单壁碳纳米管的毒性、功能化改性及靶向送药的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(Carbon Nanotubes,CNTs)按结构可以分为单壁碳纳米管(Single-walled Carbon nanotubes,SWNTs)和多壁碳纳米管(Multi-walled Carbon nanotubes, MWNTs),由于具有优异的物理和化学性能,在传感器、场效应晶体管、储氢等诸多领域都有广阔的应用前景。CNTs用作纳米药物载体是近年来的新兴前沿方向,目前的研究热点主要集中在:一,CNTs的生物改性及毒性评价;二, CNTs基靶向送药系统的设计、制备和疗效评价。本文工作的特色在于用各种天然多糖对SWNTs进行功能化改性,定量的评价了CNTs的长度、直径、浓度和表面官能团对细胞毒性的影响,并制备了一类基于CNTs的靶向送药体系,分别在细胞水平和动物水平评估了该体系的疗效和副作用。具体为:
     1)定量的研究了浓度、直径、长度和表面性能对CNTs细胞毒性的影响规律。研究结果发现CNTs的细胞毒性具有剂量和尺寸依赖性,CNTs浓度越大或直径越小,显示出的细胞毒性越大;经表面包覆改性后,表面官能团的类型和电荷性能会显著影响CNTs的细胞毒性,只含有羟基而且显电中性的直链淀粉包覆的CNTs具有更好的生物相容性;截短后的CNTs容易进入细胞并且主要分布在溶酶体中,多糖改性和直径变化对CNTs在细胞中的分布无明显影响。
     2)利用壳聚糖(CHI)对SWNTs进行非共价修饰,并引入靶向分子叶酸(Folic acid,FA)和蒽环类抗癌药物阿霉素(Doxorubicin,DOX),制备出一种具有靶向和缓释效果的送药体系。该CNTs基送药体系具有很高的载药率,而且DOX的释放具有pH响应特性,在血液pH条件下很少释放,在细胞器酸性条件下才显著释放,结合其肿瘤靶向性能,比单独使用DOX能更有效的的杀死肿瘤细胞。
     3)受上述实验结果鼓舞,我们进行了动物实验。把该靶向载药体系通过静脉注入荷瘤裸鼠体内并记录肿瘤体积和体重的变化,三周后杀死裸鼠测量血清化学参数并对肝脏、脾脏和肾进行病理分析。结果表明:在相同当量剂量时,该送药体系比单独使用DOX更能更有效抑制肿瘤的生长,同时其对肝、脾、肾等正常组织器官的毒副作用却比纯DOX小,具有高效低毒的优点。
Carbon nanotubes (CNTs) are seamless cylinders rolled up by grapheme sheets, which could be divided into single walled carbon nanotubes (SWNTs) or multi-walled carbon nanotubes (MWNTs) depending on the number of the grapheme layers. Due to their unique electrical, physical and chemical properties, CNTs have attracted tremendous interests in numerous fields such as sensors, field-effect-emitter and hydrogen storage. Most recently, CNTs have been intensively explored as nanovectors for targeted drug delivery and focused on 1) the biofunction alization and cytotoxicity of CNTs; 2) Design, preparation and evaluation of CNTs based drug delivery system. In this work, we used several natural polysaccharides to functionalize CNTs and quantitatively evaluated the effect of length, diameter, concentration and functional group of the polysacchrides on the cytotoxicity of CNTs. Furthermore, a targeted drug delivery system based on CNTs was prepared and investigated both in vitro and in vivo in terms of efficiency and side effects. The details are as follows:
     1) Quantitatively investigating the effect of length, diameter, concentration and functional group on the cytotoxicity of CNTs. The experimental results reveal that 1) the cytotoxicity of CNTs are dose- and size-dependent. CNTs with larger concentration or smaller diameter are more toxic; 2) The cytotoxicity of CNTs was greatly effected by the types and charge properties of the functional groups. The CNTs gain better biocompatibility only when functionalized by amylose simultaneously bearing hydroxyl group and neutral surface charge. 3) Cut CNTs are easy to penetrate cell membranes and residue in lysosomals, which is independent of the diameters and polysaccharides functionalization.
     2) Prepared a targeted drug delivery system (DDS) by attaching folic acid and doxorubicin to CHI wrapped SWNTs. It was found that the DOX was loaded at a high ratio and only released at acidic environment (e.g. pH= 5.5) while remain stable in the physiological envronment (pH= 7.4). The in vitro results show that the DDS was superior to free DOX due to its controlled release and targeted delivery of DOX.
