环境友好型水性聚氨酯的合成及在棉织物上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水性聚氨酯因其以水为分散介质,具有挥发性有机物(VOC)含量低、环境友好的特点,在纺织品、涂料等应用领域具有重要的意义和作用。当今人们对功能性整理剂的要求越来越高,作为纺织整理剂的重要一支,合成具有多功能性的水性聚氨酯逐渐成为研究热点。
     本论文从3,3-双(溴甲基)氧杂环丁烷(BBMO)出发,分别合成了两种具有"Clickable"活性的单体BAMO和BPMO,以及三种分别具有三氟乙基和七氟丁基的氧杂环丁烷单体(FOx、AFOx-C1)。通过对这些单体进行阳离子开环聚合,我们共制备了四种具有不同结构的共聚型含氟聚醚二醇和四种均聚型聚醚二醇。结合红外光谱(FT-IR)、核磁共振(NMR)、凝胶色谱(GPC)等技术分析表征了这八种聚醚二醇的结构。
     采用以"Click Chemistry"为手段的Step-growth Polymerization方法,我们将磷酸酯结构以侧链的形式引入到“Clickable”聚醚二醇,得到了PEG1-DEP-C1、PEG1-DEP/DFP-C3、PEG2-DEP/DFP-C1这些具有磷酸酯结构的含氟聚醚二醇。同时,将所合成的含氟笼状倍半硅氧烷(POSS-A)经过"Click Chemistry"反应嫁接至“Clickable"聚醚二醇侧链上得到含硅聚醚二醇PEGl-POSS-C1。由FT-IR、NMR、GPC表征经修饰的聚醚二醇结构。
     分别以上述一种含氟均聚聚醚二醇和六种经修饰的含氟聚醚二醇作为软段部分,与二异氰酸酯(IPDI)顶聚,并依次经扩链聚合、成盐、乳化,制备了不同结构的水性聚氨酯(乳液):CFPU-C1-E1、CPU-C1-E2、APU-C1-E3、AFPU-C1-E4、APU-C3-E6、APU-C1-E11和APU-C1-E14。同时我们在硬段部分采用BHPP作为扩链剂,分别合成了APU-C3-E8、APU-C3-E9、APU-C3-E10和APU-C3-E12等四种硬段含磷改性的水性聚氨酯(乳液);为了提高聚氨酯乳液的稳定性,设计并制备了APU-C3-E5、APU-C1-E7-1、APU-C1-E7-2和APU-C3-E10等,软段同时具有含氟聚醚二醇和PPG-2000的水性聚氨酯(乳液)。这些水性聚氨酯均为线性结构,其乳液的固含量平均分布在15-25%。
     对比线性结构的水性聚氨酯,我们利用三乙醇胺为核,经DMPA扩链两次,制备了具有第二代结构的超支化聚酯作为超支化聚氨酯的核结构。分别以聚醚二醇PEG1-POSS-C1和PEG3-A-C1在核结构上“生长”而制备出具有超支化结构的水性聚氨酯APU-C1-E15和APU-C1-E13。并进一步在APU-C1-E13支链上嫁接十三氟己基碳链,制备出本论文中含氟量最高的超支化水性聚氨酯APU-F。
     将这些水性聚氨酯乳液用于棉织物的后整理,并测试了整理后棉织物的拒水、拒油和阻燃性能。软段不含有PPG-2000的水性聚氨酯,其整理过的棉织物对水的接触角可以达到130°以上,其中含有POSS结构的水性聚氨酯能够达到140°以上。但只有APU-F的拒油性能能够达到5级,其余均无明显的拒油性能。软段与硬段均含有磷酸酯结构的水性聚氨酯具有一定的阻燃性能,其LOI值超过20%,其中经APU-C3-E9整理过的棉织物其LOI值达到22.7%,其余水性聚氨酯均无明显的阻燃性能。
Waterborne polyurethane is dispersible in water medium, which is environmental friendly and possesses the advantages of low volatile organic compounds (VOC) emission. So it has attracted increasing attention and is widely used in producing environment friendly agents of coating, textile finishing and so on. With the improvement of people's living standard, environmental friendly and multi-functional waterborne polyurethanes will become the main trend.
