三维锥束CT图像重建加速技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CT技术在临床医学上的应用是20世纪医疗技术进步的重要标志。锥束CT具有扫描速度快、分辨率各向同性、射线利用率高等优点,在医学诊断和工业无损检测等领域有着广阔的应用前景,成为当今国际CT研究领域中最为活跃的前沿课题。然而锥束CT三维图像重建的运算量和数据传输量巨大,重建时间较长,只利用CPU进行计算的方案已经不能满足现代临床和工程应用的要求。因此,研究如何提高锥束CT重建算法的运算速度并找到合适的解决方案具有重要的学术价值和应用研究价值。
     目前图形处理器(GPU)已经具有高度的大规模并行计算能力,并且具有良好的可编程性。因此根据FDK三维图像重建算法可并行的特点,研究了一种利用GPU统一并行计算架构(CUDA)加速图像重建过程的方法。论文的创新点在于:一是提出了一种并行FFT计算在GPU上的实现方法以加快重建算法中数据滤波的速度;二是利用CUDA技术在GPU上实现了FDK算法的加速计算,并根据GPU硬件和存储器特点,提出了优化方法。
     本文首先介绍CT成像的物理和数学基础理论,对平行束投影重建算法进行分析和总结;其次,对二维扇束CT重建算法基础知识进行了概括,然后重点分析三维锥束CT图像重建算法,研究FDK及其衍生算法在计算上的特点;第三,快速傅里叶变换(FFT)是实现滤波的一个有力工具,本文研究了一种新型的适合GPU运算的FFT并行计算方法,并通过CUDA架构实现此并行FFT算法在GPU上的运算。实验结果显示本文的并行FFT方法最高可达到了46倍的加速效果;第四,本文分析了FDK三维重建算法并行计算原理,研究运用GPU技术加速FDK算法,在FDK算法的加权预处理,滤波和反投影三个阶段,分别设计了适合CUDA的并行计算方法。同时,根据GPU存储器特点,使用多种存储器,优化数据传输和访问,实现了CPU和GPU协调合作。实验结果表明,该GPU图像重建加速方法与CPU单独重建相比获得了150倍以上的加速效果,并且两者的图像质量接近,平均误差小于10-4。
     CUDA的推出,使得GPU具有更好的可编程性,适合开发人员快速掌握其编程方法,缩短了程序开发周期。考虑到存储器性能(数据传输和访问)仍对算法执行速度影响较大,如果新的GPU能够提升储器的效率,那么我们在并行FFT计算和FDK重建算法加速方面将会有更好的效果。我们可以得出结论,随着CUDA架构逐步成熟和GPU性能的提高,利用GPU的三维锥束CT图像重建速度将会更快,将能满足实时准确重建的要求。
CT technology applied in clinical medicine is an important symbol of medical technology progress in 20th century. Cone-beam CT has many advantages such as fast scanning, X-ray highly-usaged and image resolution isotropic. It is widely applied in medical diagnosis and industrial nondestructive testing fields, and has become one of the advanced reaserch subjects for the international CT field. However cone-beam CT 3D images reconstruction has great amount of computation and data transmission, so that image reconstruction is time-consuming. Only using CPU is impossible to meet the requirements of 3D image reconstruction in real-time. Therefore, improve the cone-beam CT reconstruction speed and find the right solution has important academic value and application prospect.
     Nowadays GPU (Graphic Processing Unit, GPU) has high level of parallelism, so this paper advances a method using GPU-based CUDA (Compute Unified Device Architecture, CUDA) technology to accelerate FDK reconstruction algorithm. There are two innovation points in this paper:on the one hand, a parallel FFT (Fast Fourier Transform, FFT) method with GPU to improve the image data filtering time is proposed; On the other hand, uses CUDA technology to realize FDK algorithm calculation, and according to the GPU hardware and memory characteristic puts forward the optimal methods.
