008, 49:3260-3263. b). M. Periasamy, M. Thirumalaikumar, Methods of Enhancement of Reactivity and Selectivity of Sodium Borohydride for Applications in Organic Synthesis [3].J. Organomet. Chem.,2000,609,137-151.
    [118]S. J. Zhang, W. X. Hu, H. Q. Chen, Direct Reduction of Some Benzoic Acids to Alcohols via NaBH4-Br2 [J]. Chin. Chem. Lett.,2007,18:1463-1465.
    [119]Y.-C. Qiu, F.-L. Zhang, C.-N. Zhang, A Practical and Efficient Procedure for Reduction of Carboxylic Acids and Their Derivatives:Use of KBH4-MgCl2 [J]. Tetrahedron Lett., 2007,48:7595-7598.
    [120]J. Zhang, X. Gao, C. Zhang, J. Ma, D. Zhao, Highly Efficient System for Reduction of Carboxylic Acids and Their Derivatives to Alcohols by HfCl4/KBH4[J]. Synth. Commun., 2009,39:1640-1654.
    [121]S. Narasimhan, S. Madhavan, K. Ganeshwar Prasad, Facile Reduction of Carboxylic Acids by Zinc Borohydride [J]. J. Org. Chem.,1995,60:5314-5315.
    [122]a). N. M. Yoon, C. S. Pak, H. C. Brown, S. Krishnamurthy, T. P. Stocky, Selective Reductions. ⅪⅩ. The Rapid Reaction Reaction of Carboxylic Acids with Borane Tetrahydrofuran. A Remarkably Convenient Procedure for the Selective Conversion of Carboxylic Acids to the Corresponding Alcohols in the Presence of Other Functional Groups [J]. J. Org. Chem.,1973,38:2786-2792. b). H. C. Brown, P. Heim, N. M. Yoon, Selective Reductions. XV. Reaction of Diborane in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups [J]. J. Am. Chem. Soc.,1910,92:1637-1646.
    [123]C. F. Lane, H. L. Myatt, J. Daniels, H. B. Hopps, Organic Synthesis Using Borane-Methyl Sulfide. Ⅱ. Reduction of Aromatic Carboxylic Acids in the Presence of Trimethyl Borate [J]. J. Org. Chem.,1974,39:3052-3054.
    [124]H. C. Brown, S. Krishnamurthy, N. M. Yoon, Selective Reductions. XXI. 9-Borabicyclo[3.3.1]nonane in Tetrahydrofuran as a New Selective Reducing Agent in Organic Synthesis. Reaction with Selected Organic Compounds Containing Representative Functional Groups [J]. J. Org. Chem.,1976,41:1778-1791.
    [125]H. C. Brown, P. M. Weissman, Yoon, N. M, Selective Reductions. IX. Reaction of Lithium Aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups [J]. J. Am. Chem. Soc.,1966,88:1458-1463.
    [126]a). N. M. Yoon, H. C. Brown, Selective Reductions. Ⅻ. Explorations in Some Representative Applications of Aluminum Hydride for Selective Reductions [J]. J. Am. Chem. Soc.,1968,90:2927-2938. b). H. C. Brown, N. M. Yoon, Selective Reductions. X. Reaction of Aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Lithium Aluminum Hydride and Its Derivatives [J]. J. Am. Chem. Soc.,1966,88: 1464-1472.
    [127]a). N. M. Yoon, Y. S. Gyoung, Reaction of Diisobutylaluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups [J]. J. Org. Chem., 1985,50:2443-2450. b). A. E. G. Miller, J. W. Biss, L. H. Schwartzman, Reductions with Dialkylaluminum Hydrides [J]. J. Org. Chem.,1959,24:627-630.
    [128]H. C. Brown, P. M. Weissman, Selective Reductions. Ⅶ. Reaction of Lithium Trimethoxyaluminohydride with Selected Organic Compounds Containing Representative Functional Groups [J]. J. Am. Chem. Soc.,1965,87:5614-5620.
    [129]K. N.Singh, A. Kaur, Facile and Chemoselective Reduction of Carboxylic Acids into Alcohols via Sodium Borohydride Reduction of N-Acylbenzotriazoles [J]. Synth. Commun.,2005,35:2935-2937.
    [130]J. A. Morales-Serna, E. Garcia-Rios, J. Bernal, E. Paleo, R. Gavino, J. Cardenas, Reduction of Carboxylic Acids Using Esters of Benzotriazole as High-Reactivity Intermediates [J]. Synthesis,2011,9:1375-1382.
    [131]H.-O. Kim, M. Kahn, The Synthesis of Aminoazole Analogs of Lysine and Arqinine:The Mitsunobu Reaction with Lysinol and Arqininol [J]. Synlett,1999,1239-1240.
