脱落酸葡糖基转移酶参与果实成熟过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果实成熟是一个复杂的生理生化过程,近年来植物激素脱落酸(ABA)越来越成为研究果实成熟的一个热点。拟南芥中己证明葡糖基转移酶可以催化ABA的糖基化,从而调节ABA的内稳态。本实验主要以非跃变型果实草莓和跃变型果实番茄为材料来研究糖基转移酶在两种类型果实成熟过程中的作用。
     在草莓果实中克隆得到ABA合成和代谢关键基因aNCED1、FaNCED2、FaCYP707A1。通过ABA含量测定和基因表达水平分析发现,ABA含量的变化和aNCED2基因的表达水平一致,均在白熟期草莓果实中出现峰值,并且在草莓果实成熟后期逐渐上升;FaCYP707A1的表达水平在白熟期草莓中出现峰值,随后的成熟过程中表达量逐渐下降,全红期达到最低水平。三个基因的表达水平在草莓果实和花器官中存在时空特异性,且被生长素处理下调。
     葡糖基转移酶(GT)参与ABA的糖结合途径,本实验分别在草莓果实和番茄果实中研究其对果实成熟的作用。在草莓果实中,通过分析果实成熟过程中葡糖基转移酶的表达水平发现,许多GT基因的表达水平与成熟过程呈正相关。大部分葡糖基转移酶响应生长素和脱落酸的处理,且两种激素处理在草莓果实中对GT基因表达量的影响相反。在FaGTl和FaGT2沉默的草莓果实中,成熟过程被显著抑制,花青素代谢和细胞壁降解关键基因的表达量明显下调,表明FaGTl和FaGT2可能参与草莓果实的成熟。在番茄果实中,SIUGT75C1, SIUGT73C4, SIUGT76E1三个基因在果实成熟过程中高度表达,果肉中的表达量显著高于种子,生长素和脱落酸对其表达都有诱导作用。在SIUGT75C1基因沉默的番茄果实中,果实成熟进程受阻,乙烯生物合成关键基因、类胡萝卜素代谢关键基因的表达显著下调。三个基因编码的蛋白质都定位在叶绿体中。S1UGT75C1重组蛋白在体外能够催化ABA与尿苷二磷酸葡萄糖(UDPG)的结合,生成ABA葡萄糖酯(ABA-GE), Km值为3.24mM,最大反应速率为0.06uM/min。上述结果表明葡糖基转移酶可能通过影响果实中ABA的含量参与果实的成熟。
     综上所述,本研究证明ABA葡糖基转移酶参与两种类型果实的成熟过程,为ABA调控果实成熟提供了新的证据。
Recently, plant hormone abscisic acid (ABA) is a new target for study the fruit ripening which is a complex physiological and biochemical progress. In Arabidopsis glucosyltransferases could glycosylate ABA and regulate ABA homeostasis. This paper focuses the role of glycosyltransferase in fruit ripening of non-climacteric fruit strawberry and climacteric furit tomato.
     ABA biosynthetic and metabolic genes FaNCEDl, FaNCED2, and FaCYP707A1have been cloned from strawberry fruit. Analysis of ABA contents and genes expression during fruit ripening, results indicated that change of ABA content consistented with expression level of FaNCED2, both of which have peak on white stage then increase during ripening. Expression level of FaCYP707A1has peak on white stage, then decrease during ripening and has lowest level on red stage. Expression levels of three genes have temporal and spatial specific and down-regulated by NAA.