     This paper firstly introduces physical and mathematical theory of CT imaging, and analyses parallel-beam projector reconstruction algorithm; Secondly, summarizes 2D fan-beam CT basic knowledge of reconstruction algorithms, and then focuses on analysing the 3D cone-beam image reconstruction algorithms, researching characteristics of FDK algorithm and its derivative algorithms; Thirdly, studies a new kind parallel FFT method to suit GPU computing, and uses CUDA technology to realize the method. Experimental results show that this method can achieve 46 times faster than the CPU-only method; Fourthly, this paper analyses the FDK 3D reconstruction algorithm parallel computing principle, proposes using GPU technology to accelerate FDK algorithm, designs methods respectively in weighting, filtering and backprojection stage of the FDK algorithm. Meanwhile, we employ kinds of CUDA memory to optimize both data transmission and memory access. The experiments show that the GPU method proposed by this paper is 150 times faster than the CPU method, the images of two methods are similar, and the error is less than 10(?).
     The CUDA technology makes the GPU programming more easily, it suitable for developers quickly grasp its programming method, and shorten the program development cycle. Considering the memory performance (data transmission and access) still influences execution speed of the algorithms greatly, the proposed parallel FFT and FDK reconstruction methods will have better effect if new kind of GPU can improve the efficiency of the memory performance. We may safely draw the conclusion that, along with CUDA architecture gradually maturing and GPU performance improvement, cone-beamCT 3D image reconstruction will be faster, and will be able to meet the requirement of real-time and accurate reconstruction.
引文
[1]桂建保,胡战利,周颖,等.高分辨显微CT技术进展[J].CT理论与应用研究,2009,18(2):106-116.
    [2]刘元朋,张丰收.锥束计算机断层成像系统[M].知识产权出版社,2008.
    [3]杜国浩,陈荣昌,谢红兰,等.同步辐射在显微CT中的应用[J].生物医学工程学进展,2009,30(4):226-231.
    [4]L A Feldkamp, L C Davis, J W Kress. Practical cone-beam algorithm[J]. Opt. Soc. Am. A,1984,1(6):612-619.
    [5]张剑,陈志强.三维锥形束CT成像FDK重建算法发展综述[J].中国体视学与图像分析,2005,10(2):116-121.
    [6]邹永宁,刘宝东.基于集群并行及指令优化的FDK重建算法[J].计算机工程,2009,35(8):10-12.
    [7]www.maydeal.com.CT速度的巨大突破[EB]. http://www.maydeal.com/ news/9371.html,2005-6-6.
    [8]R Gordon, R Bender, G.T Herman. Algebraic Reconstruction Techniques(ART) for three Dimensional Electron Micoscopy and X-ray Photography[J]. Journal of Theoretical Biology,1970,29(3):471-481.
    [9]P Gilbert. Iterative methods for the three-dimensional reconstruction of an object from projection[J]. Journal of Theoretical Biology,1972,36(1): 105-107.
    [10]Y Censor. Parallel application of block-iterative methods in medical imaging and radiation therapy[J]. Mathematical Programming,1988,42:307-325.
    [11]GT Herman, H Levkowitz, HK Tuy, et al. Multilevel image reconstruction[J]. Multi-resolution Image Processing and Analysis, Springer-Verlag Berlin,1984:121-135.
    [12]RL Kashyap, MC Mittal. Picture reconstruction from projections[J]. IEEE. Trans. Computer,1975,24(9):915-923.
    [13]LA Sheep, Y Vardi. Maximum likelihood reconstruction fore mission and tomography[J]. IEEE Trans on medical imaging,1982,1:113-122.
    [14]HM Hudson, RS Larkin. Accelerated image reconstruction using ordered subsets of projection data[J]. IEEE Trans on medical imaging,1994,13(4): 601-609.
    [15]高欣.新型迭代图像重建算法的理论研究和实现[D].浙江大学博士学位论文,2004.
    [16]Wang G, Lin T H, Cheng P C, Shinozaki. A General Cone-beam Reconstruction Algorithm[J]. IEEE Trans on Medical Imaging,1993,12(3):486-495.
    [17]Henrik Turbel. Cone-beam Reconstruction Using Filtered Backprojection[M]. Sweden:Department of Electrical Engineering Linkopings university,2001.
    [18]Grass M, et al.3D cone-beam CT reconstruction for circular trajectories[J]. Physics in Medicine and Biology.2000,45(2):329-347.
    [19]Grass M, et al. Angular weighted hybrid cone-beam CT reconstruction for circular Trajectories[J]. Phys. Med. Biol.2002,46(6):1595-1610.
    [20]王蔚林,姜晓彤,罗立民,等.利用投影数据重排进行锥形束体积重建的改进算法[J].东南大学学报(自然科学版),2004,34(3):332-335.