    [132]V. V. Suresh Babu, Kantharaju, N. S. Sudarshan, Synthesis of Fmoc-Protected β-Amino Alcohols and Peptidyl Alcohols from Fmoc-Amicno Acid/Peptide Acid Azides [J]. Indian J. Chem.. Sect. B:Org. Chem. Incl. Med. Chem.,2006,45:1880-1886.
    [133]a). K. Soai, S. Yokoyama, K. Mochida, Reduction of Symmetric and Mixed Anhydrides of Carboxylic Acids by Sodium Borohydride with Dropwise Addition of Methanol [J]. Synthesis,1987,647-648. b). E. Papavassilopoulou, P. Christofis, D. Terzoglou, P. M. Minakakis, Reduction of Pentafluorophenyl Esters to the Corresponding Primary Alcohols Using Sodium Borohydride [J]. Tetrahedron Lett.,2007,48:8323-8325. c). K. Ishizumi, K. Koga, S.-I. Yamada, Chemistry of Sodium Borohydride and Diborane. IV. Reduction of Carboxylic Acids to Alcohols with Sodium Borohydride through Mixed Carbonic-Carboxylic Acid Anhydrides [J]. Chem. Pharm. Bull,1968,16:492-497.
    [134]R. H. Tale, K. M. Patil, S. E. Dapurkar, An Extremely Simple, Convenient and Mild One-Pot Reduction of Carboxylic Acids to Alcohols Using 3,4,5-Trifluorophenylboronic Acid and Sodium Borohydride [J]. Tetrahedron Lett.,2003,44:3427-3428.
    [135]G. Kokotos, C. Noula, Selecive One-Pot Conversion of Carboxylic Acids into Alcohols [J]. J. Org. Chem.,1996,6:6994-6996.
    [136]M. Falorni, A. Porcheddu, M. Taddei, Mild Reduction of Carboxylic Acids to Alcohols Using Cyanuric Chloride and Sodium Borohydride [J]. Tetrahedron Lett.,1999,40: 4395-4396.
    [137]T. Fujisawa, T. Mon, T. Sato, Chemoselective Reduction of Carboxylic Acids into Alcohols Using N,N-Dimethylchloromethyleniminium Chloride and Sodium Borohydride [J]. Chem. Lett.,1983,835-838.
    [138]a). G. Kokotos, A Convenient One-Pot Conversion of N-Protected Amino Acids and Peptides into Alcohols [J]. Synthesis,1990,299-301. b). M. Rodriguez, M. Llinaero, S. Doulet, A. Heitz, J. Martinez, A Facile Synthesis of Chiral N-Protected β-Amino Alcohols [J]. Tetrahedron Lett.,1991,32:923-926. c). B. P. Bandgar, R. K. Modhave, P. P. Wadgaonkar, A. R. Sande, Selective Reduction of Mixed Anhydrides of Carboxylic Acids to Alcohols Using Borohydride Exchange Resin (BER)-Nickel Acetate [J] J. Chem. Soc, Perkin Trans.1,1996,1993-1994.
    [139]a). O. Ouerfelli, M. Ishida, H. Shinozaki, K. Nakanishi, Y. Ohfune, Efficient Synthesis of 4-Methylene-L-glutamic Acid and its Analogues [J]. Synlett,1993,409-410. b). J. M. Herbert, A. T. Hewson, J. E. Peace, One-Pot Reduction of Carboxylic Acids via O-Acylisoureas [J]. Synth. Commun.,1998,28:823-832.
    [140]S. W. Breeden, N. J. Lawrence, Reduction of Carboxylic Esters and Acids by Polymethylhydrosiloxane Catalysed by Titanium and Zirconium Alkoxides [J]. Synlett, 1994,833-835.
    [141]M. D. Drew, N. J. Lawrence, D. Fontaine, L. Sehkri, A Convenient Procedure for the Reduction of Esters, Carboxylic Acids, Ketones and Aldehydes using Tetrabutylammonium Fluoride (or Triton B) and Polymethylhydrosiloxane [J]. Synlett, 1997,989-991.
    [142]K. Matsubara, T. Iura, T. Maki, H. Nagashima, A Triruthenium Carbonyl Cluster Bearing a Bridging Acenaphthylene Ligand:An Efficient Catalyst for Reduction of Esters, Carboxylic Acids, and Amides by Trialkylsilanes [J]. J. Org. Chem.,2002,67: 4985-4988.
    [143]N. Sakai, K. Kawana, R. Ikeda, Y. Nakaike, T. Konakahara, InBr3-Catalyzed Deoxygenation of Carboxylic Acids with a Hydrosilane:Reductive Conversion of Aliphatic or Aromatic Carboxylic Acids to Primary Alcohols or Diphenylmethanes [J]. Eur. J. Org. Chem.,2011,3178-3183.
