珠峰自然保护区湿地空间分布与退化原因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用MODIS、DEM、野外采集数据对珠峰自然保护区湿地的空间分布范围进行了判别,分析了研究区湿地的季相和2000~2007年年际变化特点,从气候变化和人类活动角度对湿地变化原因进行了分析。
     在研究区湿地空间分布判别方面,本研究利用2008年覆盖珠峰自然保护区的MOD09A1和MOD13Q1数据集数据,该保护区1︰5万DEM,并结合2008年9月采集的野外实地数据,进行了基于增强型植被指数(EVI)、改进型调整植被指数(MSAVI)、地表水分指数(LSWI)、海拔和坡度5个参数的保护区湿地分布特征研究。研究结果表明,珠峰自然保护区的湿地类型主要为湖泊、河流、沼泽和沼泽化草甸;湿地主要分布在海拔4 100~4 700 m且坡度不大于4°的地区,2008年6~9月湿地面积约占保护区总面积的11.2%~11.3%;保护区的湿地主要分布在保护区的试验区内;湖泊湿地主要分布于佩枯错、浪强错、多布扎等湖泊密集的高原湖盆地区;河流湿地、沼泽和沼泽化草甸主要分布在佩枯错与浪强错之间的平原地带、保护区中部及北部坡度较缓的河谷地区,同时得到坡度和海拔是影响保护区湿地空间分布的关键因素和提取该地区湿地空间分布范围的有效参数。
     对比2000~2008年9年干、湿季的研究区湿地面积发现,湿季的湿地面积年际变化幅度较小,但有增加趋势。2000年湿季的湿地面积最小,为3 782.4 km2,占保护区面积的11.2%,2007年湿季的湿地面积最大,为3 822.4 km2,占保护区面积的11.3%;干季的湿地面积年际变化幅度相对较大,尤其是2004~2005年和2007~2008年干季的湿地面积较小,这是因为2005年和2008年研究区冬季降了特大暴雪,严重影响了判别和计算当年的湿地面积的准确性。因此,监测研究区湿地的变化应在每年的湿季进行,以避免降雪的影响。
     为对研究区湿地的季相变化特点进行分析,将湿地分布与气候要素中的年降水量、年均温、年日照时数的栅格图像进行叠加,最后将保护区湿地划分为三个区域单元进行单独的分析,对年降水量最少、日照时数最多、蒸发量大、植被覆盖度低的地区,湖泊型湿地以微咸、咸水湖为主,具有较典型的内陆湖特点,大气降水不足补充湿地水源,该区域的水源补给主要以冰山融水为主,因此该区域湿地季相变化受冰雪融水径流影响最大;对年降水量、年均温、年日照时数均处于三区域中间的地区,沼泽和沼泽化草甸主要分布于该类区域,该区域降水主要集中在5~9月份,其它各月份几乎无明显降水,全年各月蒸发量都较大,冰川融水是该地区湿地水源的主要补给方式,降水对该区域湿地季相变化有部分影响,但冰雪融水径流仍占主导地位;对于年降水量最多,年日照时数最短的地区,季节性降水对该区域影响较大。因该地区降水较为集中,降水对该地区季节性河流、湖泊型湿地影响较大,而对于以多布扎湖为例的典型内陆咸水湖,受冰雪融水径流影响较大。
     为研究珠峰自然保护区湿地的年际变化特点,首先,采用线性趋势斜率的方法对研究区2000~2007年湿地湿季变化面积变化情况进行分析,分析结果表明:2000~2007年湿地湿季变化面积呈总体上升的趋势,湿地面积以5.38km2/年的速度增加,且通过α=0.05的显著性检验。而后利用2000~2007年的EVI数据,采用一元线性回归斜率的方法对研究区退化湿地分布进行了研究。结果表明,2000~2007年期间,珠峰自然保护区湿地出现退化现象,退化面积约782.6km2,占研究区湿地总面积的20.47%,变好面积13.9km2,占研究区湿地总面积的0.36%。为验证分析结果的准确性,笔者于2008年9月退化较明显折巴乡、门布乡、岗嘎镇进行实地调研。经现场调研发现,三个区域都存在不同程度的湿地退化现象。