     Glucosyltransferase (GT) takes part in ABA glucosylation. This paper focuses on the role of GTs during strawberry and tomato fruit ripening. In strawberry fruit, expression levels of mostly GTs have positive correlation with fruit ripening. Both auxin and ABA can regulate expression of GTs, which usually has opposite influence. Ripening process of FaGTl-or FaGT2-silencing strawberry fruit were interrupted, expression level of anthocyanin metabolic and cell wall degradation related genes were decreased, these suggested that FaGT1and FaGT2maybe involved in strawberry fruit ripening. In tomato fruit, SlUGT75C1, SlUGT73C4, and SlUGT76E1have high expression level during fruit ripening. Expression levels of three genes on pulp were higher than on seed. Auxin and ABA triggered expression of there genes. Ripening of SlUGT75C1-silencing tomato fruit was blocked, in which expression levels of ethylene biosynthesis and carotenoid metabolism related genes were down-regulated. Three glucosyltransferases located in chloroplast. Recombinase S1UGT75C1can catalyze ABA and UDPG to produce ABA-GE in vitro. Km is3.24mM and Vmax is0.06uM/min. The above results indicated that glucosyltransferase maybe involved in fruit ripening by affect ABA.
     In conclusion, the study demostrated ABA glucosyltranferase involed in fruit ripening of two ripening type fruit, provided new evidence for ABA regulated fruit ripening.
引文
Adams, D.O., and Yang, S.F. (1979). Ethylene biosynthesis:identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci.U. S. A.76,170-174.
    Adams-Phillips, L., Barry, C., Kannan, P., Leclercq, J., Bouzayen, M., and Giovannoni, J. (2004). Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Mol. Biol.54,387-404.
    Al-Babili, S., Hugueney, P., Schledz, M., Welsch, R., Frohnmeyer, H., Laule, O., and Beyer, P. (2000). Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett. 485,168-172.
    Alexander, L., and Grierson, D. (2002). Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening. J. Exp. Bot.53,2039-2055.
    Bapat, V.A., Trivedi, P.K., Ghosh, A., Sane, V.A., Ganapathi, T.R., and Nath, P. (2010). Ripening of fleshy fruit:molecular insight and the role of ethylene. Biotechnol Adv.28,94-107.
    Barry, C.S., Llop-Tous, M.I., and Grierson, D. (2000). The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol.123,979-986.
    Bouvier, F., D'Harlingue, A., Backhaus, R.A., Kumagai, M.H., and Camara, B. (2000). Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur. J. Biochem.267,6346-6352.
    Bowles, D., Isayenkova, J., Lim, E.K., and Poppenberger, B. (2005). Glycosyltransferases:managers of small molecules. Curr. Opin. Plant Biol.8,254-263.
    Boyer, G.L., and Zeevaart, J.A. (1982). Isolation and quantitation of β-D-glucopyranosyl abscisate from leaves of Xanthium and spinach. Plant Physiol.70,227-231.
    Bramley, P., Teulieres, C., Blain, I., Bird, C., and Schuch, W. (1992). Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5. Plant J.2,343-349.
    Bray, E.A., and Zeevaart, J.A. (1985). The compartmentation of abscisic acid and β-D-glucopyranosyl abscisate in mesophyll cells. Plant Physiol.79,719-722.
    Brummell, D.A., Hall, B.D., and Bennett, A.B. (1999a). Antisense suppression of tomato endo-1, 4-β-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol. Biol.40,615-622.
    Brummell, D.A., Harpster, M.H., Civello, P.M., Palys, J.M., Bennett, A.B., and Dunsmuir, P. (1999b). Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11,2203-2216.
    Burbidge, A., Grieve, T.M., Jackson, A., Thompson, A., McCarty, D.R., and Taylor, I.B. (1999). Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J.17, 427-431.
    Campbell, J.A., Davies, G.J., Bulone, V., and Henrissat, B. (1998). A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J.329,929-939.
    Cantin, C.M., Fidelibus, M.W., and Crisosto, C.H. (2007). Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of Crimson Seedless' grapes. Postharvest Biology and Technology 46,237-241.
    Chen, G.P., Alexander, L., and Grierson, D. (2004). Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant. J. Exp. Bot.55, 1491-1497.
    Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., et al. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14,2723-2743.
    Coombe, B.G. (1976). The development of fleshy fruits. Ann. Rev. Plant Physiol.27,507-528.