    [144]N. Sakai, K. Kawana, R. Ikeda, Y. Nakaike, T. Konakahara, InBr3-Catalyzed Deoxygenation of Carboxylic Acids with a Hydrosilane:Reductive Conversion of Aliphatic or Aromatic Carboxylic Acids to Primary Alcohols or Diphenylmethanes [J]. Eur. J. Org. Chem.,2011,3178-3183.
    [145]a). G. B. Bajracharya, T. Nogami, T. Jin, K. Matsuda, V. Gevorgyan, Y. Yamamoto, Reduction of Carbonyl Function to a Methyl Group [J]. Synthesis,2004,2:308-311. b). V. Gevorgyan, M. Rubin, J.-X. Liu, Y. Yamamoto, A Direct Reduction of Aliphatic Aldehyde, Acyl Chloride, Ester, and Carboxylic Functions into a Methyl Group [J]. J. Org. Chem.,2001,66:1672-1675.
    [146]R. J. P. Corriu, G. F. Lanneau, M. Perrot, The One-Pot Conversion of Carboxylic Acids to Aldehydes via Activated Silyl Carboxylates [J]. Tetrahedron Lett.,1987,28:3941-3944.
    [147]M. B. Smith, J. March, March's Advanced Organic Chemistry:Reactions Mechanisms and Structure (5th ed.) [M]. Wiley:New York,2001, pp.477-478.
    [148]a) M. P. Doyle, D. J. DeBruyn, D. A. Kooistra, Silane Reductions in Acidic Media. I. Reduction of Aldehydes and Ketones in Alcololic Acidic Media. A General Synthesis of Ethers [J]. J. Am. Chem. Soc.,1972,94:3659-3661. b) N. Komatsu, J.-y. Ishida, H. Suzuki, Bismuth Bromide-Catalyzed Reductive Coupling of Carbonyl Compounds and Its Application to the Synthesis of Novel Crownophanes [J]. Tetrahedron Lett.,1997,38: 7219-7222. c) X. Jiang, J. S. Bajwa, J. Slade, K. Prasad, O. Repic, T. J. Blacklock, Etherification of Alkoxydialkylsilanes with Carbonyl Compounds [J]. Tetrahedron Lett., 2002,43:9225-9227. d) J. Y. Baek, S. J. Lee, B. H. Han, Direct Synthesis of Symmetric Ethers from Carbonyl Compounds Using SbI3/PhSiH3 [J]. J. Kor. Chem. Soc.2004,48: 220-224. e) K. Iwanami, H. Seo, Y. Tobita, T. Oriyama, A Highl Efficient Method for the Reductive Etherification of Carbonyl Compounds with Triethylsilane and Alkoyltrimethylsilane Catalyzed by Iron(III) Chloride [J]. Synthsis,2005,2:183-186. f) W.-C. Yang, X.-A. Lu, S. S. Kulkarni, S.-C. Hung, Cu(OTf)2-Catalyzed Et3SiH-Reductive Etherification of Various Carbonyl Compounds with Trimethylsilyl Ethers [J]. Tetrahedron Lett.,2003,44:7837-7840. g) N. Sakai, K. Nagasawa, R. Ikeda, Y. Nakaike, T. Konakahara, InBr3-Catalyzed Reduction of Ketones with a Hydrosilane: Deoxygenation of Aromatic Ketones and Selective Synthesis of Secondary Alcohols and Symmetrical Ethers from Aliphatic Ketones [J]. Tetrahedron Lett.,2011,52:3133-3136. h) S. Hatakeyama, H. Mori, K. Kitano, H. Yamada, M. Nishizawa, Efficient Reductive Etherification of Carbonyl Compounds with Alkoxytrimethylsilanes [J]. Tetrahedron Lett.,1994,35:4367-4370.
    [149]V. Gevorgyan, M. Rubin, J.-X. Liu, Y. Yamamoto, A Direct Reduction of Aliphatic Aldehyde, Acyl Chloride, Ester, and Carboxylic Functions into a Methyl Group [J]. J. Org. Chem.,2001,66:1672-1675.
    [150]N. Sakai, Y. Usui, R. Ikeda, T. Konakahara, Indium-Catalyzed Reductive Esterification of a Carboxylic Acid:Sequential Preparation of an Ester and Symmetrical Ether [J]. Adv. Synth. Catal,2011,353:3397-3401.
    [151]N. Komatsu, T. Chishiro, Serial Synthesis of Oxa[3.n]cyclophanes and Homooxacalix[n]arenes via Reductive Coupling of Arenedialdehydes, and Their X-ray Structures [J]. J. Chem. Soc, Perkin Trans.1,2001,1532-1537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700