基于链接反应的磁纳米粒子功能化及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Functionalization and Application of Magnetic Nanoparticles Based on Click Chemistry
  • 作者:彭如
  • 论文级别:硕士
  • 学科专业名称:分析化学
  • 学位年度:2011
  • 导师:鲜跃仲
  • 学科代码:070302
  • 学位授予单位:华东师范大学
  • 论文提交日期:2011-05-01
  • 答辩委员会主席:徐通敏
摘要
磁纳米粒子是已确认的在粒径小于20nnm能展现出与尺寸相关的有趣的超顺磁性纳米材料。在过去的几十年里,由于潜在的应用价值,磁纳米粒子吸引了广泛的注意力,已经成为研究热点。由于低毒和能够被外界磁场操纵,磁纳米粒子已经广泛应用于核磁共振成像,药物靶标,磁分离DNA、蛋白质和细胞,热疗和免疫分析的癌症治疗。
     本论文致力于功能化的Fe203磁材料的设计与合成,对其性能、结构和形态进行表征,并致力于对其应用的研究。努力实现磁材料、纳米技术、生物电化学和光谱化学的有机结合。本论文包括以下几个方面:
     第一章绪论
     介绍了磁纳米复合材料的合成原理、特点以及应用研究现状。总结了合成磁纳米材料的方法、特点和生物催化传感应用,以及链接化学在磁纳米材料功能化和修饰方面的应用和研究意义。在此基础上,提出了本论文的研究内容及意义。
     第二章基于链接反应的磁纳米粒子与多壁碳纳米管纳米管复合材料的制备、表征及应用
     报道了一个新颖的、方便的几乎单分散的γ-Fe2O3纳米粒子修饰多壁碳纳米管的方法和其在核磁共振成像(MRI)和药物运输中的潜在应用。首先将羧酸活性的多壁碳纳米管与炔基化物质反应合成炔基化多壁碳纳米管,然后与叠氮基团功能化的γ-Fe2O3纳米粒子发生链接化学反应。不同的表征方法证实形成γ-Fe2O3且成功结合到MWNTs上。实验结果表明,γ-Fe2O3纳米粒子可以赋予MWNTs以磁学性质,在外界给定磁场下可以方便地操控运输。对照实验表明,γ-Fe2O3/MWNTs纳米复合物可以作为增强MRI的显影剂。为了将该纳米复合物用于药物运输,我们将温度响应的脂双层DDAC包裹在γ-Fe2O3/MWNTs上,以酚红作为药物模拟分子。实验结果表明γ-Fe2O3/MWNTs/DDAC纳米复合物非常适合作为稳定的小分子量药物的封装和释放,表明了其为很好的药物运输纳米系统。
     第三章基于二茂铁嫁接的磁纳米粒子的磁转换生物电催化系统研究
     基于链接化学反应,把氧化还原基团二茂铁链接到磁纳米粒子表面。首先合成叠氮基团功能化的磁纳米粒子,再在Cu(I)催化下,叠氮基团功能化的磁纳米粒子与乙炔基二茂铁发生叠氮炔基1,3-耦极环加成(CuAAC)反应。通过粉末X-射线衍射仪(XRD),透射电子显微镜(TEM),傅里叶变换红外光谱仪(FT-IR)和振动样品磁强计(VSM)等方法对功能化的磁纳米粒子的内部结构、表面形貌和元素组成进行表征。实验证明二茂铁功能化的磁纳米粒子兼有磁性和电化学性质,其中电化学性质取决于炔基二茂铁,磁性则与炔基二茂铁无关。Fe203纳米粒子具有磁性,二茂铁基团具有电催化活性,本文研究了通过交替外界磁场的位置,在葡萄糖氧化酶作用下的磁开关的生物电催化氧化葡萄糖系统。
     第四章基于二茂铁嫁接的磁纳米粒子的磁、酶双控生物电催化系统研究
     在第三章实验的基础上,把含酰胺键的氧化还原基团二茂铁链接到磁纳米粒子表面。首先合成叠氮基团功能化的磁纳米粒子;炔丙基铵盐酸盐与二茂铁甲酸在HOBt、EDCl、NMM、CH2C12条件下发生羧基氨基缩合反应制得有酰胺键的炔基化二茂铁,再在Cu(Ⅰ)催化下,叠氮基团功能化的磁纳米粒子与乙炔基二茂铁发生叠氮炔基1,3耦极环加成(CuAAC)反应。并通过粉末X-射线衍射仪(XRD),透射电子显微镜(TEM),傅里叶变换红外光谱仪(FT-IR)和振动样品磁强计(VSM)等方法对功能化的磁纳米粒子的结构、表面形貌和元素组成进行表征。实验证明二茂铁功能化的磁纳米粒子兼有磁性和电化学性质,其中电化学性质取决于炔基二茂铁,磁性则与炔基二茂铁无关。没有外界磁场作用时,生物催化功能活性受到抑制,也就观察不到电化学信号。相反,当外界磁场作用时,二茂铁标记的磁纳米粒子很容易固定到电极表面,生物催化功能活性得到活化,可观察到电化学信号。但是当外界磁场作用时加入酯酶,酰胺键在该酶的作用下断裂,生物催化功能活性受到抑制,从而实现酶控。
Magnetic nanoparticles are well-established nanomaterials with diameter below 20 nm exhibiting interesting size-dependent superparamagnetism. In the past decades, magnetic nanoparticles have become a hot research topic and attracted great interest because of their potentially very useful applications. Because of their low toxicity and ability to be manipulated by an external magnetic force, magnetic nanoparticles have been widely applied in magnetic resonance imaging (MRI), targeted drug delivery, magnetic separation of DNA, proteins, and cells, and cancer treatments by hyperthermia and immunoassays.