    Deikman, J., Kline, R., and Fischer, R.L. (1992). Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (Lycopersicon esculentum).Plant Physiol.100, 2013-2017.
    DellaPenna, D., Lincoln, J.E., Fischer, R.L., and Bennett, A.B. (1989). Transcriptional analysis of polygalacturonase and other ripening associated genes in Rutgers, rin, nor, and Nr tomato fruit. Plant Physiol.90,1372-1377.
    Dietz, K.J., Sauter, A., Wichert, K., Messdaghi, D., and Hartung, W. (2000). Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J. Exp. Bot.51, 937-944
    Fait, A., Hanhineva, K., Beleggia, R., Dai, N., Rogachev, I., Nikiforova, V.J., Fernie, A.R., and A, A. (2008). Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiol.148,730-750.
    Fantini, E., Falcone, G., Frusciante, S., Giliberto, L., and Giuliano, G. (2013). Dissection of tomato lycopene biosynthesis through Virus-Induced Gene Silencing. Plant Physiol.163,986-998.
    Fraser, P.D., Kiano, J.W., Truesdale, M.R., Schuch, W., and Bramley, P.M. (1999). Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol. Biol.40,687-698.
    Fraser, P.D., Truesdale, M.R., Bird, C.R., Schuch, W., and Bramley, P.M. (1994). Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol.105,405-413.
    Gachon, C.M., Langlois-Meurinne, M., and Saindrenan, P. (2005). Plant secondary metabolism glycosyltransferases:the emerging functional analysis. Trends Plant Sci.10,542-549.
    Galpaz, N., Ronen, G., Khalfa, Z., Zamir, D., and Hirschberg, J. (2006). A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18,1947-1960.
    Galpaz, N., Wang, Q., Menda, N., Zamir, D., and Hirschberg, J. (2008). Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J.53,717-730.
    Gamage, T.V., and Rahman, M.S. (1999). Post harvest handling of foods of plant origin. In Handbook of Food Preservation, Rehman, M.S., ed. (New York, USA:Marcel Dekker Inc.), pp.11-46.
    Gamble, R.L., Coonfield, M.L., and Schaller, G.E. (1998). Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc. Natl. Acad. Sci. U. S. A.95,7825-7829.
    Giovannoni, J.J., DellaPenna, D., Bennett, A.B., and Fischer, R.L. (1989). Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1,53-63.
    Gonzalez-Guzman, M., Apostolova, N., Belles, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R., and Rodriguez, P.L. (2002). The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14,1833-1846.
    Griesser, M., Hoffmann, T., Bellido, M.L., Rosati, C., Fink, B., Kurtzer, R., Aharoni, A., Munoz-Blanco, J., and Schwab, W. (2008a). Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiol.146,1528-1539.
    Griesser, M., Vitzthum, F., Fink, B., Bellido, M.L., Raasch, C., Munoz-Blanco, J., Schwab, W. (2008b). Muti-substrate flavonol O-glucosyltransferases from strawberry(Fragaria X ananassa) achene and receptacle. J. Exp. Bot.59,2611-2625.
    Hamilton, A.J., Lycett, G.W., and Grierson, D. (1990). Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346,284-287.
    Harrison, E., Burbidge, A., Okyere, J.P., Thompson, A.J., and Taylor, I.B. (2011). Identification of the tomato ABA-deficient mutant sitiens as a member of the ABA-aldehyde oxidase gene family using genetic and genomic analysis. Plant Growth Regul.64,301-309.
    Hartung, W., Sauter, A., and Hose, E. (2002). Abscisic acid in the xylem:where does it come from, where does it go to? J. Exp. Bot.53,27-32.
    Hirschberg, J. (2001). Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant Biol.4,210-218.
    Hoffmann, T., Kalinowski, G., and Schwab, W. (2006). RNAi-induced silencing of gene expression in strawberry fruit(Fragaria×ananassa) by agroinfiltration:a rapid assay for gene function analysis. Plant J.48,818-826.
