一价铜催化的三类全取代1,2,3-三氮唑的合成方法学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究表明,1,4,5-三取代-1,2,3-三氮唑化合物在药物研究开发,新型材料的合成和先导化合物库的建立以及生物缀合等领域发挥着越来越重要的作用。而合成结构多样性的全取代三氮唑就成为进一步研究含三氮唑类药物的构效关系和提高含三氮唑化合物生物活性的重要途径之一。
     CuAAC反应是新近提出的一种利用一价铜有效催化有机叠氮化合物和端基炔烃发生1,3-偶极环加成反应生成1,4-二取代-1,2,3-三氮唑化合物的高效新反应。该反应有以下优点:(1)反应条件较温和,对氧气和水不敏感;(2)参与反应的原料和添加剂容易获得;(3)反应所用溶剂能够非常容易去除;(4)反应所得副产物较少,或者产物较易分离;(5)生成产物能够稳定存在。但是利用一价铜催化剂合成1,4,5-三取代-1,2,3-三氮唑(全取代1,2,3-三氮唑)的方法还十分有限,目前大多数合成这类化合物的方法涉及到使用贵金属和膦配体的偶联反应以及C-H键活化反应。这样的方法不仅不具备原子经济性原则,而且往往需要高温等苛刻的反应条件。
     因此,利用廉价易得的一价铜催化剂合成具有功能性和结构多样性的1,4,5-三取代-1,2,3-三氮唑化合物是方法学研究领域的一个非常有意义的工作。本论文针对全取代的三氮唑的合成和应用,主要做了以下研究:
     第一章综述了近年来三氮唑药物设计的研究进展和合成全取代的1,2,3-三氮唑化合物的方法研究进展。
     第二章首次发现了以CuBr/无机碱反应体系,以末端炔和有机叠氮为底物,高效合成5,5’-双(1,2,3-三氮唑)化合物的新方法。该反应体系原料价格低廉,反应条件简便,产率良好,且能够满足底物结构多样性。
     第三章通过对CuBr/无机碱反应体系的优化以及反应温度的调节,发展了一种温度调控,在CuBr/无机碱体系中,合成5-炔代-1,4-取代-1,2,3-三氮唑的新方法。并以5-炔代-1,4-取代-1,2,3-三氮唑为中间体,发展了在三氮唑5-位引入羰基、酯基、羧酸、咪唑以及奎喔啉等多样化结构的新方法。
     第四章将CuBr/无机碱催化体系扩展到碳环化合物的设计合成中。发展了一种铜催化的通过构建分子内sp2碳碳键合成7元、8元、9元、10元、12元环状分子的简便新方法。
     目前,设计合成的全取代1,2,3-三氮唑的生理活性评价以及应用研究还在进行中。
Researches show that1,4,5-trisubstituted-1,2,3-triazoles are playing a more and more important rolein drug research and development, the synthesis of new material and the establishing of lead compoundsbase and biological dimmers. The synthesis of fully-substituted1,2,3-triazoles is becoming an importantway to research the structure activity relationship and improve the biological activity of structure-activitydrugs containing triazoles.
     CuAAC (copper-catalyzed azide-alkyne cycloadditions) reaction is proposed recently that using a Cu(I)effective catalytic between organic azides and terminal alkynes to get1,4,5-trisubstituted-1,2,3-triazolesthrough1,3-dipolar cycloaddition reaction. The reaction has the following advantages:(1) it’s a mildreaction, and not sensitive to oxygen or water;(2) the raw material and additive using in reaction are easilyto obtain;(3) the solvent used in the reaction are usually easy to remove;(4) the coproducts may be gettedrarely, that is to say the products could be separated easily;(5) the products are stable.
     As the methods of using copper(I) catalyst to synthesis1,4,5-trisubstituted-1,2,3-triazoles(fully-substituted1,2,3-triazoles) are still very scarce now, and most of these compounds synthesismethods need to use precious metals and triarylphosphine ligands through coupling reaction or C-Hactivation reaction——that not only obey the atom economy principle, and also needs high temperature andother harsh reaction conditions usually.