     The main work of this paper focuses on the design, synthesis, characterization, and application study of the magnetic nanocomposites. We try our best to combine nano technology, biochemistry and spectroelectrochemisry. This paper concludes following aspects:
     Chapter 1:Introduction
     Introduce the scheme, features and current study situation of the magnetic nanoparticles. The systhesis methods, traits, and biosensing in magnetic nanoparticles are summarized, as well as the click chemistry, its application in magnetic nanoparticles.
     Chapter 2:Synthesis, Characterization and Application of Multiwalled Carbon Nanotubes Tethered with Magnetic Nanoparticles via Click Chemistry
     In this work we describe a novel, facile method for the decoration of multiwalled carbon nanotubes (MWNTs) with nearly monodisperse y-Fe2O3 nanoparticles and their potential application in magnetic resonance imaging (MRI) and drug delivery. The tethering of the nanoparticles was achieved by the initial activation of the surface of carboxylic acid-MWNTs with alkyne groups, followed by the attachment ofγ-Fe2O3 nanoparticles functionalized with the azide group via click chemistry. Various characterization methods were used to confirm the formation of well-definedγ-Fe2O3 and show that they were tethered to the walls of the MWNTs. The tethered y-Fe2O3 nanoparticles imparted magnetic characteristics to the MWNTs and guide transportation in the direction of an externally applied magnetic field. Furthermore, we found that the y-Fe2O3/MWNTs nanocomposites could be used as enhanced MRI contrast regents. In view of drug delivery, temperature stimuli-responsive lipid bilayer, didecyldimethylammonium chloride (DDAC), was coated onto the surface of y-Fe2O3/MWNTs and small molecule phenol red was selected as drug model. The experimental results show that the y-Fe2O3/MWNTs/DDAC nanocomposites are suitable for the stable encapsulation of low-molecular-weight compounds, which can be released upon irradiation with temperature stimuli, indicating that can be used as an excellent drug delivery nanosystem.
     Chapter3:Magnetically Switchable Bioelectrocatalytic System Based on Ferrocene Grafted Iron Oxide Nanoparticles
     A simple and versatile method for the introduction of redox unites onto the surface of magnetic nanoparticles has been developed based on "click" chemistry. Azide functionalized Fe2O3 magnetic nanoparticles were synthesized and further reacted with ethynylferrocene via Cu (I)-catalyzed azide alkyne 1,3-dipolar cycloaddition (CuAAC) reaction. The functionalized magnetic nanoparticles were characterized using a powder X-ray diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscope (FTIR), and vibrating sample magnetometer (VSM). The resulting materials have properties of both magnetism and electrochemistry, and the electrochemical properties of the nanoparticles are dependent on the features of ethynylferrocene, while the magnetic properties remain independent of ethynylferrocene. Because of the magnetism of Fe2O3 nanoparticles and the electrocatalytic activity of ferrocene unites, a recyclable, magneto-switchable bioelectrocatalytic system for glucose oxidation in the presence of glucose oxidase is developed by alternate positioning of an external magnet, and the system has a linear response for glucose biosensing over the range of 1.0-10.0 mM.
     Chapter 4:Magnetically Switchable and Enzyme Controllable Bioelectrocatalytic System Based on Ferrocene Grafted Iron Oxide Nanoparticles
     Based on chapter 3, ferrocene grafted iron oxide nanoparticles were prepared by alkyne group functionalized ferrocene reacted with azide functionalized magnetic nanoparticles via the "click" chemistry. Transmission microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-Ray Diffraction (XRD) were used to characterize the Fe2O3/ferrocene nanocomposites. The ferrocene groups covalently grafted magnetic nanocomposites turned out to own a relatively high contrast, fast electron transfer rate and showed great catalytic properties. Because of the magnetism of Fe2O3 nanoparticles and the electrocatalytic activity of ferrocene unites, a recyclable, magneto-switchable bioelectrocatalytic system is developed by alternate positioning of an external magnet. Moreover, the system is also can be switched off while the lipase enzyme was added into the system based on the catalyzing the hydrolysis of amide chemical bonds.