    Hua, J., and Meyerowitz, E.M. (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94,261-271.
    Husar, S., Berthiller, F., Fujioka, S., Rozhon, W., Khan, M., Kalaivanan, F., Elias, L., Higgins, G.S., Li, Y., Schuhmacher, R., et al. (2011). Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC plant biol.11,51.
    Isaacson, T., Ronen, G., Zamir, D., and Hirschberg, J. (2002). Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14,333-342.
    Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J.27,325-333.
    Jaakola, L. (2013). New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci.18,477-483.
    Jackson, R.G., Kowalczyk, M., Li, Y., Higgins, G., Ross, J., Sandberg, G., and Bowles, D.J. (2002). Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant J.32,573-583.
    Jia, H.F., Chai, Y.M., Li, C.L., Lu, D., Luo, J.J., Qin, L., Shen, Y.Y. (2011). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol.157,188-199.
    Jiang, F., Wang, J.Y., Jia, H.F., Jia, W.S., Wang, H.Q., and Xiao, M. (2013). RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit. J. Plant Growth Regul.32,182-190.
    Jin, S.H., Ma, X.M., Han, P., Wang, B., Sun, Y.G., Zhang, G.Z., Li, Y.J., and Hou, B.K. (2013a). UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS One 8, e61705.
    Jin, S.H., Ma, X.M., Kojima, M., Sakakibara, H., Wang, Y.W., and Hou, B.K. (2013b). Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta 237,991-999.
    Kachanovsky, D.E., Filler, S., Isaacson, T., and Hirschberg, J. (2012). Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc. Nail. Acad. Sci. U. S. A.109,19021-19026
    Kamiyoshihara, Y., Iwata, M., Fukaya, T., Tatsuki, M., and Mori, H. (2010). Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-l-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J.64,140-150.
    Kevany, B.M., Tieman, D.M., Taylor, M.G., Cin, V.D.C., and Klee, H.J. (2007). Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J.51,458-467.
    Klee, H.J., and Giovannoni, J.J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet.45,41-59.
    Kneissl, M.L., and Deikman, J. (1996). The tomato E8 gene influences ethylene biosynthesis in fruit but not in flowers. Plant Physiol.112,537-547.
    Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y., and Nambara, E. (2004). The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases:key enzymes in ABA catabolism. EMBO J.23,1647-1656.
    Lanahan, M.B., Yen, H.C., Giovannoni, J.J., and Klee, H.J. (1994). The never ripe mutation blocks ethylene perception in tomato. Plant Cell 6,521-530.
    Langlois-Meurinne, M., Gachon, C.M., Saindrenan, P. (2005). Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiol.139,1890-1901.
    Lashbrook, C.C., Giovannoni, J.J., Hall, B.D., Fischer, R.L., and Bennett, A.B. (1998). Transgenic analysis of tomato endo-β-1,4-glucanase gene function. Role of cell in floral abscission. Plant J. 13,303-310.
    Leclercq, J., Adams-Phillips, L.C., Zegzouti, H., Jones, B., Latche, A., Giovannoni, J.J., Pech, J.-C., and Bouzayen, M. (2002). LeCTRl, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiol.130,1132-1142.
    Lee, J.M., Joung, J.G., McQuinn, R., Chung, M.Y., Fei, Z.J., Tieman, D., Klee, H., and Giovannoni, J. (2012). Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SIERF6 plays an important role in ripening and carotenoid accumulation. Plant J.70,191-204.
    Lee, K.H., Piao, H.L., Kim, H.Y., Choi, S.M., Jiang, F., Hartung, W., Hwang, I., Kwak, J.M., Lee, I.J., and Hwang, I. (2006). Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126,1109-1120.
    Lehmann, H., and Glund, K. (1986). Abscisic acid metabolism-vacuolar/extravacuolar distribution of metabolites. Planta 168,559-562.