     In this case, using CuAAC reaction to get1,4,5-trisubstituted-1,2,3-triazoles with structure diversityeffectively is becoming a more and more meaningful work in the researching of synthetic methodology.
     We are interested in the synthesis and the application of fully-substituted1,2,3-trizaoles, and we havedone some research as followed:Firstly, we have reviewed mainly the development of fully-substituted1,2,3-trizaoles in the last few years, and divided the synthesis methods into three categories tointroduce.Secondly we have found the CuBr/inorganic base reaction system first, that is to use organicazides and terminal alkynes as the substrate, and get5,5’-bis (1,2,3-triazole) effectively. The reactionconditions was optimized, and the range of this mothed was expanded. Experimental results show that the price of the raw material in the reaction system is very inexpensive, the reaction conditions are very mildand the yields are good, what's more, the substrate structure diversity is satisfied well.
     The next, we have found when the temperature of this system raised in the system of synthesizing5,5’-bis(1,2,3-triazole), the products5-alkynyl-1,2,3-triazoles became the main products instead of5,5’-bis(1,2,3-triazole). And we have made use of1-benzyl-4-phenyl-5-(phenylethynyl)-1H-1,2,3-triazoleas the intermediate, to develop the application of5-alkynyl-1,2,3-triazoles through importing carbonyl,ester, carboxyl, iminazole and quinoxaline ect to get diversified structure of5-substituted-1,2,3-triazoles.
     At last, we have expanded the CuBr/inorganic base system to the synthesis of carbon ring compounds,and develop a new convenient method to get seven, eight, nine, ten and twelve-membered ring molecularby building the intramolecular sp2carbon-carbon bond under the function in copper catalysts.
引文
[1] J.A. Demaray, J.E. Thuener, M.N. Dawson, et al. Synthesis of triazole-oxazolidinones via a one-potreaction and evaluation of their antimicrobial activity [J]. Bio. Med. Chem. Lett.,2008,18(17):4868-4871.
    [2] N.G. Aher, V.S. Pore, N.N. Mishra, et al. Synthesis and antifungal activity of1,2,3-triazole containingfluconazole analogues [J]. Bio. Med. Chem. Lett.,2009,19(3):759-763.
    [3] F. Amblard, J.H. Cho, R.F. Schinazi. Cu(I)-catalyzed Huisgen azide-alkyne1,3-dipolar cycloadditionreaction in nucleoside, nucleotide and oligonucleotide chemistry [J]. Chem. Rev.,2009,109(9):4207-4220.
    [4] A. Kamal, N. Shankaraiah, V. Devaiah, et al. Synthesis of1,2,3-triazole-linked pyrrolobenzodiazepineconjugates employing ‘click’ chemistry: DNA-binding affinity and anticancer activity [J]. Bioorg MedChem Lett,2008,18(4):1468-1473.
    [5] V. Calderone, I. Giorgi, O. Livi, et al.1,4-and2,4-Substituted-1,2,3-triazoles as potential potassiumchannel activators [J]. Farmaco,2005,60(5):367-375.
    [6] X. Fu, C. Albermann, C. S. Zhang, et al. Diversifying vancomycin via chemoenzymatic strategies [J].Org. Lett.,2005,7(8):1513-1515.
    [7] O.A. Phillips, E.E. Udo, A.M. Alia. Synthesis and antibacterial activity of substituted oxazolidinones [J].Bioorg. Med. Chem.,2003,11(1):35-41.
    [8] J.A. Demaray, J.E. Thuener, M.N. Dawson, et al. Synthesis of triazole-oxazolidinones via a one-potreaction and evaluation of their antimicrobial activity [J]. Bioorg. Med. Chem. Lett.,2008,18(17):4868-4871.