引文
[1]J. Lee, T. Isobe, M. Senna, Colloids Surf. A.109 (1996) 121.
    [2]A. Bee, R. Massart, S. Neveu, J. Magn. Mater.,149 (1995)6.
    [3]T. Ishikawa, S. Kataoka, K. Kandori, J. Mater. Sci.28 (1993) 2693.
    [4]T. Ishikawa, T. Takeda, K. Kandori, J. Mater. Sci.27 (1992) 4531.
    [5]K. Kandori, Y. Kawashima, T. Ishikawa, J. Colloid Interface Sci.152 (1992) 284.
    [6]R.M. Cornell, P.W. Schindler, Colloid Polym. Sci.258 (1980) 1171.
    [7]A.L. Willis, N.J. Turro, S.O. Brien, Chem. Mater.17 (2005) 5970.
    [8]B.L. Cushing, V.L. Kolesnichenko, C.J.O. Connor, Chem. Rev.104 (2004) 3893.
    [9]C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc.115 (1993) 8706.
    [10]X. Peng, J. Wickham, A.P. Alivisatos, J. Am. Chem. Soc.120 (1998) 5343.
    [11]S.O. Brien, L. Brus, C.B. Murray, J. Am. Chem. Soc.123 (2001) 12085.
    [12]J. Park, K. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Nat. Mater.3 (2004) 891.
    [13]S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G.Li, J. Am. Chem. Soc.126(2004)273.
    [14]F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, C. B.Murray, S.P.O. Brien, J. Am. Chem. Soc.126 (2004) 14 583.
    [15]J. Rockenberger, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc.121(1999) 11595.
    [16]D. Farrell, S.A. Majetich, J.P. Wilcoxon, J. Phys. Chem. B 107 (2003)11022.
    [17]N. R. Jana, Y. Chen, X. Peng, Chem. Mater.16 (2004) 3931.
    [18]A.C.S. Samia, K. Hyzer, J.A. Schlueter, C.J. Qin, J.S. Jiang, S.D. Bader, X.M. Lin, J. Am. Chem. Soc.127 (2005) 4126.
    [19]T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, J. Am. Chem. Soc.123 (2001) 12798.
    [20]S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, J. Am. Chem. Soc.126 (2004)273.
    [21]N.R. Jana, Y. Chen, X. Peng, Chem. Mater.16 (2004) 3931.
    [22]J. Park, K. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T! Hyeon, Nat. Mater.3 (2004) 891.
    [23]J. Park, E. Lee, N.M.Hwang, M. Karig, S.C. Kim, Y. Hwang, JG. Park, H.J. Noh, J.Y. Kim, J.H. Park, T. Hyeon, Angew. Chem.117 (2005) 2931; Angew. Chem. Int. Ed.44 (2005) 2872.
    [24]V. K. LaMer, R.H. Dinegar, J. Am. Chem. Soc.72 (1950) 4847.
    [25]Z. Li, Q. Sun, M. Gao, Angew. Chem.117(2005)125; Angew. Chem. Int. Ed.44 (2005)123.
    [26]F.Q. Hu, L. Wei, Z. Zhou, Y.L. Ran, Z. Li, M.Y. Gao, Adv. Mater.,18 (2006) 2553.
    [27]K. Butter, A.P. Philipse, G.J. Vroege, J.Magn. Mater.252 (2002) 1.
    [28]F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, P. Fejes, Science 303 (2004) 821.
    [29]Q. Song, Z.J. Zhang, J. Am. Chem. Soc.126 (2004) 6164.
    [30]V.F. Puntes, K.M. Krishan, A.P. Alivisatos, Science,291 (2001) 2115.
    [31]V.F. Puntes, D. Zanchet, C.K. Erdonmez, A.P. Alivisatos, J. Am. Chem. Soc. 124 (2002)12874.
    [32]F. Dumestre, B. Chaudret, C. Amiens, M.C. Fromen, M.J. Casanove, M.
    Respaud, P. Zurcher, Angew. Chem.114 (2002) 4462; Angew. Chem. Int. Ed.41 (2002) 4286.
    [33]N. Cordente, M. Respaud, F. Senocq, M.J. Casanove, C. Amiens, B. Chaudret, Nano Lett.1 (2001) 565.
    [34]F. Dumestre, B. Chaudret, C. Amiens, M. Respaud, P. Fejes, P. Renaud, P. Zurcher, Angew. Chem.115 (2003) 5371; Angew. Chem. Int. Ed.42 (2003) 5213.
    [35]H. BPnnemann, W. Brijoux, R. Brinkmann, N. Matoussevitch, N.Waldoefner, N.
    Palina, H. Modrow, Inorg. Chim. Acta.350 (2003) 617.
    [36]Y. Yamada, T. Suzuki, E.N. Abarra, IEEE Trans. Magn.34 (1998) 343.
    [37]O. Tegus, E. BrVck, K.H.J. Buschow, F.R. de Boer, Nature,415 (2002) 150.