     3) The in vivo performance of the DDS was further investigated using nude mice bearing SMMC-7721 tumor as the animal model. The DDS was i.v. administrated into the mice which were sacrificed three weeks later for biochemical and histological examinations, during which the body weights and tumor volumes were recorded. It was demonstrated that, when at the equivalent DOX dose, the DDS was more efficient than free DOX in inhibiting the growth of tumors while caused less side effects.
引文
[1]. Whitesides, G. M., The 'right' size in nanobiotechnology[J]. Nature Biotechnology 2003, 21 (10), 1161-1165.
    [2]. Venugopal, J.; Prabhakaran, M. P.; Low, S., et al., Nanotechnology for nanomedicine and delivery of drugs[J]. Current Pharmaceutical Design 2008, 14 (22), 2184-2200.
    [3]. Emerich, D. F.; Thanos, C. G., Nanotechnology and medicine[J]. Expert Opinion on Biological Therapy 2003, 3 (4), 655-663.
    [4]. Roco, M. C., Nanotechnology: convergence with modern biology and medicine[J]. Current Opinion in Biotechnology 2003, 14 (3), 337-346.
    [5]. Dai, H. J., Carbon nanotubes: Synthesis, Intergration and Properties[J]. Accounts of Chemical Research 2002, 35(12), 1035-1044.
    [6]. Bianco, A.; Kostarelos, K.; Prato, M., Applications of carbon nanotubes in drug delivery[J]. Current Opinion in Chemical Biology 2005, 9 (6), 674-679.
    [7]. Klumpp, C.; Kostarelos, K.; Prato, M., et al., Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics[J]. Biochimica Et Biophysica Acta-Biomembranes 2006, 1758 (3), 404-412.
    [8]. Prato, M.; Kostarelos, K.; Bianco, A., Functionalized carbon nanotubes in drug design and discovery[J]. Accounts of Chemical Research 2008, 41 (1), 60-68.
    [9]. Zhao, Y.; F., S. J., Noncovalent Functionalization of Single-Walled Carbon Nanotubes[J]. Accounts of Chemical Research 2009, 42 (8), 1161-1171.
    [10]. Liu, Z.; Tabakman, S.; Welsher, K., et al., Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery[J]. Nano Research2009, 2 (2), 85-120.
    [11]. Kostarelos, K.; Bianco, A.; Prato, M., Promises, facts and challenges for carbon nanotubes in imaging and therapeutics[J]. Nature Nanotechnology 2009, 4 (10), 627-633.
    [12]. Tran, P. A.; Zhang, L. J.; Webster, T. J., Carbon nanofibers and carbon nanotubes in regenerative medicine[J]. Advanced Drug Delivery Reviews 2009, 61 (12), 1097-1114.
    [13]. Smart, S. K.; Cassady, A. I.; Lu, G. Q., et al., The biocompatibility of carbon nanotubes[J]. Carbon 2006, 44 (6), 1034-1047.
    [14]. Shvedova, A. A.; Castranova, V.; Kisin, E. R., et al., Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells[J]. J Toxicol Environ Health A 2003, 66 (20), 1909-1926.
    [15]. Shim, M.; Kam, N. W. S.; Chen, R. J., et al., Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition[J]. Nano Letters 2002, 2 (4), 285-288.
    [16]. Chlopek, J.; Czajkowska, B.; Szaraniec, B., et al., In vitro studies of carbon nanotubes biocompatibility[J]. Carbon 2006, 44 (6), 1106-1111.
    [17]. Maynard AD; Baron PA; Foley M, et al., Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material[J]. Journal of Toxicology and Environmental Health-Part A 2004, 67 (1), 87-107.
    [18]. Lacerda, L.; Raffa, S.; Prato, M., et al., Cell-penetrating CNTs for delivery of therapeutics[J]. Nano Today 2007, 2 (6), 38-43.
    [19].姚志麒,环境卫生学[M].人民卫生出版社: 1986.
    [20]. Shvedova, A. A.; Kisin, E. R.; Porter, D., et al., Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus?[J]. Pharmacology & Therapeutics 2009, 121 (2), 192-204.
    [21]. Grubek-Jaworska, H.; Nejman, P.; Czuminska, K., et al., Preliminary results on the pathogenic effects of intratracheal exposure to one-dimensional nanocarbons[J]. Carbon 2006, 44 (6), 1057-1063.
    [22]. Unfried, K.; Albrecht, C.; Klotz, L., et al., Cellular responses to nanoparticles: Target structures and mechanisms[J]. Nanotoxicology 2007, 1 (1), 52-71.