    Lehmann, H., and Vlasov, P. (1988). Plant growth and stress-the enzymic hydrolysis of abscisic acid conjugate. J. Plant Physiol.132,98-101.
    Li, Q., Ji, K., Sun, Y.F., Luo, H., Wang, H.Q., and Leng, P. (2013). The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry. Plant J.76,24-35.
    Li, Y., Baldauf, S., Lim, E.K., and Bowles, D.J. (2001). Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J. Biol. Chem.276, 4338-4343.
    Lin, X., Xiao, M., Luo, Y., Wang, J.Y., and Wang, H.Q. (2013). The effect of RNAi-induced silencing of FaDFR on anthocyanin metabolism in strawberry (Fragaria×ananassa) fruit. Sci. Hortic.160, 123-128.
    Linforth, R.S., Bowman, W.R., Griffin, D.A., Marples, B.A., and Taylor, I.B. (1987).2-trans-ABA alcohol accumulation in the wilty tomato mutants flacca and sitiens. Plant Cell Environ.10, 599-606.
    Liu, M., Diretto, G., Pirrello, J., Roustan, J.P., Li, Z., Giuliano, G., Regad, F., and Bouzayen, M. (2014). The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF. B3, shows contrasting effects on tomato fruit ripening. New Phytol. Doi:10.1111/nph.12771.
    Louveau, T., Leitao, C., Green, S., Hamiaux, C., Van der Rest, B., Dechy-Cabaret, O., Atkinson, R.G., and Chervin, C. (2011). Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit. FEBS J.278,390-400.
    Lunkenbein, S., Bellido, M., Aharoni, A., Salentijn, E.M., Kaldenhoff, R., Coiner, H.A., Munoz-Blanco, J., and Schwab, W. (2006a). Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose:cinnamate glucosyltransferase from strawberry. Plant Physiol.140,1047-1058.
    Lunkenbein, S., Coiner, H., de Vos, C.H., Schaart, J.G., Boone, M.J., Krens, F.A., Schwab, W., and Salentijn, E.M. (2006b). Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria×ananassa). J. Agric. Food Chem.54,2145-2153.
    Mackenzie, P.I., Owens, I.S., Burchell, B., Bock, K.W., Bairoch, A., Belanger, A., Gigleux, S.F., Green, M., Hum, D.W., Iyanagi, T., et al. (1997). The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenet. Genomics 7,255-269.
    Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., Frey, A., and Marion-Poll, A. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J.15,2331-2342.
    McCann, M., and Rose, J. (2010). Blueprints for building plant cell walls. Plant Physiol.153,365-365.
    Millar, A.A., Jacobsen, J.V., Ross, J.J., Helliwell, C.A., Poole, A.T., Scofield, G., Reid, J.B., and Gubler, F. (2006). Seed dormancy and ABA metabolism in Arabidopsis and barley:the role of ABA 8'-hydroxylase. Plant J.45,942-954.
    Moussatche, P., and Klee, H.J. (2004). Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J. Biol. Chem.279,48734-48741.
    Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y., and Inaba, A. (1998). Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase,1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol.118,1295-1305.
    Nambara, E., and Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism.:Annu. Rev. Plant Biol.56,165-185.
    Neuman, H., Galpaz, N., Cunningham, F.X., Zamir, D., and Hirschberg, J. (2014). The tomato mutation nxdl reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. Plant J.78,80-93.
    North, H.M., Almeida, A.D., Boutin, J.P., Frey, A., To, A., Botran, L., Sotta, B., and Marion-Poll, A. (2007). The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J.50,810-824.
    Oeller, P.W., Lu, M.W., Taylor, L.P., Pike, D.A., and Theologis, A. (1991). Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254,437-439.
    Oude Griep, L.M., Verschuren, W.M., Kromhout, D., Ocke, M.C., and Geleijnse, J.M. (2012). Variety in fruit and vegetable consumption and 10-year incidence of CHD and stroke. Public Health Nutr. 75,2280-2286.