    [38]F. Luo, H.L Su, W. Song, Z.M.Wang, Z.G. Yan, C.H. Yan, J. Mater. Chem.14 (2004)111.
    [39]K.L. Stamm, J.C. Garno, G.Y. Liu, S.L. Brock, J. Am. Chem.Soc.125 (2003) 4038.
    [40]S.C. Perera, G. Tsoi, L.E. Wenger, S.L. Brock, J. Am. Chem.Soc.125(2003) 13960.
    [41]C. Qian, F. Kim, L. Ma, F. Tsui, P. Yang, J. Liu, J. Am. Chem. Soc.126 (2004) 1195.
    [42]D. Langevin, Annu. Rev. Phys. Chem.43(1992) 341.
    [43]B.K. Paul, S.P. Moulik, Curr. Sci.80 (2001) 990.
    [44]A.K. Gupta, M. Gupta, Biomaterials,26 (2005) 3995.
    [45]E.E. Carpenter, C.T. Seip, C.J.O. Connor, J. Appl. Phys.85(1999) 5184.
    [46]C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Phys. Chem. B 104 (2000) 1141.
    [47]K. Woo, H.J. Lee, J.P. Ahn, Y.S. Park, Adv. Mater.15 (2003) 1761.
    [48]N. Moumen, M.P. Pileni, J. Phys. Chem.100 (1996) 1867.
    [49]W. Tan, S. Santra, P. Zhang, R. Tapec, J. Dobson, US Patent (2003) 6548264.
    [50]X. Wang, J. Zhuang, Q. Peng, Y. Li, Nature 121 (2005) 437.
    [51]H.Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chem.117 (2005) 2841; Angew. Chem. Int. Ed.44 (2005) 2782.
    [52]A. Bee, R. Massart, S. Neveu, J. Magn.Magn. Mater.149 (1995) 6.
    [53]S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, J.
    Am. Chem. Soc.126 (2004) 273.
    [54]J.C. Liu, P.J. Tsai, Y.C. Lee, Y.C. Chen, Anal. Chem,80 (2008) 5425.
    [55]H.Y. Park, M.J. Schadt, L.Y. Wang, I.S. Lim, P.N. Njoki, S.H. Kim, M.Y Jang, J. Luo, C.J. Zhong, Langmuir,23 (2007) 9050.
    [56]J. Kim, SJ. Park, J.E. Lee, S.M. Jin, J.H. Lee, I.S. Lee, I. Yang, J.S. Kim, S.K.
    Kim, M.H. Cho, T. Hyeon, Angew.Chem. Int. Ed.,45 (2006) 7754.
    [57]D.S. Wang, J.B. He, Z. Rosenzweig, Nano Letters,4 (2004) 409.
    [58]E.Katz, L. Sheeney, H. I. Willner, Chem. Eur. J.8 (2002)18.
    [59]H.Wei, E. Wang, Analytical Chemistry,80 (2008) 409.
    [60]M.A.C. Duarte, M. Grzelczak, V.S. Maceira, M. Giersig, L.M. Liz-Marza'n, M. Farle, K.Sierazdki, R. Diaz, The journal of physical chemistry letters,109 (2005) 19060.
    [61]X.Y. Shi, S.H. Wang, S.D. Swanson, S. Ge, Z.Y. Cao, M.E.V. Antwerp, K.J. Landmark, J.R. Baker, Adv. Mater,20 (2008) 1671.
    [62]H.C. Kolb, M.G. Finn, K.B. Sharpless, Angew. Chem. Int. Ed.,40 (2001) 2004.
    [63]X. Li, T.M. Kapoor, J. Am. Chem. Soc.,132 (2010) 2504.
    [64]Y.Y. Yang, J.M. Ascano, H.C. Hang, J. Am. Chem. Soc.,132 (2010) 3640.
    [65]S. Hiki, K. Kataoka, Bioconjugate Chem.,21 (2010)248.
    [66]J. Guo, L. Yu, N.J. Turro, J. Ju, Acc. Chem. Res., DOI:10.1021/ar900255c.
    [67]F.C.D. Silva, M.C.B.V. Souza, I.I.P. Frugulhetti, H.C. Castro, S.L.D.O, Souza, T.M.L. Souza, D.Q. Rodrigues, A.M.T. Souza, P.A. Abreu, F. Passamani, C.R. Rodrigues, V.F. Ferreira, Eur. J. Med. Chem.,44 (2009) 373.
    [68]J.D. Megiatto, D.I. Schuster, S. Abwandner, G. Miguel, D.M. Guldi, J. Am. Chem. Soc.,132 (2010) 3847.
    [69]X.Q. Xue, J. Zhu, Z.B. Zhang, N.C. Zhou, Y.F. Tu, X.L. Zhu, Macromolecules, 43(2010)2704.
    [70]J.Y. Wu, H.K. He, C. Gao, Macromolecules,43 (2010)2252.