    [21]Wang G, Liu Y, Lin T H, et al. Half-scan cone-beam x-ray micro tomography for mula[J]. J Scanning Microscopy,1994,16:216-220.
    [22]L iu Y, L iu H, Wang G. Half-scan cone-beam CT fluoroscopy with multiple x-ray sources[J]. Med Phys,2001,28:1466-1471.
    [23]曾凯,陈志强,张丽,等.基于同心圆轨道的锥形束CT重建算法[J].清华大学学报(自然科学版),2004,44(6):725-727,731.
    [24]HK Tuy. An inversion for cone-beam reconstruction[J]. SIAM Journal of Applied Mathematics,1983,3:546-552.
    [25]BD Smith. Image reconstruction from cone-beam projections:necessary and sufficient conditions and reconstruction methods[J]. IEEE Transactions on Medical Imaging,1985:14-25.
    [26]BD Smith. Implementation, investigation, and improvement of a novel cone-beam reconstruction method[J]. IEEE Transactions on Medical Imaging, 1992,11:260-266.
    [27]P Grangeat. Evaluation of the 3-D radon transform algorithm for cone beam reconstruction[J]. Proceedings of SPIE,1991,1445:320-331.
    [28]M Defrise, R Clack, A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection[L]. IEEE Transactions on Medical Imaging,1994,13(1):186-195.
    [29]毛希平,康克军.一种确定三维锥束CT精确重建域的方法[J].清华大学学报,2000,40(2):19-23.
    [30]Alexander Katsevich. Theoretically exact filtered backprojection-type inversion algorithm for spiral CT[J]. SIAM J. APPL. MATH,2002,62(6):2012-2026.
    [31]Yangbo Ye, Shiying Zhao, Hengyong Yu, et al. A general exact reconstruction for cone-beam CT via backprojection-filtration[J]. IEEE. Trans. Med. Imaging, 2005,24(9):1190-1198.
    [32]Zou Y, Pan XC. Image reconstruction on PI-lines by use of filtered backprojection in helical cone-beam CT[J]. Physics in Medicine and Biology, 2004,49(12):2717-2731.
    [33]Zou Y, Pan XC. Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT[J]. Physics in Medicine and Biology,2004,49(6): 941-959.
    [34]Pan XC, Xia D, Zou Y, et al. A unified analysis of FBP-based algorithms in helical cone-beam and circular cone- and fan-beam scans [J]. Physics in Medicine and Biology,2004,49(18):4349-4369,
    [35]邹永宁,谭辉,黄亮.CT图像重建加速的几种方法[J].计算机系统应用,2009,4:167-170.
    [36]B Cabral, N Cam, J Foran. Accelerated volume rendering and romographic reconstruction using texture mapping hardware[J]. Proc. Symp. on Volume Visualization,1994,91-98.
    [37]Fang Xu, Mueller K. Ultra-fast 3D filtered backprojection on commodity graphics hardware[C]. International Symposium on Biomedical Imaging: Macro to Nano, Arlington, United States:IEEE,2004,1:571-574.
    [38]Mueller K, Fang Xu. Practical considerations for GPU-accelerated CT[C]. International Symposium on Biomedical Imaging:Macro to Nano, Arlington, United States:IEEE,2006:1184-1187.
    [39]戴智晟,陈志强,邢宇翔,等.用通用显卡加速三维锥束T-FDK重建算法[J].清华大学学报(自然科学版),2006,46(9):1589-1592.
    [40]马车平,曾理.GPU多重纹理加速三维CT图像重建[J].计算机工程与应用,2008,44(7):227-230.
    [41]Holger Scherl, Benjamin Keck, Markus Kowarschik, et al. Fast GPU-Based CT Reconstruction using the Common Unified Device Architecture (CUDA)[C].2007 IEEE Nuclear Science Symposium Conference Record, 26(280):4464-4466.
    [42]王珏,曹思远,邹永宁.利用CUDA技术实现锥束CT图像快速重建[J].核电子学与探测技术,2010,30(3):315-320.
    [43]孙毅刚,孙修宇,张红颖.基于现代GPU的实时锥束重建算法研究[J].核电子学与探测技术,2010,30(9):1260-1265.