     为解决2000~2007年湿地面积以5.38km2/年的速度增加,而利用EVI判别时湿地出现20.47%面积退化的问题,本文采用灰色关联度方法,选择气候因子中的年平均气温、年降水总量、日平均相对湿度、年蒸发皿蒸发量、年逐日日照时数与湿地湿季面积的关系进行讨论。分析结果表明:日照时数的增加和气温的升高将加速湿地表面水分的蒸发,这点从年蒸发皿蒸发量的变化得到了较为直接的反映,但气温的升高和日照时数增加的同时也加剧了冰川的消融过程,有研究表明近些年珠峰保护区的冰川出现了急剧的退缩、冰湖面积有明显增加的趋势,同时本文利用2001~2007年MCD12Q1中永久性冰雪的变化情况进行分析,对于以冰川融水作为水源的湿地,湿地面积有增加的可能,但研究区2000~2007总体趋势更为干旱,从年降水量的变化,逐日平均相对湿度的变化可以得到较为直接的反应;对于以季节性降水作为水源的湿地,因蒸发的增强,降水量的减少又使蒸发的水分无法得到及时的补充,加上该地区植被覆盖度较低,湿地植被属于受水分的限制较大的植被类型,植被生产力的年际波动较大,稳定性较差,而且高寒植被在不良的环境下会急剧退化,所以在这种气候条件下,容易造成湿地植被的退化。
     另外,在人类活动影响方面本文利用人口数量、年末牲畜存栏头数、年末实有耕地面积三个指标来讨论人类活动强度对研究区湿地变化的影响。但研究似乎陷入了一个悖论,表征人类活动强度的耕地面积、人口数量、年末牲畜存栏数的不断增加的同时,湿地面积也在不断增加,因此从定量的统计学角度来描述人类活动对该地区湿地面积变化的影响是否仅具有统计学相关性,而无特定意义,还有待于进一步的研究。由于珠峰自然保护区属西藏较为贫困的区域,种植业和牧业成为当地仅有的经济来源。而研究区湿地集中在保护区的试验区内,保护力度有限,且湿地多分布于坡度较缓的地区,充足的水分和牧草条件尤为适宜放牧。由于贫困,造成了当地群众对有限资源的破坏性开发。超载过度放牧,使湿地植被的正常生长遭到破坏,湿地植物丧失繁殖能力,生草土被踏紧,土壤通气性降低。影响土内嗜氧微生物的繁殖,土壤营养成份减少,以致植物种类改变,造成湿地植被退化。另外,由于保护区土壤发育年轻、土层薄、结构差、土壤肥力低,多数地区湿地植被覆盖度较低,土壤极易沙化,而且研究区内陆湖泊多,土壤易盐渍化。由于气候变干,气温升高,导致水面减小,如果冰川融水无法及时补给,易造成湖泊退缩,盐分富积、析出,在湖滨地区造成土壤盐渍化,最后形成退化湖泊湿地。
In this paper, MODIS, DEM, field data collected in Qomolangma Nature Reserve were used to identify and analyze the spatial distribution of wetlands, analyzing the characteristics of wetlands seasonal variation from 2000 to 2007, the changing reasons of wetlands were analyzed in the perspective of climate changing and human activities.
