HLB感染柑桔韧皮部内生细菌区系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是世界上产量最大的水果,巴西是世界上产柑橘最多的国家,其次是中国、美国、墨西哥和西班牙。柑桔黄龙病(Citrus huanglongbing,HLB)是由难人工培养的韧皮杆菌(Cndidatus Liberibacter asiaticus)引起的柑桔毁灭性病害。目前还没有获得该病原菌的纯培养。新近的分子鉴定结果表明黄龙病罹病组织内除存在韧皮杆菌外,还存在其它致病微生物:植原体或伴生微生物,并认为其可能是黄龙病植株症状表现复杂多样的内在原因。本研采用常规分离培养技术与分子鉴定以及基于16S rDNA基因的RFLP(Restriction Fragment Length Polymorphism)法,对柑桔黄龙病植株和健康植株的韧皮部内生菌区系进行比较分析,为研究柑橘植株韧皮部内生细菌与黄龙病菌之间的相互关系奠定基础。
     利用分离培养的方法,根据菌落形态以及菌体形态共分离到21株柑桔韧皮部内生细菌,对21株内生细菌进行形态和生理生化测定。经形态学鉴定和序列比对:菌株WJ01,WJ02,WJ03,WJ05,WJ08,WJ12,WJ13,WJ16,WJ17,WJ18,WJ21为芽孢杆菌属(Bacillus sp.),WJ04和WJ14为假单胞菌属(Pseudomonas sp.),WJ06为葡萄球菌属(Staphylococcus sp.),WJ10为考克氏菌(Kocuria sp.)。其中鉴定到种的部分菌株:WJ07:约氏不动杆菌(Acinetobacter johnsonii)、WJ09:粘质沙雷氏菌(Serratia marcescens)、WJ11:乳杆菌属草乳杆菌(Lysinibacillus graminis)、WJ15:微球菌属栖息微球菌(Miccrococcus sedentarius)、WJ19:产左聚糖微杆菌(Microbacterium laevaniformans)、WJ20;极小短小杆菌(Curtobacterium pusillum)的特征。在健康柑橘植株韧皮部中Bacillus sp.、Pseudomonas sp.、Kocuria sp.为优势菌群。在HLB柑橘植株韧皮部中Microbacterium sp.、Bacillus sp.、Pseudomonas sp.和Kocuria sp.为优势菌。且病株与健株相比, WJ19(Microbacterium sp.)的丰富度增加最为明显。
     利用16S rDNA-RFLP的方法分析柑桔内生细菌多样性。首先采用的保守性引物分别扩增健康和罹病柑桔韧皮部总内生细菌16S rDNA中的高变区V5、V6、V7、V8及V9,得到的片段长度约为700bp。回收产物进行T-A克隆,健株与病株分别随机挑取了229,228个阳性克隆子,进行PCR检测。提取阳性克隆子的质粒。含有的目的片段的质粒分别用MspⅠ,RsaⅠ,HaeⅢ限制性内切酶进行酶切。鉴别分析各个阳性克隆的酶切图谱类型,对文库中的所有克隆进行分型,不同的类型即是不同的分类操作单位(Operational Taxonomic Unit,OTU)。将不同的OTUs进行测序。测序结果与GenBank中的序列进行同源性比较,结果显示:鉴定出10个属的细菌以及11个不可培养细菌,其中9个OTUs的序列与GenBank中的序列比对相似性≤97%,这些可能是还未经过序列测定过的新菌种。不同属的RFLP OUTs在健株(health plant,HP)与病株(infected plant,IP)的16S rDNA克隆文库中所占的比率不同,分析结果显示:Dyella sp.(HP 27.08%;IP 25%),Enterobacter sp. (HP 3.93%;IP 0%),Serratia marcescens (HP16.16%;IP 18.86%),Enterococcus sanguinicola(HP 3.06%;IP 3.95%),Achromobacter sp.(HP 1.75%;IP 1.32%),Bosea sp. (HP 1.31%;IP 0.44%),Lysinibacillus fusiformis(HP 0%;IP 0.88%),Candidatus Liberibacter asiaticus(HP 0%;IP 3.07%),Bacillus sp.(HP 1.31%;IP 1.31%),Pseudomonas sp(.HP 17.03%;IP 17.54%),Uncultured bacterium clone(HP 28.38%;IP 27.63%)。
     常规分离培养与16S rDNA-RFLP的分析方法得到的结果不一致,这说明每种方法都有一定的优势性和局限性;单一使用存在局限性,需要两种方法结合,能够更全面地分析柑桔韧皮部内生细菌的多样性。
     常规分离培养与16S rDNA-RFLP的序列分析研究结果表明:健康和罹病柑桔的韧皮部都存在丰富的内生细菌,且这些内生细菌优势菌的种群丰富度与种类存在一定差异。深入研究黄龙病侵染后韧皮部中存在的Microbacterium sp.等不同的细菌菌群与黄龙病菌的相互作用可望发现促生或抑制活性的伴生微生物,为黄龙病病原物的人工培养提供新方法