     Starting from BBMO, we designed and synthesized the Clickable monomers BAMO, BPMO and three fluorinated monomers FOx-C1/C3, AFOx-C1. Four kinds of co-polyether diols and four kinds of homo-polyether diols were obtained via ring-opening polymerization of these monomers and characterized by FT-IR, NMR and GPC.
     In this paper we modified the clickable polyether diols by introduction of phosphate-containing groups to give PEG1-DEP-C1, PEG1-DEP/DFP-C3 and PEG2-DEP/DFP-C1. Meanwhile, we obtained PEG1-POSS-C1 by grafting the POSS-A to clickable polyether diols. These modified polyether diols were characterized by FT-IR, NMR and GPC.
     These modified polyether diols were then condensed with IPDI to form waterborne polyurethanes CFPU-C1-E1, CPU-C1-E2, APU-C1-E3, AFPU-C1-E4, APU-C3-E6, APU-C1-E11 and APU-C1-E14 respectively. APU-C3-E8, APU-C3-E9, APU-C3-E10 and APU-C3-E12 were modified functionally at the hard segment by using BHPP as the chain extender. In order to improve the stability of the emulsions, we designed and prepared APU-C3-E5, APU-C1-E7-1, APU-C1-E7-2 and APU-C3-E10 which contained fluorinated polyether diols and PPG-2000 within the soft segment. These obtained waterborne polyurethanes have linear structures with solid content between 15~20%.
     In comparison with these linear polyurethanes, we started from trihydroxolethylamine to form the core structure and reacted with PEG1-POSS-Cl or PEG3-A-C1 to form hyper branched polyurethane APU-C1-E15 or APU-C1-E13. APU-C1-E13 was grafted further with perfluorohexyl group to give hyper branched polyurethane APU-F which had the highest content of fluorine.
     These emulsions were applied on cotton fabrics by pad-dry-cure process. The water-, oil-repellent and flame retardant properties of the treated cotton fabrics were then studied. Cotton fabrics treated with waterborne polyurethanes emulsions showed good water repellent properties with the contact angles of over 130°, and the one treated with polyurethanes containing POSS reached over 140°. However, only fabric treated with APU-F had good oil repellent property as rated in Grade 5, and others were showed no obvious oil repellent property. The polyurethanes containing phosphonate groups in both hard and soft segments possessed slight flame retardant properties with LOI over 20%. Fabrics treated APU-C3-E9 had LOI of 22.7%. Other polyurethanes showed no obvious flame retardant properties.
引文
[1]许戈文.水性聚氨酯材料[M].北京:化学工业出版社,2006.
    [2]邵菊美.水性聚氨酯的合成及其改性研究[D].苏州大学硕士,2003.
    [3]潘学梅,武元鹏,邓瑾妮,等.水性含氟聚氨酯的研究进展[J].高分子通报.2009(02):33-41.
    [4]王炯,李国平.水性聚氨酯的改性研究进展[J].高分子材料学与工程.2009(12):166-168.
    [5]姜敏,丁小斌,郑朝晖,等.含氟聚氨酯的研究进展[J].高分子通报.2006(10):10-15.
    [6]Giesy J, Kannan K. Global Distribution of Perfluorooctane Sulfonate in Wildlife[J]. Environment Science & Technology.2001,78(4):491-495.
    [7]Bayer O. The diisocyanate polyaddition process (polyurethanes).Description of a new principle for building uphigh-molecular compounds.[J]. Angew Chem.1947, A 59:257.
    [8]刘玉海.异氰酸酯[M].北京:化学工业出版社,2004.
    [9]Lomoelder R, Plogann F, Speier P. Electivity of Isophorone Diisocyanate in the Urethane Reaction Influence of TemPerature, Catalysis and Reaction Parters[J]. J. Coat.Technol.1997,69(5):51-57.
    [10]李中华,孟卫东.新型含氟丙烯酸酯聚合物的合成及其在棉织物上的应用[J].东华大学学报(自然科学版).2009(05):547-553.
    [11]杨金花.高稳定性聚酯型阴离子水性聚氨酯乳液的合成及改性研究[D].苏州大学硕士学位,2004.
    [12]陈敏.聚酯型聚氨酯水乳液的合成及性能研究[D].四川大学硕士学位,2001.
    [13]丛树枫,喻露如.聚氨酯涂料[M].北京:化学工业出版色,2003.