     Because the accuracy was low when single MODIS vegetation indict was used(Wang et al.,2006), so several parameters were adopted to distinguish wetlands in this paper. In this paper, we used the data of MOD09A1 and MOD13Q1datasets of MODIS data covered Qomolangma National Nature Reserve of 2008, 1:50,000 Digital Elevation Model, and field data collected in September 2008. Synthesized EVI (enhanced vegetation index), MSAVI (modified soil adjusted vegetation index), LSWI (land surface water index) altitude, and slope data to analysized the characteristics of wetlands in spatial-temporal distribution in Qomolangma National Nature Reserve. The results show that: Firstly, The wetland types of Qomolangma National Nature Reserve were mainly riverine and lacustrine and swamp meadow wetlands which distributed from the altitude 4100m to 4700m where the slope less than or equal to 4 degree. The wetlands’area accounts for the total reserve area 11.3% form June to September in wet season. Secondly, lacustrine wetlands were mainly distributed in PeikuCuo plateau basin in core zones of protected area, LangqiangCuo in experiment zones, the DuobuzhaCuo plateau region in the east of Dingjie County. Riverine and swamp meadow wetlands are mainly distributed in the lacustrine plains or flood plains between PeikuCuo and LangqiangCuo, as well as broad and rift valley and basin with intensive stream network located in central and northern of the reserve. Thirdly, slope and altitude are key factors which impacted the distribution characteristics of wetlands in Qomolangma National Nature Reserve and they are important parameters to identify the range pattern of wetlands.
     After the anglicizing the areas of wetlands in wet season and dry season from 2000 to 2008 ,the result show that the wetlands area in wet season were changing less, and there were Increasing trend. The wetlands areas were 3782.4km2 in 2000, accounted for 11.2% of protected areas, the wetlands areas were 3822.4km2 in 2007, accounted for 11.2% of protected areas. It seems the wetlands are stable in wet season but not stable in dry season during 2000 to 2008.Due to the intensity storms taken place in winter of 2005 and 2008, wetlands covered by snow results to abnormal analysis results when using vegetation indexes which were mainly based on vegetation information. Hence, wet season should be chosen when analyzing interannual variability of wetlands in Qomolangma Nature Reserve.
     For the purpose of studying the seasonal changes characteristics of wetlands, wetland distribution and climate factors in the precipitation, annual temperature, annual sunshine duration of raster image were overlaid, at last protected area of wetland will be divided into three separate regions, in the region of minimum annual precipitation, maximum sunshine hours, maximum evaporation, vegetation coverage is low, lake-type were mainly brackish to saltwater lakes, with more typical characteristics of inland lakes, rainfall can not afford the needing of wetlands, water supplies in the region mainly iceberg melt water, hence the seasonal wetlands of the region greatest affected by the changing of snowmelt; in the regions of annual precipitation, mean annual temperature, annual sunshine hours are in the middle of the three regional areas , marsh and swamp meadow mainly in such regions, rainfall in the region focused on May to September, there were almost no other significant precipitation other months, high evaporation throughout the year, glacier melt water were mainly the source of wetlands in the region. Seasonal changes in wetlands were impacted, but snow and ice melt water were still dominant; for the most annual precipitation, annual sunshine hours, the shortest of the region, the seasonal effects of precipitation were most important. because of the precipitation were more concentrated, seasonal precipitation in the area of rivers and lakes wetlands is obvious, but for inland salt lake such as Duobuzha lake, the greater impact is melting ice and snow.
     In order to studying the annual changing of wetlands in Qomolangma Nature Reserve, first of all, the method of linear trend were used form 2000 to 2007 to analyze the changes in wet season. The results showed that: wetland area was rising at the speed of 5.38km2 per year from 2000 to 2007,sig = 0.05. Then EVI data from 2000 to 2007 were used, using the method of linear regression slope. The area of degraded wetland distribution and the influencing factors were studied. The results showed that during the period from 2000 to 2007, the wetlands of Qomolangma Nature Reserve were degraded; the degradation area were about 782.6km2,which was calculated by ArcGIS, accounting for the 20.47% of total area of wetlands, the better area were 13.9km2, accounting for the 0.36% of total study area of wetlands. To verify the accuracy of analytical results, author to investigate the reason in September 2008 in the field. We found that three regions have different degrees of wetland degradation in the field.