    [23]. De Jong, W.; Borm, P., Drug delivery and nanoparticles: Applications and hazards[J]. International Journal of Nanomedicine 2008, 3 (2), 133-149.
    [24]. Couvreur, P.; Puisieux, F., Nano- and microparticles for the delivery of polypeptides and proteins[J]. Advanced Drug Delivery Reviews 1993, 10 (2-3), 141-162.
    [25]. Bouwmeester, H.; Dekkers, S.; Noordam, M., et al., Review of health safety aspects of nanotechnologies in food production[J]. Regulatory Toxicology and Pharmacology 2009, 53 (1), 52-62.
    [26]. Warheit, D.; Sayes, C.; Reed, K., et al., Health effects related to nanoparticle exposures: Environmental, health and safety considerations for assessing hazards and risks[J]. Pharmacology & Therapeutics 2008, 120 (1), 35-42.
    [27]. Nel, A.; Xia, T.; Madler, L., et al., Toxic Potential of Materials at the Nanolevel[J]. Science 2006, 311 (5761), 622-627.
    [28]. Alpatova, A. L.; Shan, W. Q.; Babica, P., et al., Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions[J]. Water Research 2010, 44 (2), 505-520.
    [29]. Nayak, T. R.; Leow, P. C.; Ee, P. L. R., et al., Crucial Parameters Responsible for Carbon Nanotubes Toxicity[J]. Current Nanoscience 2010, 6 (2), 141-154.
    [30]. Vukovic, G.; Marinkovic, A.; Obradovic, M., et al., Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes[J]. Applied Surface Science 2009, 255 (18), 8067-8075.
    [31]. Lin, C.; Fugetsu, B.; Su, Y. B., et al., Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells[J]. Journal of Hazardous Materials 2009, 170 (2-3), 578-583.
    [32]. Deng, X. Y.; Wu, F.; Liu, Z., et al., The splenic toxicity of water soluble multi-walled carbon nanotubes in mice[J]. Carbon 2009, 47 (6), 1421-1428.
    [33]. VanHandel, M.; Alizadeh, D.; Zhang, L. Y., et al., Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model[J]. Journal of Neuroimmunology 2009, 208 (1-2), 3-9.
    [34]. Hussain, M. A.; Kabir, M. A.; Sood, A. K., On the cytotoxicity of carbon nanotubes[J]. Current Science 2009, 96 (5), 664-673.
    [35]. Wang, J.; Sun, R. H.; Zhang, N., et al., Multi-walled carbon nanotubes do not impair immune functions of dendritic cells[J]. Carbon 2009, 47 (7), 1752-1760.
    [36]. Tong, H. Y.; Mcgee, J. K.; Saxena, R. K., et al., Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon blackparticles in mice[J]. Toxicology and Applied Pharmacology 2009, 239 (3), 224-232.
    [37]. Jones, C. F.; Grainger, D. W., In vitro assessments of nanomaterial toxicity[J]. Advanced Drug Delivery Reviews 2009, 61 (6), 438-456.
    [38]. Aviles, F.; Cauich-Rodriguez, J. V.; Moo-Tah, L., et al., Evaluation of mild acid oxidation treatments for MWCNT functionalization[J]. Carbon 2009, 47 (13), 2970-2975.
    [39]. Zhu, Y.; Li, W. X.; Li, Q. N., et al., Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles[J]. Carbon 2009, 47 (5), 1351-1358.
    [40]. Aillon, K. L.; Xie, Y. M.; El-Gendy, N., et al., Effects of nanomaterial physicochemical properties on in vivo toxicity[J]. Advanced Drug Delivery Reviews 2009, 61 (6), 457-466.
    [41]. Wang, X.; Jia, G.; Wang, H., et al., Diameter Effects on Cytotoxicity of Multi-Walled Carbon Nanotubes[J]. Journal of Nanoscience and Nanotechnology 2009, 9 (5), 3025-3033.
    [42]. Jos, A.; Pichardo, S.; Puerto, M., et al., Cytotoxicity of carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2[J]. Toxicology in Vitro 2009, 23 (8), 1491-1496.
    [43]. Su, Y. Y.; He, Y.; Lu, H. T., et al., The cytotoxicity of cadmium based, aqueous phase - Synthesized, quantum dots and its modulation by surface coating[J]. Biomaterials 2009, 30 (1), 19-25.