Citrus is an important economic crop in the world, the major commercial citrus growing areas include southern China, the Mediterranean Basin (including southern Spain), South Africa, Australia, the southernmost United States and parts of South America. In China, Guangxi, Guangdong, Fujian, Sichuan, Hunan, Hubei and Zhejiang provinces are major production areaes, while smaller plantings are present in other provinces. Huanglongbing in China, is probably the one of worst diseases of citrus industry, which caused by a tiny bacterial pathogen. The causative agent is a motile bacterium, Candidatus Liberibacter spp. Field transmission is mainly by Asian citrus psyllids (Sternorrhyncha: Psyllidae, Diaphorina citri).The disease was first described in 1929 and first reported grafting transmission in China in 1956. The African variation was first reported in 1947 in South Africa, where it is still widespread. There is only few reports available about accepted pure culture of the pathogenalthough recently breakthrough in co-culture of HLB causal agents indicated that some company microorganisms are present in theHuanglongbing infected host tissue, and it may causes complex and diverse symptom of Huanglongbing pathogen-Infected citrus. The morphological, physiological and biochemistry characteristics combined with 16S rRNA-RFLP (Restriction Fragment Length Polymorphism) analysis method were applicated for researching the flora of endophytic bacterial populations,especially the microbial diversity in the healthy and Huanglongbing pathogen-infected citrus. All of these aimed to find associated microorganisms of huanglongbing pathogen were investigated.
     By the traditional isolation identification and 16S rDNA amplificons methods, 10 genera of bacteria were identified from 21 isolated bacterial populations. The sequences aligned with GenBank database and showed that they were belonged to 10 different genera of bacterium. The morphological and sequence analysis showed that: WJ01, WJ02, WJ03, WJ05, WJ08, WJ12, WJ13, WJ16, WJ17, WJ18, WJ21 belonged to Bacillus sp., WJ04 and WJ14 belonged to Pseudomonas sp., WJ06 belonged to Staphylococcus sp., WJ10 belonged to Kocuria sp. Some strains were also reached the level of species: WJ07, WJ09, WJ11, WJ15, WJ19, WJ20 were respectively consistent with Acinetobacter johnsonii, Serratia marcescens, Lysinibacillus graminis, Miccrococcus sedentarius, Microbacterium laevaniformans, Curtobacterium pusillum. The dominant bacteria in healthy citrus belonged to Bacillus sp., Pseudomonas sp., Kocuria sp.; and in Huanglongbing pathogen-infected citrus were Bacillus sp., Pseudomonas sp., Kocuria halotolerans, Microbacterium sp.