     In this paper the gray relational grade was used in order to solve the problem where the wetland area increase at the speed of 5.38km2 per year, but the wetlands depredated area account for 20.47% of the total wetlands area. Climatic factors of annual mean temperature, annual total precipitation, average relative humidity, annual pan evaporation and sunshine daily hours in wet season were used to analyze the relation between wetlands area and climate data. The results show that: the increasing in sunshine hours and temperature will accelerate the evaporation of surface water of wetlands, the annual pan evaporation changing has a direct reflection, but the increasing in temperature and sunshine hours also intensified the process of melting glaciers, some studies have shown that the glaciers were accelerating melting in recent years, glacial lakes area is rising. As the melted water of glacier is one of the important sources of wetlands, thus the wetlands area may be increase. But the area are becoming more and more drought from 2000 to 2007 which can be reflected directly from the changing of annual precipitation and daily mean relative humidity; but to the wetlands which from seasonal precipitation as the water source, because of increasing evaporation, reduction of precipitation and evaporation of moisture, so the wetlands can not be timely supplemented by water with low vegetation cover in the region, wetland vegetation are greater restrictions of water vegetation type, vegetation productivity of annual fluctuations are more fluently, stability are poor, and alpine vegetation in the bad environment will rapidly degraded, so wetlands are likely to degraded in such climate.
     In addition, in order to analyze the impact of human activities, population, year-end total number of livestock and cultivated area were used to discuss human activities on the changing of the wetlands. Qomolangma Nature Reserve as poorer areas in Tibet, crop and animal husbandry as the only local source of income. The region of wetlands were mainly in the pilot protected areas, protection efforts are limited, and many wetlands distributed in the region with gentler slopes, less water and pasture conditions are especially suitable for grazing. Because of poverty, local people have to explore the limit resources. The normal growth of wetland vegetation was destructed because of the overgrazing. Many wetland plants lost reproductive capacity and grass was destroyed. Under the impacting of soil microbes in aerobic propagation lead soil nutrients to be destroyed, resulting in changing in plant species and the degradation of wetland vegetation. In addition, the forming age of soil is young and thin with poor structure and low soil fertility. In most areas of wetland vegetation cover is low, soils are extremely sandy, and lakes were mainly inland lakes. Due to the climate changing dryer, temperatures rising faster, resulting in lower water fallow, without timely supply of glacier melt water, could easily lead to back lakes with salt-rich product, then resulting in the lakeside area of soil salinization, and finally formed degradation of lacustrine wetlands.
引文
[1]赵魁义,地球之肾——湿地[M].北京:化学工业出版社,2002.
    [2]何池全,赵魁义,余国营,等.湿地生态过程研究进展[J].地球科学进展,2000,15(2):165-171.
    [3] Gulati R D, van Donk E.Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review[J]. Hydrobiologia, 2002, 478: 73-106.
    [4] Jeppesen E,Jensen J P,Sondergaard M,et al. Top-down control in freshwater lakes:the role of nutrient state,submerged macrophytes and water depth[J]. Hydrobiologia,1997,342/343:151-164.
    [5] Meerhoff M,Mazzeo N,Moss B,et al. The structuring role of free-floating versus submerged plants in a sub tropical shallow lake[J].Aquatic Ecology,2003,37:377-391.
    [6] William F J,Barko J W,Butler M G. Shear stress and sediment resuspension in relation to submersed macrophyte biomass[J]. Hydrobiologia,2004,515:181-191.
    [7]白军红,欧阳华,徐惠风,等.青藏高原湿地研究进展[J].地理科学进展,2004,23(4):1-9.
    [8]赵魁义.西藏沼泽的初步研究[J ].自然资源,1981 (2) :14-21.
    [9]曹生奎,谭红兵,王小梅,等.青藏高原湿地保护与开发利用模式初探[J].干旱区资源与环境,2005,19(4):109-113.
    [10]王根绪,李元寿,王一博,等.近40年来青藏高原典型高寒湿地系统的动态变化[J].地理学报,2007,62(5):481-491.
    [11]贺桂芹,杨改河,冯永忠,等.西藏高原湿地生态系统结构及功能分析[J].干旱地区农业研究,2007,25(3):185-189.
    [12]许辉熙,何政伟,但尚铭,等.基于EOS/MODIS的若尔盖高原湿地定量遥感研究[J].冰川冻土,2007,29(3):450-455.