    [9] T. Komine, A. Kojima, Y. Aasaina, et al. Synthesis and structure-activity relationship studies of highlypotent novel oxazolidinone antibacterials [J]. J. Med. Chem.,2008,51(20):6558-6562.
    [10] N.S. Vatmurge, B.G. Hazra, V.S. Pore, et al. Synthesis and antimicrobial activity of β-lactam-bile acidconjugates linked via triazole [J]. Bioorg. Med. Chem. Lett.,2008,18(6):2043-2047.
    [11] N.S. Vatmurge, B.G. Hazra, V.S. Pore, et al. Synthesis and biological evaluation of bile acid dimerslinked with1,2,3-triazole and bis-β-lactam [J]. Org. Biomol. Chem.,2008,6(20):3823-3830.
    [12] S.B. Luesse, G.Wells, A. Nayek, et al. Natural products in parallel synthesis:triazole libraries ofnonactic acid [J]. Bioorg. Med. Chem. Lett.,2008,18(14):3946-3949.
    [13] N. Kumar, R.K. Rohilla, N. Roy, et al. Synthesis and antibacterial activity evaluation ofmetronidazole-triazole conjugates [J]. Bioorg. Med. Chem. Lett.,2009,19(5):1396-1398.
    [14] B. Roy, A. Chakraborty, S. K. Ghosh, et al. Design, synthesis and bioactivity of catechin/epicatechinand2-azetidinone derived chimeric molecules [J]. Bioorg. Med. Chem. Lett.,2009,19(24):7007-7010.
    [15] S.B. Luesse, G. Wells, A. Nayek, et al. Natural products in parallel synthesis: triazole libraries ofnonactic acid [J]. Bioorg. Med. Chem. Lett.,2008,18(14):3946-3949.
    [16] A. Kamal, N. Shankaraiah, V. Devaiah, et al. Synthesis of1,2,3-triazole-linked pyrrolobenzodiazepineconjugates employing’click’ chemistry:DNA-binding affinity and anticancer activity [J]. Bioorg.Med. Chem. Lett.,2008,18(4):1468-1473.
    [17] Y.S. Lee, S.M. Park, H.M. Kim, et al. Cs-Modified nucleosides exhibiting anticancer activity [J].Bioorg. Med. Chem. Lett.,2009,19(16):4688-4691.
    [18] K.E. Akri, K. Bougrin, J. Balzarini, et al. Efficient synthesis and in vitro cytostatic activity of4-substituted triazolyl-nucleosides [J]. Bioorg. Med. Chem. Lett.,2007,17(23):6656-659.
    [19] K. Odlo, J. Hentzen, J.F. Chabert, et al.1,5-Disubstituted1,2,3-triazoles as cis-restricted analogues ofcombretastatin A-4: synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors oftubulin [J]. Bioorg. Med. Chem.,2008,16(9):4829-4838.
    [20] S. Cho, Y.O. Um. Synthesis of10-substituted triazolyl artemisinins possessing anticancer activity viaHuisgen1,3-dipolar cylcoaddition [J]. Bioorg. Med. Chem. Lett.,2009,19(2):382-385.
    [21] N.G. Aher, V.S. Pore, N.N. Mishra, et al. Synthesis and antifungal activity of1,2,3-triazole containingfluconazole analogues [J].Bioorg. Med. Chem. Lett.,2009,19(3):759-763.
    [22](a) G. L.Abbe. Decompsition and addition reactions of organic azides [J]. Chem. Rev.,1969,69:345-363.(b) R. Huisgen, A. Padwa.1,3-Dipolar Cycloaddition Chemistry [J]. Ed.Wiley: New York,1984,19:161-176.(c) R. Huisgen. Kinetics of1,3-Dipolar Cyclo-addition Reactions [J]. Ang. Chem. Int. Ed.1963,2:565-567.