    [14]杨思伟.水性聚氨酯涂层剂的合成及性能研究[D].东华大学硕士学位,2010.
    [15]沈艳涛.水性聚氨酯分散体的合成研究[D].安徽大学硕士学位,2002.
    [16]曹惠庆.水性聚氨酯的制备及性能研究[D].北京化工大学硕士学位,2005.
    [17]伍胜利.水性聚氨酯的合成与改性研究[D].合肥工业大学硕士学位,2005.
    [18]邱丽.IPDI型水性聚氨酯的合成与性能研究[D].太原理工大学硕士学位,2004.
    [19]谢维斌.水性聚氨酯改性及其在织物涂层上的应用[D].苏州大学硕士学位,2004.
    [20]Chattopadhyay D K, Raju K V S N. Structural engineering of polyurethane coatings for high performance applications[J]. Progress in Polymer Science.2007, 32(3):352-418.
    [21]Deng X, Liu F, Luo Y, et al. Preparation, structure and properties of comb-branched waterborne polyurethane/OMMT nanocomposites[J]. Progress in Organic Coatings.2007,60(1):11-16.
    [22]梁治齐,陈溥.氟表面活性剂[M].北京:中国轻工业出版社,1998.
    [23]Shafrin E G, Zisman W A. Constitutive Relations in the Wetting of Low Energy Surface and the Theory of Retraction Method of Preparing Monolayers[J].J. Phys. Chem.1960,64(5):519-524.
    [24]Tanaka H, Suzuki Y, Yoshino F. Synthesis and coating application of waterborne fluoroacrylic-polyurethane composite dispersions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1999,153(1-3):597-601.
    [25]Li G, Li X, Shen Y, et al. Effect of hydrophilic monomer on the surface properties of cationic polyurethane-fluorinated acrylate hybrid dispersions [J]. Journal of Applied Polymer Science.2006,99(5):2721-2725.
    [26]Jiang M, Zhao X, Ding X, et al. A novel approach to fluorinated polyurethane by macromonomer copolymerization[J]. European Polymer Journal.2005,41(8): 1798-1803.
    [27]John S. Fluoropolymers:High Performance Polymers for Diverse Application[M]. John Wiley & Sons Press,2000.
    [28]Eberhard K, Beate B, Christian F, et al. Fluorinecontaining blocked isocyanates[P]. US patent,6509433.
    [29]Temtchenko T, Turri S, Novelli S, et al. New developments in perfluoropolyether resins technology:high solid and durable polyurethanes for heavy duty and clear OEM coatings[J]. Progress in Organic Coatings.2001,43(1-3):75-84.
    [30]Scheirs J, Camino G, Costa L, et al. Photooxidation of functionalized perfluorinated polyethers--Ⅱ[J]. Polymer Degradation and Stability.1998,62(2): 327-336.
    [31]Turri S, Scicchitano M, Gianotti G, et al. Concentrated solutions of perfluoropolyoxyalkylene oligomers--Ⅱ. Viscosity and density in polar solvents[J]. European Polymer Journal.1995,31(12):1235-1242.
    [32]Danusso F, Levi M, Gianotti G, et al. End unit effect on the Tg of differentiated series of perfluoro-poly (oxymethylene-co-oxyethylene) oligomers[J]. European Polymer Journal.1994,30(12):1449-1455.
    [33]Levi M, Turri S, Sanguineti A. On the unperturbed dimensions of perfluoropoly-(oxymethylene-co-oxyethylene)-acetals[J]. Polymer.1999,40(15): 4273-4278.
    [34]Di Gianni A, Bongiovanni R, Priola A, et al. UV-cured fluorinated coatings for plastics:effect of the photoinitiator and of the substrate filler on adhesion[J]. International Journal of Adhesion and Adhesives.2004,24(6):513-518.
    [35]Di Gianni A, Bongiovanni R, Conzatti L, et al. New fluorinated montmorillonites for the preparation of UV-cured coatings[J]. Journal of Colloid and Interface Science.2009,336(2):455-461.
    [36]Turri S, Scicchitano M, Simeone G, et al. Chemical approaches toward the definition of new high-solid and high-performance fluorocoatings[J]. Progress in Organic Coatings.1997,32(1-4):205-213.
    [37]Ho T, Wynne K J. A new fluorinated polyurethane:polymerization, characterization, and mechanical properties[J]. Macromolecules.1992,25(13): 3521-3527.