    [13] Rundquist, D. C.,Narumalani,S.,& Narayanan,R. M. (2001). A review of wetlands remote sensing and defining new considerations[J]. Remote Sensing Reviews,20:207?226.
    [14]张树清,陈春.三江平原湿地遥感分类模式研究[J].遥感技术与应用,1999,14(1):54-58.
    [15] Pavri,F.,& Aber,J. S. (2004). Characterizing wetland landscapes: A spatiotemporal nalysis of remotely sensed data at Cheyenne Bottoms,Kansas[J]. Physical Geography,25, 86?104.
    [16] Wolter,P.T.,Johnston,C.A.,Niemi,G.J.,2005. Mapping submergent aquatic vegetation in the US Great Lakes using Quickbird satellite data[J]. International Journal of Remote Sensing 26 (23):5 255-5 274.
    [17] Wilen,B. O.,& Bates,M. K. (1995). The U.S. Fish and Wildlife Service's National Wetlands Inventory project.Vegetatio,118,153?169.
    [18] MacdnaldHC,WaiteWP,DemarckeJS.Use of Seasat Satellite Radar Imagery for the Detection of Standing Water Beneath Forest Vegetation[A].In Proceedings of the American Society of Photogrammetry[C].Annual Technical Meeting,Niagara Falls,1980.
    [19] WaiteWP,MacdonaldHC.Vegetation Penetration with K-band Imaging Radars[J].IEEE Transactions on Geoscience and Electronics,1971,GE-9:147-55.
    [20] ButeraMK.Remote Sensing of Wetlands[J]IEEE Transactionon Geoscience and Remote Sensing,1983,NE-21:383-392.
    [21]张柏,遥感技术在中国湿地研究中的应用[J].遥感技术与应用,1996,11(1):67-71.
    [22] Bedford BL,Preston EM.Developing the scientific basis for assessing cumulative effects of wetland loss and degradation on landscape functions:Status perspectives and prospects [J]. Environmental Management,1988,12(5):751-771.
    [23]安娜,高乃云,刘长娥.中国湿地的退化原因、评价及保护[J].生态学杂志,2008,27(5):821-828.
    [24]王丽学,李学森,窦孝鹏,等.湿地保护的意义及我国湿地退化的原因与对策[J].中国水土保持,2003,7:7-9.
    [25]张晓龙,李培英.湿地退化标准的探讨[J].湿地科学,2004,2(1):36-41.
    [26] Shaw, SP ,Fredine, CG. Wetlands of the United States: Their Extent and Their Value to Waterfowl and Other Wildlife. U.S. Department of Interior,fish and wild life service,circular 39,Washington,D.C.1956,67.
    [27]赵魁义,地球之肾——湿地[M].北京:化学工业出版社,2002.
    [28] Zoltai,S. C. An outline of the wetland regions of Canada,in proceedings of a workshop on Canadian wetlands environment,C. D. A. Rubes and F. C. Pollett,eds.[J]Canada lands directorate,ecological land classifications series,saskaton,Saskatchewan,1979,12:1-8.
    [29]贾忠华,罗纨,王文焰,等.对湿地定义和湿地水文特征的探讨[J].水土保持学报,2001,15(6):117-120.
    [30] Convention on Wetlands of International Importance Especially as Waterfowl Habitat Final Text adopted by the International Conference on the Wetlands and Waterfowl at Ramsar[C], Iran, 2 February 1971.
    [31]西藏自治区的湿地和全部湿地名录.[EB/OL].[2010-05-19].http://www.jl2sy.cn/oldzy/ chuying_huanbao/shidebaohu/xz.htm
    [32] Ozge Karabulut Dogan,Zuhal Akyurek,Meryem Beklioglu. Identification and mapping of submerged plants in a shallow lake using quickbird satellite data[J].Journal of Environmental Management,2009,90(7):2 138-2 143.
    [33]阮仁宗,冯学.基于多时相遥感和GIS技术的湿地识别研究[J].遥感信息,2005,(2):20-24.