    [23] M. Kinugasa, S. Hashimoto. A tetranuclear cluster complex of copper(I) with bridging aryl ligands:thecrystal structure of (4-methyl-2-cupriobenzyl) dimethylamine [J]. J. Chem. Soc. Chem. Commun.,1972:466.
    [24] C. W. Tornoe, C. Christensen, M. Meldal. Peptidotriazoles on Solid Phase: l,2,3-Triazoles byRegiospecific Coppe(I)-Catalyzed1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides[J]. J.Org. Chem.,2002,67:3057-3064.
    [25] V.V. Rostovtsev, L.G. Green, V.V. Fokin, et al. A Stepwise Huisgen Cycloaddition Process:Copper(I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes [J]. Ang. Chem. Int. Ed.,2002,41:2596-2599.
    [26] M. Meldal, C.W. Tornoe. Cu-Catalyzed Azide-Alkyne Cycloaddition [J]. Chem. Rev.,2008,108,2952-3015.
    [27] L. Zhang, X. Chen, P. Xue, et al. Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides[J]. J. Am. Chem. Soc.,2005,127:15998.
    [28] B.C. Boren, S. Narayan, L.K. Rasmussen, et al. Ruthenium-Catalyzed Azide-Alkyne Cycloaddition:Scope and Mechanism [J]. J. Am. Chem. Soc.,2008,130:8923.
    [29] P. Uhlmann, J. Felding, P. Vedso, et al. Synthesis of5-substituted1-hydroxy-1,2,3-triazoles throughdirected lithiation of1-(benzyloxy)-1,2,3-triazole [J]. J. Org. Chem.,1997,62:9177.
    [30] S. Ohta, I. Kawasaki, T. Uemura, et al. ChemInform Abstract: Alkylation and Acylation of the1,2,3-Triazole Ring [J]. Chem. Pharm. Bull.,1997,45:1140.
    [31](a) L. Ackermann, R. Vicente, A. Kapdi. Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by C-H Bond Cleavage [J].Angew. Chem. Int. Ed.,2009,48:9792;(b) X. Chen, K.M. Engle, D.H. Wang, et al. Palladium (II)-Catalyzed C-H Activation/C-CCross-Coupling Reactions: Versatility and Practicality [J]. Angew. Chem. Int. Ed.,2009,48:5094;(c) P. Thansandote, M.Lautens. Construction of Nitrogen-Containing Heterocycles by C-H BondFunctionalization [J]. Chem. A. Eur. J.,2009,15:5874.
    [32] W. Chen, C. Su, X. Huang. Palladium-Catalyzed Highly Regioselective [3+2] Cycloaddition Reactionsof Alkylidenecyclopropa[b] naphthalenes with Alkenes or Alkynes: An Efficient Synthesis of1(3)-Alkylidene-2,3-dihydro-1H-benzo[f] indenes and1-Alkylidene-1H-benzo[f]indenes [J]. Synlett.,2006:1446.
    [33](a) H.A. Chiong, O. Daugulis. Palladium-catalyzed arylation of electron-rich heterocycles witharylchlorides [J]. Org. Lett.,2007,9:1449;(b) H.Q. Do, O. Daugulis. Copper-catalyzed arylation of heterocycle C-H bonds [J]. J. Am. Chem.Soc.,2007,129:12404;(c) T. Kawano, T. Yoshizumi, K. Hirano, et al. Nickel-Catalyzed Direct Alkynylation of Azoles withAlkynyl Bromides [J]. Org. Lett.,2009,11:3072.
    [34] S. Chuprakov, N. Chernyak, A.S. Dudnik, et al. Direct Pd-catalyzed arylation of1,2,3-triazoles [J].Org. Lett.,2007,9:2333.
    [35](a) S. A. Ohnmacht, P. Mamone, A. J. Culshaw, et al. Direct arylations on water: synthesis of2,5-disubstituted oxazoles balsoxin and texaline [J]. Chem. Commun.,2008:1241;(b) A. Rodriguez, R. V. Fennessy, W. J. Moran. Palladium-catalysed direct alkenylation of sydnones[J]. Tetrahedron Lett.,2009,50:3942.