    [38]Turri S, Levi M, Trombetta T. Waterborne anionomeric polyurethane-ureas from functionalized fluoropolyethers[J]. Journal of Applied Polymer Science. 2004,93(1):136-144.
    [39]Trombetta T, Iengo P, Turri S. Fluorinated segmented polyurethane anionomers for water-oil repellent surface treatments of cellulosic substrates[J]. Journal of Applied Polymer Science.2005,98(3):1364-1372.
    [40]Su T, Wang G Y, Xu X D, et al. Preparation and properties of waterborne polyurethaneurea consisting of fluorinated siloxane units[J]. Journal of Polymer Science Part A:Polymer Chemistry.2006,44(10):3365-3373.
    [41]Malik A A, Archibald G T, Garlson P R. Amorphouse Polyether Glycols Based on Bis-substituted Oxetane[P]. WO 01005871 Al.2001.
    [42]Kim Y, Lee J, Ji Q. Surface Properties of Fluorinated Oxetane Polyolmodified PU Block Copolymers[J]. Polymer.2002,43(25):7161-7170.
    [43]Ji Q, Wang J, Wang S. Fluorinated Oxetane Polyol Modified Segmented Polyurethane Elastomers[J]. Polymer Preprints.1999,40(2):930-931.
    [44]Ji Q, Kang H, Wang J. Surface Characterization of Fluorinated Oxetane Polyol Modified Polyurethane Block Copolymers[J]. Polymer Preprints.2000,41(1): 346-347.
    [45]Zhu M J, Qing F L, Meng W D. Novel waterborne polyurethanes containing short fluoroalkyl chains:Synthesis and applications on cotton fabrics[J]. Journal of Applied Polymer Science.2008,109(3):1911-1915.
    [46]Jiang W, Huang Y, Gu G, et al. A novel waterborne polyurethane containing short fluoroalkyl chains:Synthesis, characterization and its application on cotton fabrics surface[J]. Applied Surface Science.2006,253(4):2304-2309.
    [47]黄继庆.新型含氟聚合物织物整理剂的合成及应用[D].东华大学博士学位,2009.
    [48]Makal U, Fujiwara T, Cooke R S, et al. Polyurethanes Containing Oxetane-Derived Poly(2,2-substituted-1,3-propylene oxide) Soft Blocks: Copolymer Effect on Wetting Behavior[J]. Langmuir.2005,21(23): 10749-10755.
    [49]Makal U, Uilk J, Kurt P, et al. Ring opening polymerization of 3-semifluoro- and 3-bromomethyloxetanes to poly(2,2-substituted-1,3-propylene oxide) telechelics for soft blocks in polyurethanes[J]. Polymer.2005,46(8):2522-2530.
    [50]Makal U, Wynne K J. Water Induced Hydrophobic Surface[J]. Langmuir.2005, 21(9):3742-3745.
    [51]Yang C Q, Wu W. Combination of a hydroxy-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton:Part I. The chemical reactions[J]. Fire and Materials.2003, 27(5):223-237.
    [52]陈鹤,罗运军,柴春鹏,等.阻燃水性聚氨酯研究进展[J].高分子材料科学与工程.2009,v.25(06):171-174.
    [53]Horrocks A R, Davies P J. Char formation in flame-retarded wool fibres. Part 1. Effect of intumescent on thermogravimetric behaviour[J]. Fire and Materials. 2000,24(3):151-157.
    [54]Horrocks A R, Zhang S. Enhancing polymer flame retardancy by reaction with phosphorylated polyols. Part 2. Cellulose treated with a phosphonium salt urea condensate (proban CC(?)) flame retardant[J]. Fire and Materials.2002,26(4-5): 173-182.
    [55]Horrocks A R, Kandola B K, Davies P J, et al. Developments in flame retardant textiles-a review[J]. Polymer Degradation and Stability.2005,88(1):3-12.
    [56]Richard Horrocks A, Zhang S. Enhancing polymer char formation by reaction with phosphorylated polyols.1. Cellulose[J]. Polymer.2001,42(19):8025-8033.
    [57]Zhang S, Horrocks A R, Hull R, et al. Flammability, degradation and structural characterization of fibre-forming polypropylene containing nanoclay-flame retardant combinations [J]. Polymer Degradation and Stability.2006,91(4): 719-725.