    [34]马龙,刘闯. MODIS在三江平原湿地分布研究中的应用[J].地理与地理信息科学,2006, 22(3):57-60.
    [35]许辉熙,何政伟,但尚铭,等.基于EOS/MODIS的若尔盖高原湿地定量遥感研究[J].冰川冻土,2007,29(3):450-455.
    [36] B Zhao,Y Yan,H Guo,M He,et al. Monitoring rapid vegetation succession in estuarine wetland using time series MODIS based indicators:An application in the Yangtze River Delta area[J],Ecol. Indicat,2009,9(2):346-356.
    [37]赵慧颖,乌力吉,郝文.气候变化对呼伦湖湿地及其周边地区生态环境演变的影响[J].生态学报,2008,28(3):1064-1071.
    [38]冯琦胜,尚占环,梁天霞,等.甘肃省玛曲县沼泽湿地遥感监测与动态变化分析[J].湿地科学,2008,6(3):379-385.
    [39] L.M. Rebelo,C.M. Finlayson,N. Nagabhatla. Remote sensing and GIS for wetland inventory, mapping and change analysis[J]. Journal of Environmental Management, 2009, 90(7):2 144-2 153.
    [40]刘红玉,吕宪国,张世奎.湿地景观变化过程与累积环境效应研究进展[J].地理科学进展,2003,22(1):60-70.
    [41]王祖伟,刘明舵,李兆江.七里海湿地环境生态系统退化与修复[J].水土保持研究,2005,12(5):244-247.
    [42]肖德荣,田昆,杨宇明.高原退化湿地纳帕海植物多样性格局特征及其驱动力[J].生态环境,2007,16(2):523-529.
    [43] Zeng,L.,Chen,G.Q.,Ecological degradation and hydraulic dispersion of contaminant in wetland. Ecol. Model.(2009), doi:10.1016/j.ecolmodel.2009.10.024
    [44]翟金良,邓伟,何岩.洪泛区湿地生态环境功能及管理对策[J].水科学进展,2003,14(2): 203-208.
    [45]吴炳方,黄进良,沈良标.湿地的防洪功能分析评价[J].地理研究,2000,19(2):189-193.
    [46]余国营.洪灾后的反思——湿地管理和洪水灾害的生态关系浅析[J].生态学杂志,1999,18(1):34-38.
    [47]孔红梅,赵景柱,姬兰柱,等.生态系统健康评价方法初探[J].应用生态学报,2002,13(4): 486-490.
    [48]崔保山,杨志峰.湿地生态系统健康研究进展[J].生态学杂志,2001,20(3):31~36.
    [49] Burns K A,Codi S,Swannell R J P,et al.. Assessing the oil degradation potential of endogenous micro-organisms in tropical marine wetlands[J]. Mangroves and Salt Marshes, 1999,(3):67-83.
    [50] Sheng-nan Li, Gen-xuWanga, Wei Deng,et al. In?uence of hydrology process on wetland landscape pattern:A case study in the Yellow River Delta. Ecological Engineering,2009,35(12):1 719-1 726。
    [51] E. Dimitriou,I. Zacharias. Identifying microclimatic,hydrologic and land use impacts on a protected wetland area by using statistical models and GIS techniques. Mathematical and Computer Modelling,2010,51 (3):200-205.
    [52] G. R. Kassenga.A descriptive assessment of the wetlands of the Lake Victoria basin in Tanzania. Resources,Conservation and Recycling .1997,20(2):127-141.
    [53] Carmen Casta?eda,Juan Herrero. Assessing the degradation of saline wetlands in an arid agricultural region in Spain. Catena .2008.72 (2):205–213.
    [54]张明祥,严承高,王建春,等.中国湿地资源的退化及其原因分析.林业资源管理,2001(3):23-26.
    [55] Yangfan Li, Xiaodong Zhua, Xiang Sun,et al. Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion and development policy:A case study of Lianyungang, China. Landscape and Urban Planning,2010,94(3):218-227.