    [36] L. Ackermann, R. Vicente. Catalytic Direct Arylations in Polyethylene Glycol (PEG): RecyclablePalladium (0) Catalyst for C-H Bond Cleavages in the Presence of Air [J]. Org. Lett.,2009,11:4922.
    [37] M. Catellani, E. Motti, N. Della Ca. Catalytic sequential reactions involving palladacycle-directed arylcoupling steps [J]. Acc. Chem. Res.,2008,41:1512.
    [38] M. Catellani. A Complex Catalytic Cycle Leading to a Regioselective Synthesis of o,o’-DisubstitutedVinylarenes [J]. Top. Organomet. Chem.,2005,14:21.
    [39] B. Laleu, M. Lautens. Synthesis of Annulated2H-Indazoles and1,2,3-and1,2,4-Triazoles via aOne-Pot Palladium-Catalyzed Alkylation/Direct Arylation Reaction [J]. J. Org. Chem.,2008,73:9164.
    [40] M. Iwasaki, H. Yorimits, K. Oshima. Microwave-Assisted Palladium-Catalyzed Direct Arylation of1,4-Disubstituted1,2,3-Triazoles with Aryl Chlorides [J]. Chem.-Asian J.,2007,2:1430.
    [41] L. Ackermann, R. Vicente, R. Born. Palladium-Catalyzed Direct Arylations of1,2,3-Triazoles withAryl Chlorides using Conventional Heating [J]. Adv. Synth. Catal.,2008,350:741.
    [42] A. F. Littke, L. Ackermann. Palladium-Catalyzed Direct Arylations of Heteroarenes with Tosylates andMesylates [J]. Wiley-VCH Weinheim,2008,48(1):201-204.
    [43](a) M. Lafrance, K. Fagnou. Palladium-catalyzed benzene arylation: Incorporation of catalytic pivalicacid as a proton shuttle and a key element in catalyst design [J]. J. Am.Chem. Soc.,2006,128:16496;(b) M. Lafrance, D. Lapointe, K. Fagnou. Mild and efficient palladium-catalyzed intramolecular directarylation reactions [J]. Tetrahedron,2008,64:6015;(c) T. Watanabe, S. Oishi, N. Fujii. Palladium-Catalyzed sp3C-H Activation of Simple Alkyl Groups:Direct Preparation of Indoline Derivatives from N-Alkyl-2-bromoanilines [J]. Org. Lett.,2008,10:1759.
    [44] L. Ackermann, A. Althammer, S. Fenner. Palladium-Catalyzed Direct Arylations of Heteroarenes withTosylates and Mesylates [J]. Ang. Chem. Int. Ed.,2009,48:201.
    [45] L. Ackermann, S. Barfuber, J. Pospech. Palladium-Catalyzed Direct Arylations, Alkenylations, andBenzylations through C-H Bond Cleavages with Sulfamates or Phosphates as Electrophiles [J]. Org.Lett.,2010,12:724.
    [46] L. Ackermann, R. Jeyachandran, H.K. Potukuchi, et al. Regioselective syntheses of fully-substituted1,2,3-triazoles: the CuAAC/C-H bond functionalization nexus [J]. Organic&biomolecular chemistry,2010,12:2056.
    [47] L. Ackermann, R. Vicente. Ruthenium-Catalyzed Direct Arylations Through C-H Bond Cleavages [J].Top. Curr. Chem.,2009,292:211.
    [48] Y. Zhou, T. Lecourt, L. Micouin. Direct synthesis of1,4-disubstituted-5-alumino-1,2,3-triazoles:copper-catalyzed cycloaddition of organic azides and mixed aluminum acetylides[J]. Ang. Chem. Int.Ed.,2010,49:2607.