    [71]F.A. Plamper, S. Reinicke, M. Elomaa, H. Schmalz, H. Tenhu, Macromolecules, 43(2010)2190.
    [72]Z.J. Chang, Y. Xu, X. Zhao, Q.H. Zhang, D.J. Chen, Appl. Mater. Interfaces,1 (2009) 2804.
    [73]A. Kumar, R.K. Chhatra, P.S. Pandey, Org. Lett.,12 (2010) 24.
    [74]K. Flavin, M.N. Chaur, L. Echegoyen, S. Giordani, Org. Lett.,12 (2010) 840.
    [75]S.S. Balamurugan, E.S. Cantu, R.Cueto, P.S. Russo, Macromolecules,43 (2010) 62.
    [76]A. Takai, M. Chkounda, A. Eggenspiller, C.P. Gros, M. Lachkar, J.M. Barbe, S. Fukuzumi, J. Am. Chem. Soc.,132 (2010) 4477.
    [77]B. Helms, J.L. Mynar, C.J. Hawker, J.M.J. Frechet, J. Am. Chem. Soc.,126 (2004) 15020.
    [78]H.X. Xie, L.S. Zu, H.R. Oueis, H. Li, J. Wang, W. Wang, Org. Lett.10 (2009) 1923.
    [79]F. Yoshimura, M. Takahashi, K. Tanino, M. Miyashita, Tetrahedron Lett.49 (2008)6991.
    [80]郑大贵,余衍文,合成化学,19(2008)456.
    [81]C.E. Hoyle, T.Y. Lee, T.J. Roper, Polym. Sci., Polym.Chem.,42 (2004) 5301.
    [82]V.V. Rostovtsev, J.G. Green, V.V. Fokin, K.B. Sharpless, Angew. Chem. Int. Ed.,
    41 (2002) 2596.
    [83]G. Rydzek, J.S. Thomann, N.B. Ameur, L. Jierry, P.M.A. Ponche, C. Contal, A.E.E. Haitami, J.C. Voegel, B. Senger, P. Schaaf, B. Frisch, F. Boulmedais, Langmuir 26 (2010) 2816.
    [84]M. Wang, M.R. Das, M.Li, R. Boukherroub, S. Szunerits, J.Phys.Chem.C,113 (2009) 17082.
    [1]D. Yang, F. Yang, J.H. Hu, J. Long, C.C. Wang, D.L. Fu, Q.X. Ni, Chem. Commun, (2009) 4447.
    [2]Miyawaki, M. Yudasaka, H. Imai, H. Yorimitsu, H. Isobe, E. Nakamura, S. Iijima, Adv. Mater.,18 (2006) 1010.
    [3]J.J. Gooding, R. Wibowo, J.Q. Liu, W.R. Yang, D. Losic, S. Orbons, F J. Mearns, J. G. Shapter, D.B. Hibbert, J. Am. Chem. Soc,125 (2003) 9006.
    [4]C.C. Chiu, M.C. Maher, G.R. Dieckmann, S.O. Nielsen, Nano.,4 (2010) 2539.
    [5]F. Rivadulla, C. Mateo, N.M.A.C. Duarte, J. Am. Chem. Soc.,132 (2010) 3751.
    [6]P.C.P. Watts, W.K. Hsu, D.P. Randall, V. Kotzeva, G.Z. Chen, Chem. Mater.,14 (2002) 4505.
    [7]A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z.Z. Sun, J.M. Tour, Nano,4 (2010)2059.
    [8]W. Zhang, A.U. Shaikh, E.Y. Tsui, T.M. Swager, Chem. Mater.,21 (2009) 3234.
    [9]T.W. Lin, C.G. Salzmann, L.D. Shao, C.H. Yu, M.L.H. Green, S.C. Tsang, Carbon 47 (2009) 1415.
    [10]X.W. Pei, Y.H. Yan, L.Y. Yan, P. Yang, J.L. Wang, R. Xu, M.B.C. Park, Carbon 48(2010)2501.
    [11]V. Georgakilas, V. Tzitzios, D. Gournis, D. Petridis, Chem. Mater 17 (2005) 1613.
    [12]P.L. Lee, Y.K. Chiu, Y.C. Sun, Y.C. Ling, Carbon,48 (2010) 1397.
    [13]W.W. Li, C. Gao, H.F. Qian, J.C. Ren, D.Y. Yan, J. Mater. Chem.,16 (2006) 1852.
    [14]T. Kim, G.A. Nunnery, K. Jacob, J. Schwartz, X.T. Liu, R.T. Tannenbaum, J. Phys. Chem. C114 (2010) 6944.
    [15]X.L. Li, J.D. Thompson, Y.Y. Zhang, C.I. Brady, G.F. Zou, N.H. Mack, D. Williams, J.G. Duque, Q.X. Jia, S.K. Doom, Nanoscale,3 (2011) 668.