    [58]Horrocks A R, D'Souza J A. The effects of stress, environment and polymer variables on the durabilities of oriented polypropylene tapes[J]. Polymer Degradation and Stability.1994,46(2):181-194.
    [59]陈鹤,罗运军,柴春鹏,等.阻燃水性聚氨酯研究进展[J].高分子材料科学与工程.2009(06):171-174.
    [60]Ma Z, Zhao W, Liu Y, et al. Intumescent polyurethane coatings with reduced flammability based on spirocyclic phosphate-containing polyols[J]. Journal of Applied Polymer Science.1997,66(3):471-475.
    [61]Wang X, Lin J. A phosphate-based epoxy resin for flame retardance:synthesis, characterization, and cure properties[J]. Colloid & Polymer Science.2005, 283(6):593-603.
    [62]Shieh J, Wang C. Effect of the organophosphate structure on the physical and flame-retardant properties of an epoxy resin[J]. Journal of Polymer Science Part A:Polymer Chemistry.2002,40(3):369-378.
    [63]Wang C, Shieh J. Synthesis and properties of epoxy resins containing bis(3-hydroxyphenyl) phenyl phosphate[J]. European Polymer Journal.2000, 36(3):443-452.
    [64]Ma Z, Zhao W, Liu Y, et al. Intumescent polyurethane coatings with reduced flammability based on spirocyclic phosphate-containing polyols[J]. Journal of Applied Polymer Science.1997,66(3):471-475.
    [65]Chattopadhyay D K, Webster D C. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science.2009,34(10):1068-1133.
    [66]胡立立.拒水、拒油和阻燃性能合一的丙烯酸酯聚合物的合成和应用[D].东华大学硕士学位,2010.
    [67]Cornelius C, Hibshman C, Marand E. Hybrid organic-inorganic membranes[J]. Separation and Purification Technology.2001,25(1-3):181-193.
    [68]Hench L L, West J K. The sol-gel process[J]. Chemical Reviews.1990,90(1): 33-72.
    [69]曾科.含氟丙基笼状倍半硅氧烷(POSS)的两亲性嵌段共聚物合成、表征及其自组装行为的研究[D].上海交通大学博士,2008.
    [70]Gao Y, He C, Huang Y, et al. Novel water and oil repellent POSS-based organic/inorganic nanomaterial:Preparation, characterization and application to cotton fabrics[J]. Polymer.2010,51(25):5997-6004.
    [71]Liu H, Zheng S. Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane[J]. Macromolecular Rapid Communications.2005, 26(3):196-200.
    [72]Lee A, Xiao J, Feher F J. New Approach in the Synthesis of Hybrid Polymers Grafted with Polyhedral Oligomeric Silsesquioxane and Their Physical and Viscoelastic Properties [J]. Macromolecules.2005,38(2):438-444.
    [73]Lichtenhan J D, Otonari Y A, Carr M J. Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers[J]. Macromolecules.1995,28(24):8435-8437.
    [74]Koh K, Sugiyama S, Morinaga T, et al. Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate)[J]. Macromolecules.2005,38(4):1264-1270.
    [75]Iacono S T, Vij A, Grabow W, et al. Facile synthesis of hydrophobic fluoroalkyl functionalized silsesquioxane nanostructures[J]. Chemical Communications. 2007(47):4992-4994.
    [76]Zeng K, Liu Y, Zheng S. Poly(ethylene imine) hybrids containing polyhedral oligomeric silsesquioxanes:Preparation, structure and properties[J]. European Polymer Journal.2008,44(12):3946-3956.
    [77]陈琦,周佑亮,黄世强.超支化聚氨酯的研究进展[J].聚氨酯工业.2009(05):7-10.
    [78]汤威宜.新型含氟涂层材料的合成及其在棉织物上的应用[D].东华大学博 士学位,2010.
    [79]曾少敏,刘丹,姚畅,等.高度支化水性聚氨酯的合成及性能[J].高分子材群科学与工程.2009(11):5-8.
    [80]刘丹,曾少敏,姚畅,等.PCDL型超支化水性聚氨酯的合成与性能[J].应用化学.2009(09):1031-1035.