     By the PCR-RFLP analysis, two 16S rRNA libraries of Endophytic bacteria were constructed. The total DNA of microorganisms was extracted from the phloem of health and huanglongbing pathogen-infected citrus, and then amplified the 16S rRNA partial sequence: the highly variable region V5, V6, V7, V8 and V9. Primers were designed to generate about a 700 bp of product, corresponding to nucleotides 799–1492 of the 16S rRNA. Purified PCR amplification products were ligated into the pMD19-T cloning vector and transformed into competent Escherichia coli JM109 cells using electric-shock. For T-A cloning, healthy plants and diseased plants randomly picked up 229, 228 positive clones were carried out by PCR. The plasmid, containing the target fragment, were extracted from the positive clonesand used to digested by MspⅠ, RsaⅠ, HaeⅢrestriction enzyme. Those samples with different profiles were considered as different clones and represented a different bacterial strain. A representative from each of the different profile groups observed was sequenced. 16S rRNA sequences were compared with sequence data deposited in GenBank, using the BLAST alignment with sequence data held at GenBank. The results showed that: 29 restriction endonuclease types were detected, 10 genera of bacteria and 8 genera of uncultured bacterium were identified. Different genera of RFLP OUTs in healthy plants (HP) and Infected (IP) plants of the 16S rDNA clone library,the proportion of different analysis results showed that: Dyella sp. (HP 27.08%; IP 25%),Enterobacter sp . (HP 3.93%; IP 0%),Serratia marcescens (HP 16.16%; IP 18.86%),Enterococcus sanguinicola (HP 3.06%; IP 3.95%), Achromobacter sp. (HP 1.75%; IP 1.32%), Bosea sp . (HP 1.31%; IP 0.44%), Lysinibacillus fusiformis (HP 0%; IP 0.88%), Candidatus Liberibacter asiaticus (HP 0%; IP 3.07%), Bacillus sp. (HP 1.31%; IP 1.31%), Pseudomonas sp. (HP 17.03%; IP 17.54%), Uncultured bacterium clone (HP 28.38%; IP 27.63%).
     The results showed that: By traditional cultivation, 16S rDNA secquenceing alignment and the PCR-RFLP analysis, there are plenty of microbiota existed in both the healthy and Huanglongbing infected citrus phloem. But the density and species were not exactly same. This suggested that the changes of microbiota flora were maybe assiaciated with the infection of huanglongbing pathogen in citrus phloem. There are a lot of unculturable microorganisms can not be isolated and uncultured andby artificial cultivation method. Therefore more information of microorganism diversity only can be obtained by combining the molecular methods based on the 16S rRNA sequences with traditional culturing methods.
引文
[1]东秀珠,蔡妙英等.常见细菌系统鉴定手册[M].第一版.科学出版社, 2001.
    [2]韩继刚,宋未.植物内生细菌研究进展及其应用潜力[J].自然科学进展, 2004, 14(4) : 374-379.
    [3]何红,蔡学清,关雄等.内生菌BS22菌株的抗菌蛋白及其防病作用[J].植物病理学报, 2003, 33(4): 373-378.
    [4]何红,蔡学清,洪永聪等.辣椒内生细菌的分离以及拮抗菌的筛选[J].中国生物防治, 2002, 18 (4) : 171-175.
    [5]何红,邱思鑫,胡方平等.植物内生细菌生物学作用研究进展[J].微生物学杂志, 2004, 24 (3): 40-45.
    [6]胡浩,殷幼平,张利平,赵云,夏玉先,王中康,覃健.柑橘黄龙病的常规PCR及荧光定量PCR检测[ J ].中国农业科学, 2006, 39(12): 2491-2497.
    [7]蓝江林,刘波,朱育菁等.茄子植物内生细菌群落结构与多样性[J].生态环境学报, 2009, 18(4): 1433-1442
    [8]廖晓兰,朱水芳,赵文军.柑桔黄龙病病原16SrDNA克隆、测序及实时荧光PCR检测方法的建立.农业生物学报, 2004, 12(1): 80-85。
    [9]林玲,乔勇升,顾本康,周益军,董汉松.植物内生细菌及其生物防治植物病害的研究进展.江苏农业学报[J], 2008, 24(6): 969-974.
    [10]罗永兰,张志元,喻珺等.柑橘内生细菌的分离与鉴定[J].湖北农业科学, 2006, 45(6): 773-775.
    [11]张敏,沈德龙,饶小莉,曹凤明,姜昕,李俊.甘草内生细菌多样性研究.微生物学通报, 2008, 35(4): 524-528.
    [12]张景宁,刘仲健,程伟文.柑桔黄龙病病原菌类细菌分离培养及其感病性研究.中国农业科学, 1994, 27(20): 7-12.