    Pecker, I., Chamovitz, D., Linden, H., Sandmann, G., and Hirschberg, J. (1992). A single polypeptide catalyzing the conversion of phytoene to zeta-carotene is transcriptionally regulated during tomato fruit ripening. Proc. Natl. Acad. Sci. U. S. A.89,4962-4966.
    Penarrubia, L., Aguilar, M., Margossian, L., and Fischer, R.L. (1992). An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell 4,681-687.
    Phan, T.D., Bo, W., West, G., Lycett, G.W., and Tucker, G.A. (2007). Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Plant Physiol.144, 1960-1967.
    Poppenberger, B., Fujioka, S., Soeno, K., George, G.L., Vaistij, F.E., Hiranuma, S., Seto, H., Takatsuto, S., Adam, G., Yoshida, S., et al. (2005). The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc. Natl. Acad. Sci. U. S. A.102,15253-15258.
    Priest, D.M., Ambrose, S.J., Vaistij, F.E., Elias, L., Higgins, G.S., Ross, A.R., Abrams, S.R., and Bowles, D.J. (2006). Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J.46,492-502.
    Ren, J., Chen, P., Dai, S.J., Li, P., Li, Q., Ji, K., Wang, Y.P., and Leng, P. (2011). Role of abscisic acid and ethylene in sweet cherry fruit maturation:molecular aspects. N. Z. J. Crop Hortic. Sci.39, 161-174.
    Ren, J., Sun, L., Wu, J.F., Zhao, S.L., Wang, C.L., Wang, Y.P., Ji, K., and Leng, P. (2010). Cloning and expression analysis of cDNAs for ABA 8'-hydroxylase during sweet cherry fruit maturation and under stress conditions. J. Plant Physiol.167,1486-1493.
    Ronen, G., Carmel-Goren, L., Zamir, D., and Hirschberg, J. (2000). An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. U. S. A.97,11102-11107.
    Ronen, G., Cohen, M., Zamir, D., and Hirschberg, J. (1999). Regulation of carotenoid biosynthesis during tomato fruit development:expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J.17,341-351.
    Ross, J., Li, Y., Lim, E.K., and Bowles, D.J. (2001). Higher plant glycosyltransferases. Genome Biol.2, 3004.1-3004.6.
    Rottmann, W.H., Peter, G.F., Oeller, P.W., Keller, J.A., Shen, N.F., Nagy, B.P., Taylor, L.P., Campbell, A.D., and Theologis, A. (1991).1-Aminocyclopropane-l-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J. Mol. Biol.222,937-961.
    Sagi, M., Scazzocchio, C., and Fluhr, R. (2002). The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Plant J.31,305-317.
    Saika, H., Okamoto, M., Miyoshi, K., Kushiro, T., Shinoda, S., Jikumaru, Y., Fujimoto, M., Arikawa, T., Takahashi, H., Ando, M., et al. (2007). Ethylene promotes submergence-induced expression of OsABA8oxl, a gene that encodes ABA 8'-hydroxylase in rice. Plant Cell Physiol.48,287-298.
    Saito, S., Hirai, N., Matsumoto, C., Ohigashi, H., Ohta, D., Sakata, K., and Mizutani, M. (2004). Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol.134,1439-1449.
    Saladie, M., Rose, J.K., Cosgrove, D.J., and Catala, C. (2006). Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J.47,282-295.
    Sauter, A., Dietz, K.J., and Hartung, W. (2002). A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant Cell Environ.25,223-228.
    Schaart, J.G., Dubos, C., Romero De La Fuente, I., Houwelingen, A.M., Vos, R.C., Jonker, H.H., Xu, W.J., Routaboul, J.M., Lepiniec, L., et al. (2013). Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria×ananassa) fruits. New Phytol 197,454-467.
    Schwartz, S.H., Qin, X.Q., and Zeevaart, J.A. (2003). Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol.131,1591-1601.
    Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A., and McCarty, D.R. (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276,1872-1874.
    Seo, M., Koiwai, H., Akaba, S., Komano, T., Oritani, T., Kamiya, Y., and Koshiba, T. (2000a). Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J.23,481-488.
    Seo, M., Peeters, A.J., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J.A., Koornneef, M., Kamiya, Y., and Koshiba, T. (2000b). The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. U. S. A.97, 12908-12913.
    Seymour, G.B., Chapman, N.H., Chew, B.L., and Rose, J.K. (2013). Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnol. J.11,269-278.
    Simon, C., Langlois-meurinne, M., Didierlaurent, L., Chaouch, S., Bellvert, F., Massoud, K., Garmier, M., Thareau, V., Comte, G., and Noctor, G., et al. (2014). The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato. Plant Cell Environ.37,1114-1129.
    Sinesio, F., Cammareri, M., Moneta, E., Navez, B., Peparaio, M., Causse, M., and Grandillo, S. (2010). Sensory quality of fresh French and Dutch market tomatoes:a preference mapping study with Italian consumers. J. Food Sci.75, S55-S67.
    Smith, C.J., Watson, C.F., Ray, J., Bird, C.R., Morris, P.C., Schuch, W., and Grierson, D. (1988). Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334,724-726.
    Smith, D.L., Abbott, J.A., and Gross, K.C. (2002). Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiol.129,1755-1762.
    Sun, L., Sun, Y.F., Zhang, M., Wang, L., Ren, J., Cui, M.M., Wang, Y.P., Ji, K., Li, P., Li, Q., et al. (2012a). Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiol.158,283-298.
    Sun, L., Yuan, B., Zhang, M., Wang, L., Cui, M.M., Wang, Q., and Leng, P. (2012b). Fruit-specific RNAi-mediated suppression of SINCED1 increases both lycopene and β-carotene contents in tomato fruit. J. Exp. Bot.63,3097-3108.
    Sun, L., Zhang M., Ren J., Qi J.X., Zhang G.J., and Leng P. (2010). Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biol.10,257.
    Sun, Y., Chen, P., Duan, C., Tao, P., Wang, Y.P., Ji, K., Hu, Y., Li, Q., Dai, S., Wu, Y., et al. (2013). Transcriptional regulation of genes encoding key enzymes of abscisic acid metabolism during melon (Cucumis melo L.) fruit development and ripening. J. Plant Growth Regul.32,233-244.
    Symons, G.M., Chua, Y.J., Ross, J.J., Quittenden, L.J., Davies, N.W., Reid, J.B. (2012). Hormonal changes during non-climacteric ripening in strawberry. J. Exp. Bot.63,4741-4750.
    Tan, H.-L., Thomas-Ahner, J.M., Grainger, E.M., Wan, L., Francis, D.M., Schwartz, S.J., Erdman Jr, J.W., and Clinton, S.K. (2010). Tomato-based food products for prostate cancer prevention:what have we learned? Cancer and Metastasis Rev.29,553-568.
    Tanaka, K., Hayashi, K.-i., Natsume, M., Kamiya, Y., Sakakibara, H., Kawaide, H., and Kasahara, H. (2014). UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant and Cell Physiology 55,218-228.
    Taylor, I.B., Linforth, R.S., Al-Naieb, R.J., Bowman, W.R., and Marples, B.A. (1988). The wilty tomato mutants flacca and sitiens are impaired in the oxidation of ABA-aldehyde to ABA. Plant Cell Environ 11,739-745.
    The Tomato Genome Sequencing Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485,635-641.
    Thompson, A.J., Andrews, J., Mulholland, B.J., McKee, J.M., Hilton, H.W., Horridge, J.S., Farquhar, G.D., Smeeton, R.C., Smillie, I.R., Black, C.R., et al. (2007). Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol.. 143,1905-1917.