    [49] A. Akao, T. Tsuritani, S. Kii, K.Sato, N. Nonoyama, T. Mase, N. Yasuda. Germanium (II)-mediatedreductive cross-aldol reaction of aldehydes: Synthesis of aldols with diastereocontrolled quaternarycarbon centers [J]. Synlett,2007:31.
    [50] A. Krasinski, V.V. Fokin, K.B. Sharpless. Direct Synthesis of1,5-Disubstituted-4-magnesio-1,2,3-triazoles, Revisited[J]. Org. Lett.,2004,6:1237.
    [51] G. Himbert, D. Frank, M. Regitz. Untersuchungen an Diazoverbindungen und Aziden, XXVI1)Aldoladdition von Phosphoryldiazoalkanen Synthese und Reaktivit t von α-Diazo-β-hydroxyphosphinoxiden and Phosphons ureestern [J]. Chem. Ber.,1976,109:370.
    [52] B.H.M. Kuijpers, G.C.T. Dijkmans, S. Groothuys, et al. Copper (I)-mediated synthesis of trisubstituted1,2,3-triazoles [J]. Synlett,2005:3059.
    [53](a) J.E. Hein, J.C. Tripp, L.B. Krasnova, et al. Copper(I)-Catalyzed Cycloaddition of Organic Azidesand1-Iodoalkynes [J]. Ang. Chem. Int. Ed.,2009,48:8018;(b) C. Spiteri, J.E. Moses. Copper-Catalyzed Azide-Alkyne Cycloaddition: Regioselective Synthesisof1,4,5-Trisubstituted1,2,3-Triazoles [J]. Ang. Chem. Int. Ed.,2010,49:31.
    [54] V.V. Rostovtsev, L.G. Green, V.V. Fokin, et al. A Stepwise Huisgen Cycloaddition Process:Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes [J]. Ang. Chem. Int.Ed.,2002,41:2596.
    [55] J.E. Hein, V.V. Fokin. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: newreactivity of copper(I) acetylides [J]. Chem. Soc. Rev.,2010,39:1302.
    [56] X. Zhang, R.P. Hsung, H. Li. A triazole-templated ring-closing metathesis for constructing novel fusedand bridged triazoles [J]. Chem. Commun.,2007:2420.
    [57] B. Gerard, J. Ryan, A.B. Beeler, et al. Synthesis of1,4,5-trisubstituted-1,2,3-triazoles bycopper-catalyzed cycloaddition-coupling of azides and terminal alkynes [J]. Tetrahedron,2006,62:6405.
    [58] Y. Gao, G. Wang, L. Chen, et al. Copper-Catalyzed Aerobic Oxidative Coupling of Terminal Alkyneswith H-Phosphonates Leading to Alkynylphosphonates [J]. J. Am. Chem. Soc.,2009,131:7956-7957.
    [59] Y. M. Wu, J. Deng, Y. Li, et al. Chen. Regiospecific Synthesis of1,4,5-Trisubstituted-1,2,3-triazole viaOne-Pot Reaction Promoted by Copper(I) Salt [J]. Synthesis,2005:1314.
    [60] L. Li, G. Zhang, A. Zhu, et al. A Convenient Preparation of5-Iodo-1,4-disubstituted-1,2,3-triazole:Multicomponent One-pot Reaction of Azide and Alkyne Mediated by CuI-NBS [J]. J. Org. Chem.,2008,73:3630-3633.
    [61] L. Li, R. Li, A. Zhu, et al.CuBr–NCS Mediated Multicomponent Azide–Alkyne Cycloaddition: Mildand Efficient Synthesis of5-Bromo-1,4-Disubstituted-1,2,3-Triazoles. Synlett,2011,6:874-0878.
    [62] Malnuit V., Duca M., Manout A., et al. Tandem Azide-Alkyne1,3-Dipolar Cycloaddition/ElectrophilicAddition: A Concise Three-Component Route to4,5-Disubstituted Triazolyl-Nucleosides [J]. Synlett,2009,13:2123-2128.