    [13] Arau′jo W L, Joelma Marcon, Walter Maccheroni Jr, Jan Dirk van Elsas, Jim W L. Diversity of Endophytic Bacterial Populations and Their Interaction with Xylella fastidiosa in Citrus Plants[J]. Appl. Environ, Microbiology, 2002, 68(10): 4906-4914.
    [14] Arshad M, Ftankenberger W T. Mirobial production of plant hormones [J]. The Rhizosphere and Plant Growth, 1991, pp. 327-334.
    [15] BovéJ M, and Garnier M. Phloem-and xylem-restricted plant pathogenic bacteria [J]. Plant Science, 2003. 163: 1083-1098.
    [16] Bove J M, Chau N M, Trung H M, Bourdeaut J, Garnier M. Huanglongbing (greening) in Vietnam: detection of Liberobacter asiaticum by DNA-hybridization with probe In2. 6 andPCR-amplification of 16S ribosomal DNA. In: Da Graca J, Moreno P, Yokomi R K, eds. Proceedings of the 13th Conference of the International Organization of Citrus Virologists, 1996: 258-266.
    [17] Bove J M, Garnier M. Phloem-and xylem-restricted plant pathogenic bacteria[J]. Plant Disease, 2003, 164: 423-438.
    [18] Bove′J M. Huanglongbing: a destructive, newly emerging, century-old disease of citrus[J]. Plant Pathol, 2006, 88: 7-37.
    [19] Casas J A,Santos V E,Garc?′a-Ochoa F. Xanthan gum production under several operational conditions: molecular structure and rheological properties[J]. Enzyme and Microbial Technology. 2000,26: 282-291.
    [20] Chang C J,Garnier M,Zreik L,Rossetti V,Bove′J M,Culture and serological detection of the xylem- limited bacterium causing citrus variegated chlorosis and its identification as a strain of Xylella fastidiosa[J]. Current Microbiol. 1993, 27: 137-142.
    [21] Chang C J. Pathogenicity of Aster yellows phytoplasma and Spiroplasma citri on periwinkle[J]. Phytopathology, 1998, 88: 1347-1350.
    [22] da Grac?a, J. V. 1991. Citrus greening disease. Annu. Rev. Phytopathol, 29: 109-136.
    [23] Da Graca J. V. Citrus greening disease, Annul Review of Phytopathology, 1991, 29: 109-136.
    [24] Davis M, Mondal S N, Chen H, Rogers M E, Brlansky R H. Cocultivation of Candidatus Liberibacter asiaticus with Actinobacteria from Citrus with Huanglongbing[J]. Plant Disease, 2008, 92(11): 1547-1550.
    [25] Deirdre A P, Michael L R, Amy A C, Kenton E. Dashiell R. Characterization of bacteria isolated from maize roots: Emphasis on Serratia and infestation with corn rootworms (Chrysomelidae: Diabrotica) [J], Applied Soil Egology, 2008, 40: 417-431.
    [26] Garnier M, Jagoueix-Eveillard S, Cronje P, Roux H L, Bove′J M. Genomic characterisation of a liberibacter present in an ornamental rutaceous tree, Calodendrum capense, in the Western Cape province of South Africa. Proposal for“Candidatus Liberibacter africanus subsp. capensis.”Int. J. Syst. Evol. Microbiol, 2000, 50: 2119-2125.
    [27] Germida J J, Siciliano S D, Freitas R D, Seib A M. Diversity of root-associated bacteria associated with field-grown canola (Brassica napusL.) and wheat (Triticum aestivum L. ). FEMS Microbiol. Ecol, 1998, 26: 43-50。
    [28] Hocquellet A, Toorawa P, Bove J M, Garnier M. Detection and identification of the two Candidatus Liberobacter species associated with citrus huanglongbing by PCR amplification of ribosomal protein genes of theβ-operon[J]. Molecular and Cellular Probes, 1999, 13: 373-379.
    [29] Hoshina S, Machida K. Diagnostic microbiology of DNA in septicemia [J]. Rinsho Byori,1996, 44: 314-321.
    [30] Jagoueix S, Bove J M, Garnier M. PCR detection of the two“Candidatus”Liberobacter species associated with greening disease of citrus[J]. Molecular and Cellular Probes, 2000, 14: 43-50.