    [16]F.O. Stoffelbach, A. Aqil, C. Je'ro'me, R. Je'ro'me, C. Detrembleur, Chem. Commun. (2005) 4532.
    [17]C. Qin, J.F. Shen, Y.Z. Hu, M.X. Ye, Compos. Sci. Technol.,69 (2009) 427.
    [18]S. Qu, F. Huang, G. Chen, S.N. Yu, J.L. Kong, Electrochem. Commun.9 (2007) 2812.
    [19]Y. Liu, W. Jiang, S. Li, Z.P.Cheng, D. Song, X.J. Zhang, F.S. Li, Mater. Chem. Phys.116(2009)438.
    [20]X.H. Lu, H.Q. Liu, C.H. Deng, X.M. Yan, Chem.Commun,47 (2011) 1210.
    [21]Y.H. Deng, C.H. Deng, D. Yang, C.C. Wang, S.K. Fu, X.Z. Zhang, Chem. Commun. (2005) 5548.
    [22]Y. Deng, W. Yang, C. Wang, S. Fu, Adv. Mater.,15 (2003) 1729.
    [23]B.L. Frankamp, N.O. Fischer, R. Hong, S. Srivastava, V.M. Rotello, Chem. Mater.,18 (2006) 956.
    [24]S. Giri, B.G. Trewyn, M.P. Stellmaker, V.S.Y. Lin, Angew.
    [25]T. Kim, G.A. Nunnery, K. Jacob, J. Schwartz, X.T. Liu, R. Tannenbaum, J. Phys. Chem. C,114(2010)6944.
    [26]M.R. Zachariah, M.I. Aquino, R.D. Shull, E.B. Steel, Nanostruct. Mater.,5 (1995) 383.
    [27]T. Hyeon, S. Lee, J. Park, Y. Chung, H. Na, J. Am.Chem.Soc.,123 (2001) 12798.
    [28]Z. Sun, H.Yuan, Z.Liu, B.Han, X. A. Zhang, Ad. Mater.,17 (2005) 2993.
    [29]A. Gole, C.J. Murphy, Langmuir,24 (2008) 266.
    [30]M. Ortlieb, M. Havenith, J. Phys. Chem. A,111 (2007) 7355.
    [31]A. Cimas, P. Maitre, G. Ohanessian, M.P. Gaigeot, J.Chem.Theory Comput.,5 (2009) 2388.
    [32]K. Hayashi, M. Moriya, W. Sakamoto, T. Yogo, Chem.Mater.,21 (2009) 1318.
    [33]M.A.C. Duarte, M. Grzelczak, V.S. Maceira, M. Giersig, L.M. Marza, M. Farle, K. Sierazdki, R. Diaz, J. Phys.Chem.B,109 (2005) 19060.
    [34]J. Kim, Y.Z. Piao, T. Hyeon, Chem.Soc.Rev.,38 (2009) 372.
    [35]R.B. Li, R.A.Wu, L. Zhao, M.H. Wu, L. Yang, Z.F. Zou, Nano,4 (2010) 1399.
    [36]D. Yang, F. Yang, J.H. Hu, J. Long, C.C. Wang, D.L. Fu, Q.X. Ni, Chem. Commun. (2009) 4447.
    [1]M.A.C. Duarte, M. Grzelczak, V.S. Maceira, M. Giersig, L.M.L. Marzan, M. Farle, K. Sierazdki, R.J. Diaz, Phys. Chem. B,109 (2005) 19060.
    [2]E. Lee, D.K. Kim, N.K. Jang, Y.Y. Jeong, S.Y. Jon, J. Am. Chem. Soc,128 (2006) 7383.
    [3]A. Shkilnyy, E. Munnier, K. Herve, M. Souce, R. Benoit, S.C. Jonathan, P. Omelette, M.L. Saboungi, P. Dubois, I. Chourpa, J. Phys. Chem. C,114 (2010) 5850.
    [4]J.C. Liu, P.J. Tsai, Y.C.Lee, Y.C. Chen, Anal. Chem.,80 (2008) 5425.
    [5]K. Hayashi, M. Moriya, W. Sakamoto, T. Yogo, Chem. Mater.,21 (2009) 1318.
    [6]J.L. Lyon, D.A. Fleming, M.B. Stone, P. Schiffer, M.E. Williams, Nano Lett.,4 (2004) 719.
    [7]J.H. Gao, H.W. Gu, B.Xu, Ace. Chem. Res.,42 (2009) 1097.
    [8]J.A. Lopez Perez, M.A. Lopez Quintela, J. Mira, J. Rivas, S.W. Charles, J. Phys. Chem. B,101(1997)8045.
    [9]B.M. Teo, F. Chen, T.A. Hatton, F. Grieser, M.M. Ashokkumar, Langmuir,25 (2009)2593.
    [10]S. Chaianansutcharit, O. Mekasuwandumrong, P. Praserthdam, Cryst. Growth Des.,6 (2006) 40.