    [63] L. Ackermann, H.K. Potukuchi, D. Landsberg, et al. Copper-Catalyzed “Click” Reaction/DirectArylation Sequence: Modular Syntheses of1,2,3-Triazoles [J]. Org. Lett.,2008,10:3081-3084.
    [64] J. Deng, Y.M. Wu, Q.Y. Chen. Cross-coupling reaction of iodo-1,2,3-triazoles catalyzed by palladium[J]. Synthesis,2005:2730.
    [65] F. Hoskins, R. Robson. Infinite polymeric frameworks consisting of three dimensionally linkedrod-like segments [J]. J. Am. Chem. Soc.,1989,111:5962.
    [66] M. Fujita, Y. Kwon, S. Washizu, et al. Preparation, Clathration Ability, and Catalysis of aTwo-Dimensional Square Network Material Composed of Cadmium(II) and4,4'-Bipyridine [J]. J. Am.Chem. Soc.,1994,116(3):1151-1152.
    [67] G. Haasnoot. Mononuclear, oligonuclear and polynuclear metal coordination compounds with1,2,4-triazole derivatives as ligands [J]. Chem. Rev.,2000:131-185.
    [68] N. Moliner, A.B. Gaspar, J.A. Real,et a1. Synthesis,Structure,Magnetic Properties,and High-SpinLow-Spin Relaxation Studies [J]. Inorg. Chem.,2001,40(16):3986-3991.
    [69] C.Y. Su, A.M. Goforth, M.D. Smith, et al. Exceptionally Stable, Hollow Tubular Metal-OrganicArchitectures: Synthesis, Characterization, and Solid-State Transformation Study [J]. J. Am. Chem.Soc.,2004,126(11):3576-3586.
    [70] Q. Zhao, J. Lu, C. Xin, et al. Synthesis and antibacterial activity of halogen phenol-Containing1,2,3-triazole derivatives [J]. Journal of Tianjin University of Technology,2011,27:47-50.
    [71] F. Wu, C. Chen, L. Peng. Studies on the Synthesis and Anti-Helicobacter Pylori Activity of1,2,3-Triazole Derivatives[J]. Journal of Shaoyang University (Natural Science Edition),2011,8(3):58-62.
    [72]罗培松,汤日元,钟平,等.炔烃分子内环化反应合成含氮杂环化合物的研究进展[J].有机化学,2009,29:1924-1937.
    [73] B. Gerard, J. Ryan, A.B. Beeler, et al. Synthesis of1,4,5-trisubstituted-1,2,3-triazoles bycopper-catalyzed cycloaddition-coupling of azide and terminal alkynes [J]. Tetrahedron,2006,62:6405-6011.
    [74] C.J. Walsh, K.B. Mandalm. Improved Synthesis of Unsymmetrical, Heteroaromatic1,2-Diketones andthe Synthesis of Carbazole Ring Substituted Tetraaryl Cyclopentadieneones [J]. J. Org. Chem.,1999,64:6102-6105.
    [75] N.S. Srinivasan, D.G. Lee. Preparation of Diketones: Oxidation of Alkynes by PotassiumPermanganate in Aqueous Acetone [J]. J. Org. Chem.,1979,44:1574.
    [76] M.M. Heravi, S. Taheri, K. Bakhtiari, et al. On Water: A practical and efficient synthesis ofquinoxaline derivatives catalyzed by CuSO45H2O [J]. Catalysis Communications,2007,8:211-214.
    [77] B. Zeynizadeh, D. Setamdideh. Water as a Green Solvent for Fast and Efficient Reduction of CarbonylCompounds with NaBH4under Microwave Irradiation [J]. Journal of the Chinese Chemical Society,2005,52:1179-1184.
    [78] S. Sarshar, D. Siev, M. Adnan, et al. Imidazole Libraries on Solid Support [J]. Tetrahedron Letters,1996,6:835-838.