    [56]罗磊.青藏高原湿地退化的气候背景分析.湿地科学,2005,3(3):190-199.
    [57]赵魁义,娄彦景.青藏高原若尔盖湿地退化与生物多样性修复[C].第七届全国生物多样性保护与持续利用研讨会.2006.
    [58]郭洁,李国平.若尔盖气候变化及其对湿地退化的影响[J].高原气象,2007,26(2):422-428.
    [59]郭廷锋,张陆军,辛元红.长江源区沼泽湿地退化的地质原因及发展趋势研究[J].青海国土经略.2009,6:34-36.
    [60] Earth System Sciences Committee. Earth system science:A close view NASA advisory council national aeronautics and space administration [J].Washington. D. C. 1988,10-171.
    [61]王兴菊.寒区湿地演变驱动因子及其水文生态响应研究[D].大连:大连理工大学,2008.
    [62]刘子刚,马学慧.湿地的分类[J].湿地科学与管理,2006,2(1):60-63.
    [63]次旦伦珠.珠穆朗玛峰自然保护区概况[J].中国藏学,1997,1(1):3-22.
    [64]马志军.生物圈保护区的概念及内涵[J].生物学通报,2000,35(4):18-20.
    [65]李渤生.珠穆朗玛峰自然保护区的初步评价[J].自然资源学报,1993,8(2): 97-104.
    [66]伍光和.自然地理学[M].北京:高等教育出版社,2008.
    [67]耿志新,侯书贵,张东启.1844 AD以来珠穆朗玛峰地区大气环境变化高分辨率冰芯记录[J].冰川冻土,2007,29(5):694-704.
    [68]杨续超,张镱锂,张玮.珠穆朗玛峰地区近34年来气候变化[J].地理学报,2006,61(7):687-696.
    [69]张玮,张镱锂,王兆锋,等.珠穆朗玛峰自然保护区植被变化分析[J].地理科学进展, 2006,25(3):12-21.
    [70]阚瑷珂.珠峰自然保护区生态环境GIS关键技术研究及应用[D].成都:成都理工大学,2009.
    [71] Land processes distributed active archive center, NASA, USGS science for a changing world. Vegetation Indices 16-Days L3 Global 250m (MOD13Q1).[EB/OL]. [2008-11-19].https//lpdaac.usgs.gov/lpdaac/products/modis_products_table/vegetation_indices/16_day_l3_global_250m/v5/terra.
    [72] Land processes distributed active archive center, NASA, USGS science for a changing world. Surface Reflectance 8-Day L3 Global 500m (MOD09A1). [EB/OL].[2008-11-19].https//lpdaac.usgs.gov/lpdaac/products/modis_products_table/surface_reflectance/8_day_l3_global_500m/v5/terra.
    [73] Land processes distributed active archive center, NASA, USGS science for a changing world .[EB/OL].[2008-11-19].https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/land_cover/yearly_l3_global_500m/v5/combin.
    [74] Sawaya K E, Olmanson L G,Heinert N J, et al. Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery[J]. Remote Sensing of Environment,2003,88:144-156.
    [75] Martha S G,Emily H W,Nels B. Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh[J].Remote Sensing of Environment, 2008, 112:4 048-4 060.
    [76]李凤霞,肖建设,郭安红,等.环青海湖地区湿地变化初步研究[J].中国沙漠,2007,27(6): 1 018-1 021.
    [77] Bustamante J. et al. Predictive models of turbidity and water depth in the Do?ana marshes using Landsat TM and ETM+ images[J]. Journal of Environmental Management,2009, 90(7):2 219-2 225.
    [78]张韬,吕洪娟,孙美霞,等.遥感多光谱数据在内蒙古西部湿地监测中最佳波段选取的应用研究[J].干旱区资源与环境,2007,21(4):102-106.
    [79] Lunetta R S,Balogh M E. Application of multi-temporal Landsat5 TM imagery for wetland identification[J]. Photogrammetric Engineering and Remote Sensing,1999,65(11):1 303-1 310.