    [11]J.N. Wang, L. Zhang, F. Yu, Z.M. Sheng, J. Phys. Chem. B,111 (2007) 2119.
    [12]Y.C. Li, Y.S. Lin, P.J. Tsai, W.Y. Chen, Y.C. Chen, Anal. Chem.,79 (2007) 7519.
    [13]C.J. Xu, K.M. Xu, H.W.S. Gu, R.K. Zheng, H. Liu, X.X. Zhang, Z.H. Guo, B. Xu, J. Am. Chem. Soc.126 (2004) 9938.
    [14]R.D. Palma, S. Peeters, M.J. VanBael, H. VandenRul, K. Bonroy, W. Laureyn, J. Mullens, G. Borghs, G.G. Maes, Chem. Mater.,19 (2007) 1821.
    [15]H.C. Kolb, M.G. Finn, K.B. Sharpless, Angew. Chem. Int.Ed.,40 (2001) 2004.
    [16]J.E. Moses, A.D. Moorhouse, Chem. Soc. Rev.,36 (2007) 1249.
    [17]S.K. Mamidyala, M.G. Finn, Chem. Soc. Rev.,39 (2010) 1252.
    [18]J.P. Collman, N.K. Devaraj, C.E.D. Chidsey, Langmuir,20 (2004) 1051.
    [19]A. Schatz, R.N. Grass, Q. Kainz, W.J. Stark, O. Reiser, Chem.Mater,22 (2010) 305.
    [20]A. Schatz, R.N. Grass, W.J. Stark, O. Reiser, Chem. Eur. J,14 (2008) 8262.
    [21]A. Schatz, M. Hager, O. Reiser, Adv. Funct. Mater,19 (2009) 2109.
    [22]A. Schatz, T.R. Long, R.N. Grass, W.J. Stark, P.R. Hanson, O. Reiser, Adv.Funct.Mater.2010, doi:10.1002/adfm.201000959.
    [23]L. Polito, D. Monti, E. Caneva, E. Delnevo, G. Russo, D. Prosperi, Chem. Commun.,5 (2008) 621.
    [24]K. Hayashi, M. Moriya, W. Sakamoto, T. Yogo, Chem.Mater.,21 (2009) 1318.
    [25]K. Hayashi, K. Ono, H. Suzuki, M. Sawada, M. Moriya, W. Sakamoto, T. Yogo, Chem. Mater.,22 (2010) 3768.
    [26]B. Samanta, D. Patra, C. Subramani, Y. Ofir, G. Yesilbag, A. Sanyal, V.M. Rotello, Small,5 (2009) 685. [27] C.R. Vestal, Z.J. Zhang, Nano Lett.,3 (2003) 1739.
    [28]A. Teleki, M. Suter, P.R. Kidambi, O. Ergeneman, F. Krumeich, B.J. Nelson, S.E. Pratsinis, Chem. Mater.,21 (2009) 2094.
    [29]D.K. Yi, S.S. Lee, G.C. Papaefthymiou, J.Y. Ying, Chem. Mater.,18 (2006) 614.
    [30]C.C. Yu, X.P. Dong, L.M. Guo, J.T. Li, F. Qin, L.X. Zhang, J.L. Shi, D.S. Yan, J. Phys. Chem. C,112 (2008) 13378.
    [31]A. Gole, C.J. Murphy, Langmuir,24 (2008) 266.
    [32]M. Ortlieb, M. Havenith, J. Phys. Chem.A,111 (2007) 7355.
    [33]A. Cimas, P. Maitre, G. Ohanessian, M.P. Gaigeot, J. Chem. Theory Comput,5 (2009) 2388.
    [34]M.S. Braiman, D.M. Briercheck, K.M. Kriger, J.Phys.Chem.B,103 (1999) 4744.
    [35]M. Whiting, J.C. Tripp, Y.C. Lin, W. Lindstrom, A.J. Olson, J.H. Elder, K.B. Sharpless, V.V. Fokin, J. Med. Chem.,49 (2006) 7697.
    [36]S. Wittmann, A. Schatz, R.N. Grass, W.J. Stark, O. Reiser, Angew. Chem. Int.
    Ed.,49 (2010) 1867.
    [37]L. Levy, Y. Sahoo, K. Kim, E.J. Bergey, P.N. Prasad, Chem. Mater.,14 (2002) 3715.
    [38]X.L. Yu, C.B. Cao, X.Q. An, Chem.Mater.,20 (2008) 1936.
    [39]X.H. Wang, L. Zhang, Y.H. Ni, J. Hong, X.F. Cao, J. Phys. Chem. C,113 (2009) 7003.
    [40]X.Z. Yan, N.L. Yang, C. Estourne`s, H. White, M. Rafailovich, Langmuir,17 (2001) 5093.
    [41]B. Tang, G.L. Wang, L.H. Zhuo, J.C. Ge, L.J. Cui, Inorg. Chem.,45 (2006) 5196.