    Tieman, D.M., Ciardi, J.A., Taylor, M.G., and Klee, H.J. (2001). Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J.26,47-58.
    Tieman, D.M., Harrirnan, R.W., Ramamohan, G., and Handa, A.K. (1992). An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. Plant Cell 4, 667-679.
    Tieman, D.M., Taylor, M.G., Ciardi, J.A., and Klee, H.J. (2000). The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc. Natl. Acad. Sci. U. S. A.97,5663-5668.
    Tikunov, Y.M., Molthoff, J., de Vos, R.C., Beekwilder, J., van Houwelingen, A., van der Hooft, J.J., Nijenhuis-de Vries, M., Labrie, C.W., Verkerke, W., van de Geest, H., et al. (2013). NON-SMOKY GLYCOSYLTRANSFERASE1 prevents the release of smoky aroma from tomato fruit. Plant Cell 25,3067-3078.
    Tognetti, V.B., Van Aken, O., Morreel, K., Vandenbroucke, K., Van De Cotte, B., De Clercq, I., Chiwocha, S., Fenske, R., Prinsen, E., Boerjan, W., et al. (2010). Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22,2660-2679.
    Tucker, K.L. (2009). Osteoporosis prevention and nutrition. Curr. Osteoporos Rep.7,111-117.
    Umezawa, T., Okamoto, M., Kushiro, T., Nambara, E., Oono, Y., Seki, M., Kobayashi, M., Koshiba, T., Kamiya, Y., and Shinozaki, K. (2006). CYP707A3, a major ABA 8'-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J.46,171-182.
    Wang, J., Ma, X.M., Kojima, M., Sakakibara, H., and Hou, B.K. (2011). N-Glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol.52,2200-2213.
    Wang, J., Ma, X.M., Kojima, M., Sakakibara, H., and Hou, B.K. (2013). Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in Arabidopsis thaliana. Plant Physiol. Biochem.65,9-16.
    Wilkinson, S., and Davies, W.J. (2002). ABA-based chemical signalling:the co-ordination of responses to stress in plants. Plant Cell Environ.25,195-210.
    Xiong, D.M., Liu, Z., Chen, H., Xue, J.T., Yang, Y., Chen, C., and Ye, L.M. (2014). Profiling the dynamics of abscisic acid and ABA-glucose ester after using the glucosyltransferase UGT71C5 to mediate abscisic acid homeostasis in Arabidopsis thaliana by HPLC-ESI-MS/MS. Journal of Pharmaceutical Analysis Doi:http://dx.doi.org/10.1016/j.jpha.2014.01.004
    Xiong, L.M., Lee, H., Ishitani, M., and Zhu, J.K. (2002). Regulation of osmotic stress-responsive gene expression by the LOS6|ABA1 Locus in Arabidopsis. J. Biol. Chem.277,8588-8596.
    Xu, Z.J., Nakajima, M., Suzuki, Y., and Yamaguchi, I. (2002). Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol.129, 1285-1295.
    Xu, Z.Y., Lee, K.H., Dong, T., Jeong, J.C., Jin, J.B., Kanno, Y., Kim, D.H., Kim, S.Y., Seo, M., Bressan, R.A., et al. (2012). A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell 24,2184-2199.
    Yang, Y.W., Wu, Y., Pirrello, J., Regad, F., Bouzayen, M., Deng, W., and Li, Z.G. (2010). Silencing Sl-EBF1 and SI-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato. J. Exp. Bot.61,697-708.
    Yokotani, N., Tamura, S., Nakano, R., Inaba, A., and Kubo, Y. (2003). Characterization of a novel tomato EIN3-like gene (LeEIL4). J. Exp. Bot.54,2775-2776.
    Zhang, M., Leng, P., Zhang, G.L., and Li, X.X. (2009b). Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J. Plant Physiol.166,1241-1252.
    Zhang, M., Yuan, B., and Leng, P. (2009a). The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot.60,1579-1588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700