    [31] Jagoueix S, Bove′J M, Garnier M. The phloem-limited bacterium of greening disease of citrus is a member of alpha subdivision of the Proteobacteria. Intl. J. Sys. Bacteriol, 1994, 44: 379-386.
    [32] John G H, Nobel R K, Peter H A. Bergey’s Manual of determinative bacteriology. 9th ed. Baltimore: WilliaIns &Wilkins Press [J]. 1994.
    [33] Kim J, Sagaram U S, Burns J K, Wang N. Response of sweet orange (Citrus sinensis) to Candidatus Liberibacter asiaticus infection: microscopy and microarray analyses[J]. Phytopathology, 2009, 99: 50-57.
    [34] Kirchhof G, Eckert B, Stoffels M, Baldani J I, Reis V M, Hartmann A. Herbaspirillum frisingense sp. nov. , a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int. J. Syst. Evol. Microbiol, 2001, 51: 157-168. 26.
    [35] Knighten C, Redding J, Feiber D, Compton E, 2005. Department press release. U. S. Department of Agriculture and Florida Department of Agriculture confirm detection of citrus greening. [http: //www. doacs. state. fl. us/press/2005/09022005_2. html].
    [36] Kobayashi D Y,et al. Bacterial endophytes and their effects on plant and uses in agriculture. Charles B W,et al. eds. In: Microbial Endophytes. New York: Marcel Dekker,2000. 199.
    [37] Kuske C R,Barns S M, Busch J D. Diverse uncultivated bacterial groups from soils of the arid southwestern United States those are present in many geographic regions. Appl. Environ. Microbiol[J], 1997, 63: 3614-3621.
    [38] Lacava P T, Arau′jo W L, Azevedo J L. Evaluation of endophytic colonization of Citrus sinensis and Catharanthus roseus seedlings by endophytic bacteria[J]. Microbiol, 2007, 45: 11-14.
    [39] Lacava P T, Lib W B, Arau′joa W L, Azevedoa J L, Hartung Rapid J S. specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants[J]. Journal of Microbiological Methods, 2006, 65: 535-541.
    [40] Leaver M. , P. Domínguez-Cuevas1, J. M. Coxhead R. A. Daniel & J. Errington February 2009) | doi: 10. 1038/nature07742, Life without a wall or division machine in Bacillus subtilis Nature 2009, 457(12): 849-853.
    [41] Magnani G S, Didonet C M, Cruz L M, Picheth C F, Pedrosa F O, Souza E M. Diversity of endophytic bacteria in Brazilian sugarcane[J]. Genetics and Molecular Research. 2001, 9(1): 250-258.
    [42] Majida E H, Abdelbasset E H, Fouad D, Mohamed C, Essaid A B, Isma¨?l E Hadrami. Biological control of bayoud disease in date palm: Selection of microorganisms inhibiting the causal agent and inducing defense reactions [J]. Environmental and Experimental Botany, 2005, 59: 224-234.
    [43] McInroy J A,Kloepper J W. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton [J]. Microbiol,1995,41: 895-901.
    [44] Meyer J M,Hoy M A,Singh R. Low incidence of Candidatus Liberibacter asiaticus in Diaphorina citri (Hemiptera: Psyllidae) populations between Nov 2005 and Jan 2006: Relevance to management of citrus greening disease in Florida[J]. Florida Entomologist,2007,90(2): 394-397.
    [45] Michelle J P, David M S, David J A. Comparison of conventional and molecular techniques to investigate the intestinal microflora of rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 2006, 261: 194-203.
    [46] Natl. Acad. Sci. USA 98: 3889-3894.
    [47] Nowak J. Benefits of in vitro“biotization”of plant tissue cultures with microbial inoculants[J]. In Vitro Cell. Dev. Biol. Plant, 1998, 34: 122-130.
    [48] Ordentlich A, Elad Y, Chet I. The role of chitin ase of Serratia marcescens in biocontrol of Sclerotium Rolfsii[J]. Phytopathology, 1988, 78: 84-88.