    [81]姚畅,曾少敏,陈爱芳,等.超支化水性聚氨酯的合成与表征[J].高分子材群科学与工程.2009(06):35-38.
    [82]刘丹,曾少敏,姚畅,等.PBA型超支化水性聚氨酯的合成与表征[J].粘接.2009(01):54-57.
    [83]曾少敏,姚畅,陈爱芳,等.超支化聚氨酯的合成及应用[J].高分子通报2008(03):52-57.
    [84]王君.含短氟碳链侧基的聚氨酯织物整理剂的合成、表征和应用[D].东华大学硕士,2009.
    [85]王君,黄继庆,黄焰根,等.新型含短氟碳链侧基的氧杂环丁烷单体的合成与表征[J].有机化学.2009(12):1969-1974.
    [86]黄燕平.含氟碳链水性聚氨酯的合成及在棉织物上的应用[D].东华大学硕士学位,2010.
    [87]Billiet L, Fournier D, Du Prez F. Step-growth polymerization and [']click' chemistry:The oldest polymers rejuvenated[J]. Polymer.2009,50(16): 3877-3886.
    [88]朱园勤.新型含氟聚芳醚的设计、合成及表征[D].东华大学2007.
    [89]方申文,段明,易峰,等.“链接”化学在高分子合成中的应用[J].化学世界2008(04):244-248.
    [90]Fournier D, De Geest B G, Du Prez F E. On-demand click functionalization of polyurethane films and foams[J]. Polymer.2009,50(23):5362-5367.
    [91]Fournier D, Du Prez F. "Click" Chemistry as a Promising Tool for Side-Chain Functionalization of Polyurethanes[J]. Macromolecules.2008,41(13): 4622-4630.
    [92]侯再坚,孟卫东.多全氟链烷基醇的合成与应用[J].东华大学学报(自然科学版).2009,v.35(01):57-61.
    [93]葛震,罗运军,郭凯,等.BAMO均聚物及共聚物合成研究进展[J].含能材料.2009,v.17;No.80(06):745-750.
    [94]张志刚,卢先明,甘孝贤,等.相转移催化法合成BBMO和BAMO[J].火炸药学报.2007,No.135(05):32-35.
    [95]Mahouche S, Mekni N, Abbassi L, et al. Tandem diazonium salt electroreduction and click chemistry as a novel, efficient route for grafting macromolecules to gold surface[J]. Surface Science.2009,603(21):3205-3211.
    [96]Xu L Q, Yao F, Fu G, et al. Simultaneous " Click Chemistry" and Atom Transfer Radical Emulsion Polymerization and Prepared Well-Defined Cross-Linked Nanoparticles[J]. Macromolecules.2009,42(17):6385-6392.
    [97]Hawker C J, Lee R, Frechet J M J. One-step synthesis of hyperbranched dendritic polyesters[J]. Journal of the American Chemical Society.1991,113(12): 4583-4588.
    [98]叶霖,高鹏,张晓雯,等.氧杂环丁烷开环聚合[J].功能高分子学报.2005(04):651-659.
    [99]屈红翔,冯增国,于永忠.3,3-双(叠氮甲基)氧杂环丁烷/四氢呋喃共聚醚的合成[J].火炸药学报.1998(02):11-13.
    [100]Kausch C M, Leising J E, Medsker R E, et al. Synthesis, Characterization, and Unusual Surface Activity of a Series of Novel Architecture, Water-Dispersible Poly(fluorooxetane)s[J].Langmuir.2002,18(5933-5938).
    [101]屈红翔,冯增国,谭惠民,等.3,3-双(叠氮甲基)环氧丁烷-四氢呋喃共聚醚的合成及其链结构分析[J].高分子学报.1997(05):104-108.
    [102]Husband D M. Use of Dynamic Mechanical Measurements to determine the aging behavior of solid propellant[J]. Propellants, Explosives, Pyrotechnics.1992, 17(4):196-201.
    [103]Sliverstein Robert M.,译秦川校.有机化合物波谱解析[M].上海:华东理工 大学出版社,2007.
    [104]涂程,周奥佳,阎克路.水性聚氨酯防水透湿涂层剂的合成与性能[J].印染.2010(02):11-14.
    [105]吴让君,闫福安.水性聚氨酯预聚体中异氰酸酯基团的容量测定[J].中国涂料.2006(01):33-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700