    [42]X. Qu, N. Kobayashi, T. Komatsu, Nano.,4 (2010) 1732.
    [43]T.P. Raming, A.J.A. Winnubst, C.M. Kats, A.P. Philipse, J.. Colloid Interface Sci., 249 (2002) 346.
    [44]S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev.,108 (2008) 2064.
    [45]R.A. Much, A. Gedanken, J. Phys. Chem. C,112 (2008) 35.
    [46]F. Bedker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Mφrup, Phys. Rev. B.,61 (2000) 6826.
    [47]C.P. Bean, J.D. Livingston, J. Appl. Phys.,30 (1959) 120S.
    [48]C.S. Levin, C. Hofmann, T.A. Ali, A.T. Kelly, E. Morosan, P. Nordlander, K.H. Whitmire, N.J.Halas,3 (2009) 1379.
    [49]C. Kittel, Solid State Physics, John Wiley & Sons, Inc.:Hoboken, NJ,2005.
    [50]B.K. Jin, F.R. Tao, P.J. Liu, Electroanal. Chem.,624 (2008) 179.
    [51]J. Jimenez, R. Sheparovych,M. Pita, A.N. Garcia, E. Dominguez, S. Minko, E. Katz, J. Phys. Chem.C,112 (2008) 7337.
    [52]R. Hirsch, E. Katz, I. Willner, J. Am. Chem.Soc,122 (2000) 12053.
    [1]Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys.D:Appl.Phys.,36 (2003) 167.
    [2]A.K. Gupta, A.S.G. Curtis, J. Mater. Sci:Mater. Med.,15 (2004) 493.
    [3]D.L. Graham, H.A. Ferreira, P.P. Freitas, Trends Biotechnol.,22 (2004) 455.
    [4]R. Hiergeist, W. Andra, Buske, R. Hergt, I. Hilger, U. Richter, Kaiser, W. J. Magn. Magn. Mater.,201 (1999) 422.
    [5]H. Gu, K. Xu, C. Xu, B. Xu, Chem. Commun, (2006) 941.
    [6]J.L. Lyon, D.A. Fleming, M.B. Stone, P. Schiffer, M.E. Williams, Nano Lett.,4 (2004) 719.
    [7]J.H. Gao, H.W.Gu, B. Xu, Acc. Chem. Res.,42 (2009) 1097.
    [8]J.A. Lopez Perez, M.A. Lopez Quintela, J. Mira, J. Rivas, S.W. Charles, J. Phys. Chem. B,101 (1997) 8045.
    [9]B.M.Teo, F.Chen, T.A. Hatton, F. Grieser, M.M. Ashokkumar, Langmuir,25 (2009) 2593.
    [10]S. Chaianansutcharit, O. Mekasuwandumrong, P. Praserthdam, Cryst. Growth Des.,6 (2006) 40.
    [11]J.N. Wang, L. Zhang, F. Yu, Z.M. Sheng, J. Phys. Chem. B,111 (2007) 2119.
    [12]E. Katz, L. S.H. Ichia, I. Willner, Chem. Eur. J.8 (2002) 4138.
    [13]J.P. Collman, N.K. Devaraj, C.E.D. Chidsey, Langmuir,20 (2004) 1051.
    [14]C.R.Vestal, Z.J. Zhang, Nano Lett.,3 (2003) 1739.
    [15]A. Teleki, M. Suter, P.R. Kidambi, O. Ergeneman, F. Krumeich, B.J. Nelson, S.E. Pratsinis, Chem. Mater.,21 (2009) 2094.
    [16]D.K. Yi, S.S. Lee, G.C. Papaefthymiou, J.Y. Ying, Chem. Mater.,18 (2006) 614.
    [17]C.C. Yu, X.P. Dong, L.M. Guo, J.T. Li, F. Qin, L.X. Zhang, J.L. Shi, D.S. Yan, J. Phys. Chem. C,112 (2008) 13378.
    [18]A. Gole, C.J. Murphy, Langmuir,24 (2008) 266.
    [19]M. Ortlieb, M. Havenith, J. Phys. Chem.A,111 (2007) 7355.
    [20]A. Cimas, P. Maitre, G. Ohanessian, M.P.Gaigeot, J. Chem. Theory Comput.,5 (2009) 2388.
    [21]M.S. Braiman, D.M. Briercheck, K.M. Kriger, J.Phys.Chem.B,103 (1999) 4744.
    [22]M. Whiting, J.C. Tripp, Y.C. Lin, W. Lindstrom, A.J. Olson, J.H. Elder, K.B. Sharpless,V.V. Fokin, J. Med. Chem,49 (2006) 7697.
    [23]S. Wittmann, A. Schatz, R.N. Grass, W.J. Stark, O. Reiser, Angew. Chem. Int. Ed.,49 (2010) 1867.
    [24]B.K. Jin, F.R. Tao, P.J.Liu, Electroanal.Chem.,624 (2008) 179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700