    [49] Romero J, García-Varela M, Laclette J P, Espejo R T. Bacterial 16S rRNA gene analysis revealed that bacterial related to Arcobacter spp. constitute an abundant and common component of the oyster microflora (Tiostrea chilensis) [J]. Microb. Ecol, 2002, 44: 365-371.
    [50] Sagaram U S,Kristen M D,Pankaj T,Gary L A,Lu S E,and Wang N. Bacterial Diversity Analysis of Huanglongbing pathogen-Infected Citrus, Using PhyloChip Arrays and 16S rRNA Gene Clone Library Sequencing [J]. Applied and Environmental Microbiology. 2009, 75: 1566-1574.
    [51] Schneider H. Anatomy of greening diseased sweet orange shoots [J]. Phytopathology, 1968, 58: 1155–1160.
    [52] Sechler A, Schuenzel E L, Cooke P, Donnua S, Thaveechai N, Postnikova E, Stone A L, Schneider W L, Damsteegt V D, Schaad N W. Cultivation of‘Candidatus Liberibacter asiaticus’,‘Ca. L. africanus’, and‘Ca. L. americanus’Associated with Huanglongbing[J]. Phytopathology. 2009, 99(5): 480-486.
    [53] Sharma V K, Novak J. Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN) [J]. Microbiol, 1998, 44: 528-536.
    [54] Song E K, Kim H, Sung H K, Cha J. Cloning and characterization of a levanbiohydrolasefrom Microbacterium laevaniformans ATCC 15953[J]. Gene, 2002, 291: 45-55.
    [55] Sturz A V, Christie B R, Matheson B D, Arsenault W J, and Buchanan N A. Endophytic bacterial communities in the periderm of potatotubers and their potential to improve resistance to soil-borne plantpathogens[J]. Plant Pathol, 1999, 48: 360-369.
    [56] Sun L N, Zhang L Y, HE Z J, Wang Q Y, Qian M, Sheng X F. Genetic diversity and characterization of heavy metal-resistant -endophytic bacteria from two copper-tolerant plant species on copper mine wasteland[J]. Bioresource Technology, 2010, 101: 501-509.
    [57] Tatineni S, Sagaram U S, Gowda S, Robertson C J, Dawson W O, Iwanami T, Wang N. In plant distribution of‘Candidatus Liberibacter asiaticus’as revealed by polymerase chain reaction (PCR) and realtime PCR[J]. Phytopathology, 2008, 98: 592-599.
    [58] Teixeira D A, Danet J L. Citrus Huanglongbing in San Paulo State, Brazil: PCR detection of the‘Candidatus’Liberibacter species associated with the disease[J]. Molecular and Cellular Probes, 2005, 19: 173-179.
    [59] Teixeira D A, Saillard C, Eveillard S, Danet J L, da Costa P I, Ayres A J, Bove J.‘Candidatus Liberibacter americanus’associated with citrus huanglongbing (greening disease) in S?o Paulo State, Brazil[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55: 1857-1862.
    [60] Teixeira D C, Ayres J, Danet J L, Jagoueix-Eveillard S, Saillard C, Bove′J M. First report of a huanglongbing-like disease of citrus in Sa?o Paulo, Brazil, and association of a new Liberibacter species,“Candidatus Liberibacter americanus,”with the disease[J]. Plant Dis, 2005, 89: 107.
    [61] Tian Y K,Wang C H,Zhang J P,Dai H Y,Gu Y,Duan F M. Optimization of factors affecting RAPD amp lification in app le genome[J]. J Laiyang Agri Coll,2003,20 (3) : 157-161.
    [62] Torsvik V,Ovreas L. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol, 2002, 5: 240-245.
    [63] Vergin K L, Rappe′M S, Giovannoni S J. Streamlined method to analyze 16S rRNA gene clone libraries [J]. BioTechniques, 2001, 30: 938-944.
    [64] Wang Z K, Yin Y P, Yuan Q, Peng G X, Xia Y X. Development and application of molecular-based diagnosis for‘Candidatus Liberibacter asiaticus’, the causal pathogen of citrus huanglongbing[J]. Plant Pathology, 2006, 55: 630-638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700