    [79] J.M. Khurana, P. Sharma, A. Gogia, et al. Oxidative Cleavage of1,2-Diols, α-Ketols and1,2-Diketones with Aqueous Sodium Hypochlorite [J]. Organic Preparations and Procedures Inc.,2007,39:185-202.
    [80](a) J.P. Behr, J.M. Lehn, D. Moras, et al. Chiral and functionalized face-discriminated andside-discriminated macrocyclic polyethers. Syntheses and crystal structures [J]. J. Am. Chem. Soc.,1981,103(3):701-703;(b) J.M. Lehn, E. Sonveaux, K. Alvin. Willard Molecular recognition Anion cryptates of amacrobicyclic receptor molecule for linear triatomic species [J]. J. Am. Chem. Soc.,1978,100(15):4914-4916.
    [81](a) C. J. van Staveren, V. M. L. J. Aans, P. D. J. Grootenhuis, et al. Synthetic molecular receptors forurea. Macrocyclic ligands with intraannular acidic groups and the complexes with urea [J]. J.Am.Chem. Soc.,1988,110:8134;(b) M. Newcomb, G.W. Gokel, D.J. Cram. Pyridyl unit in host compounds [J]. J. Am. Chem. Soc.,1974,96:6810;(c) M. Newcomb, J.M. Timko, D.M. Walba, et al. Host-guest complexation Organization of pyridylbinding sites [J]. J. Am.Chem. Soc.,1977,99:6392.
    [82](a) A. B. Rocha, R. Lopes, G. Schwartsmann. Natural products in anticancer therapy [J]. Cancer,2001,1:364-369.(b) T.F. Molinski,D.S. Dalisay, S.L. Lievens, et a1. Drug development from marine natural products[J]. Drug Discovery,2009,8:69-85.
    [83] D. Volkmer, A. H rstmann, K. Griesar, et al.[Ni2(ppepO)(C6H5COO)2(CH3COOH)]ClO4C4H10O:Synthesis and Characterization of an Asymmetric Dinuclear Nickel(II) Complex Showing UnusualCoordination Behavior with Relevance to the Active Site of Urease [J]. Inorg. Chem.,1996,35(5):1132-1135.
    [84] J.M. Lehn. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, andMolecular Devices (Nobel Lecture)[J]. Angewandte Chemie International Edition in English,1988,27(1):89-112.
    [85] L. Pan, E.B. Woodlock, X. Wang. A New Porous Three-Dimensional Lanthanide CoordinationPolymer [J]. Inorg. Chem.,2000,39(18):4174-4178.
    [86]向华,硕士学位论文[D].广州:中山大学,2002.
    [87] R. Menif, A. E. Martell, P. J. Squattrito, Abraham Clearfield. New hexaaza macrocyclic binucleatingligands: Oxygen insertion with a dicopper(I) Schiff base macrocyclic complex [J]. Inorg. Chem.,1990,29(23):4723-4729.
    [88] S. Fraysse, C. Coudret, J. Launay. Molecular Wires Built from Binuclear Cyclometalated Complexes[J]. J. Am. Chem. Soc.,2003,125(19):5880-5888.
    [89] M. Boiocchi, M. Bonizzoni, L. Fabbrizzi, et al. A Dimetallic Cage with a Long Ellipsoidal Cavity forthe Fluorescent Detection of Dicarboxylate Anions in Water [J]. Angewandte Chemie InternationalEdition,2004,43(29):3847-3852.
    [90] X. Liu, X. Yang, H. Peng, et al. A fluorescent sensor for Hg2+and Ag+functions as a molecular switchbased on click-generated triazole moiety [J]. Tetrahedron Letters,2011,52:2295-2298.
    [91] F. Xie, K. Sivakumar, Q. Zeng, et al. A fluorogenic ‘click’ reaction of azidoanthracene derivatives [J].Tetrahedron,2008,64:2906-2914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700