    [44]AM Cormack. Representation of a function by its line integrals with some radiological applications[J]. Journal of Applied Physics,1963,34:2722-2727.
    [45]GN Hounsfield. A Method of and Approaches for Examination of a Body by Radiation such as X or Gamma Radiation:U.K, 1283915[P/OL].1972-07-26. http://portal.acm.org/citation.cfm?id=563274.5 63318.
    [46]庄天戈.CT原理和算法[M].第一版.上海:上海交通大学出版社,1992:1-99.
    [47]WA Kalender, W Seissler, E Kloz, et al. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation [J]. Radiology,1990,176(1):181-183.
    [48]Alexander Sasov. Comparison of fan-beam, cone-beam, and spiral scan reconstruction in x-ray micro-ct[J]. Proceedings of SPIE,4503:124-131.
    [49]JIANG HSIEH.计算机断层成像技术:原理、设计、伪像和进展[M].张朝宗,郭志平,王贤刚,等译.北京:科学出版社,2006.
    [50]王智广,刘伟峰.“并行计算”课程算法实践教学的新工具:CUDA编程模型[J].学科建设与教学改革,2008,23:103-106.
    [51]NVIDIA Corporation. NVIDIA CUDA Programming Guide Version 3.1 [R]. [S.1.] NVIDIA Corporation,2010.
    [52]Kirk D, H Wu Wen-mei, ECE 498AL:Applied Parallel Programming [EB/OL]. (2010)[2010-03-11]. http://courses.ece.illinois.edu/ece498/al/.
    [53]F Natterer. The mathematics of computerized tomography[D]. Munster: University of Munster Federal Republic of Germany,1986.
    [54]霍修坤.锥束CT直接三维成像算法研究[D].安徽大学博士学位论文,2005.
    [55]Wang G, Lin T H, Cheng P C, Shinozaki. A General Cone-beam Reconstruction Algorithm[J]. IEEE Trans on Medical Imaging,1993,12(3):486-495.
    [56]张剑,陈志强.三维锥形束CT成像FDK重建算法发展综述[J].中国体视学与图像分析,2005,10(2):116-121.
    [57]Henrik Turbell. Cone-beam reconstruction using filtered backprojection[D]. Sweden:Department of Electrical Engineering Linkepings university,2001.
    [58]Grass M, et al.3D cone2 beam CT reconstruction for circular trajectories[J]. Physics In Medicine and Biology,2000,45(2):329-347.
    [59]Hu H. A new cone beam reconstruction algorithm for the circular orbit[J]. IEEE Trans Med Imag,1995,14:1261-1265.
    [60]Jiang Hsieh. A practical Cone Beam Artifact Correction Algorithm[C]. Lyon: IEEE. Nuclear Science Symposium Conference Record,2000.
    [61]张銮.基于平板探测器的锥束CT重建技术研究[D].中北大学硕士学位论文,2010.
    [62]朱林,王志凌,黄天戍.基于DSP并行系统的FFT算法实现[J].武汉理工大学学报,2009,31(20):102-104,120.
    [63]万红星,陈禾,韩月秋.并行数据FFT/IFFT处理器的设计[J].北京理工大学学报,2006,26(4):338-341.
    [64]刘文辉.基于SIMD-BF的并行FFT算法[J].商丘师范学院学报,2003,19(5):62-63.
    [65]于泽德.基于SIMD-MC2的并行FFT算法[J].现代计算机(专业版),2008,10:57-58.
    [66]王璐,梁涛,王文义,FFT算法的并行化性能分析[J].中原工学院报,2010,21(5):30-32,41.
    [67]NVDIA. "CUDA CUFFT Library_3.1". http://developer.Download.Nvidia. com/compute/cuda/3_1/toolkit/docs/CUFFT_Library_3.1.pdf.
    [68]De Beer R, Van Ormondt, D Di, Cesare F, et al. Accelerating batched 1D-FFT with a CUDA-capable computer [C]. Imaging Systems and Techniques (IST), IEEE International Conference,2010:446-451.
    [69]肖江,胡柯良,邓元勇.基于CUDA的矩阵乘法和FFT性能测试[J].计算机工程,2009,35(10):7-10.
    [70]LA Shepp, BF Logan. The fourier reconstruction of a head section[J]. IEEE Trans. Nucl. Sci.,1974,21(1):21-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700