    [80]李建平,张柏,张泠,等.湿地遥感监测研究现状与展望[J].地理科学进展,2007,26(1):33-43.
    [81]曲辉,陈圣波.中分辨率成像光谱仪(MODIS)数据在地学中的应用前景[J].世界地质,2002,21(2):176-180.
    [82]王静.土地资源遥感监测与评价方法[M].北京:科学出版社,2006.
    [83]那晓东,张树清,李晓峰,等. MODIS NDVI时间序列在三江平原湿地植被信息提取中的应用[J].湿地科学,2007,5(3):227-236.
    [84]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    [85]胡晓,马耀明,田辉等.4-10月藏北地区地表植被参数的卫星遥感研究[J].高原气象,2006,25(6):1020-1027.
    [86]王正兴,刘闯,陈文波等.MODIS增强型植被指数EVI与NDVI初步比较[J].武汉大学学报·信息科学版,2006,31(5):407-427.
    [87]王正兴,刘闯, Huete Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23 (5):979-987.
    [88]李红军,郑力,雷玉平等.基于EOS/MODIS数据的NDVI与EVI比较研究[J].地理科学进展,2007,26(1):26-32.
    [89]宋小宁,赵英时.应用MODIS卫星数据提取植被—温度—水分综合指数的研究.地理与地理信息科学,2004,20(2):13-17.
    [90] QI J,CHE HBOUNI A, HUETEAR,etal . A modified soil adjusted vegetation index [J] . Remote Sensing of the Environment,1994,48:119– 126.
    [91] Sims D A,Gamon J A. Estimation of vegetation water content and photosynthetic tissue area from s pectral reflectance:A comparis on of indices based on liquid water and chlorophyll absorption features [J]. Remote Sensing of Environment,2003,84(4) :526 - 537.
    [92]张友水,谢元礼. MODIS影像的NDVI和LSWI植被水分含量估算[J].地理科学,2008,28(1):72-76
    [93] RobertsD A,Green R O,Adams J B.Temporal and spatial patterns in vegetation and atmospheric properties from AVIIS [J].Remote Sensing of Environment,1997,62 (3) : 223– 240
    [94] Xiao,X.,Boles,S.,Liu,J.,et al. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data[J],Remote Sensing of Environment. 2002,82:335-348.
    [95]牛振国,宫鹏,程晓,等.中国湿地初步遥感制图及相关地理特征分析.中国科学D辑:地球科学,2009,39(2):188 -203.
    [96]吴军,张万昌.MODIS影像条带噪声去除的自相关插值法.遥感技术与应用.2006,21(3):253-258.
    [97]蒋耿明,牛铮,阮伟利,等.MODIS影像条带噪声去除方法研究.遥感技术与应用.2003,18(6):393-398.
    [98] Tukey J M. Exploratory Data Analysis [M]. Reading ,Massachusetts:Addison, Wesley , 1971,5-10.
    [99]周睿,杨元合,方精云.青藏高原植被活动对降水变化的响应[J].2007,北京大学学报(自然科学版),43(6):770-775.
    [100]中国科学院西藏科学考察队.珠穆朗玛峰地区科学考察报告[M]:自然地理.北京:科学出版社,1975. 1-15.
    [101]马明国,董立新,王雪梅.过去21a中国西北植被覆盖动态监测与模拟[J].冰川冻土,2003,25(2):232-236
    [102]刘蕾,刘建军,朱海涌. 2001~2007年天山南坡中段不同植被类型NDVI变化分析-以新疆和静县为例[J].中国环境监测,2008,24(5):69-73
    [103]梁四海,陈江,金晓媚,等.近21年青藏高原植被覆盖变化规律[J].地球科学进展,2007,22(1):33-40.
    [104]邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社.1990.
    [105]聂勇,张镱锂,刘林.近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J].地理学报,2010,65(1):13-28.
    [106]中国国际经济技术交流中心.在世界屋脊上西藏自治区珠峰自然保护区人类持续发展方案概况[EB/OL]. [2009-12-02]http://www.cicete.org/poverty/tibet.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700