    [44]. Dong, L. F.; Witkowski, C. M.; Craig, M. M., et al., Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells[J]. Nanoscale Research Letters 2009, 4 (12), 1517-1523.
    [45]. Mansur, H. S.; Costa, E. D.; Mansur, A. A. P., et al., Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2009, 29 (5), 1574-1583.
    [46]. Yang, H.; Liu, C.; Yang, D. F., et al., Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition[J]. Journal of Applied Toxicology 2009, 29 (1), 69-78.
    [47]. Lacerda, L.; Ali-Boucettal, H.; Herrero, M. A., et al., Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes[J]. Nanomedicine 2008, 3 (2), 149-161.
    [48]. Casey, A.; Herzog, E.; Lyng, F. M., et al., Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells[J]. Toxicology Letters 2008, 179 (2), 78-84.
    [49]. Kostarelos, K., The long and short of carbon nanotube toxicity[J]. Nature Biotechnology 2008, 26 (7), 774-776.
    [50]. Shi, X.; Sitharaman, B.; Pham, Q. P., et al., In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites[J]. Journal of Biomedical Materials Research A 2008, 86 (3), 813-823.
    [51]. Jacobsen, N. R.; Pojana, G.; White, P., et al., Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C-60 fullerenes in the FE1-Muta (TM) mouse lung epithelial cells[J]. Environmental and Molecular Mutagenesis 2008, 49 (6), 476-487.
    [52]. Dong, L.; Joseph, K. L.; Witkowski, C. M., et al., Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants[J]. Nanotechnology 2008, 255702 (5pp).
    [53]. Zhu, Y.; Li, W. X., Cytotoxicity of carbon nanotubes[J]. Science in China Series B-Chemistry 2008, 51 (11), 1021-1029.
    [54]. Ciofani, G.; Raffa, V.; Menciassi, A., et al., Cytocompatibility, Interactions, and Uptake of Polyethyleneimine-Coated Boron Nitride Nanotubes by Living Cells: Confirmation of Their Potential for Biomedical Applications[J]. Biotechnology and Bioengineering 2008, 101 (4), 850-858.
    [55]. Lin, C.; Wu, Y.; Lu, W., et al., Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event[J]. Journal of Hazardous Materials 2007, 142 (1-2), 199-207.
    [56]. Smith, C. J.; Shaw, B. J.; Handy, R. D., Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects[J]. Aquatic Toxicology 2007, 82 (2), 94-109.
    [57]. Davoren, M.; Herzog, E.; Casey, A., et al., In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells[J]. Toxicology in Vitro 2007, 21 (3), 438-448.
    [58]. Roda, E.; Castoldi, A. F.; Coccini, T., et al., In vitro toxicity assessment of single- and multi-walled carbon nanotubes in human astrocytoma and lung carcinoma cells[J]. Toxicology Letters 2007, 172, S235-S236.
    [59]. Pulskamp, K.; Diabate, S.; Krug, H. F., Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants[J]. Toxicology Letters 2007, 168 (1), 58-74.
    [60]. Pulskamp, K.; Wrle-Knirsch, J. M.; Krug, H. F., Carbon nanotubes and their influence on cell viability and function[J]. Toxicology Letters 2007, 172, S35-S36.
    [61]. Bottini, M.; Bruckner, S.; Nika, K., et al., Multi-walled carbon nanotubes induce T lymphocyte apoptosis[J]. Toxicology Letters 2006, 160 (20), 121-126.
    [62]. Jia, G.; Wang, H.; Yan, L., et al., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene[J]. Environmental Science & Technology 2005, 39 (5), 1378-1383.
    [63]. Murr, L. E.; Garza, K. M.; Soto, K. F., et al., Cytotoxicity assessment of some carbon nanotubes and related carbon nanoparticle aggregates and the implications for anthropogenic carbon nanotube aggregates in the environment[J]. Intertnatinal Journal of Environmental Research and Public Health 2005, 2 (1), 31-42.
    [64]. Cheng, C.; Muller, K. H.; Koziol, K. K. K., et al., Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells[J]. Biomaterials 2009, 30 (25), 4152-4160.
    [65]. Cui, D. X.; Tian, F. R.; Ozkan, C., et al., Effect of single wall carbon nanotubes on human HEK293 cells[J]. Toxicology Letters 2005, 155 (1), 73-85.
    [66]. Sayes, C. M.; Liang, F.; Hudson, J. L., et al., Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro[J]. Toxicology Letters 2006, 161 (2), 135-142.
    [67]. Wu, W.; Wieckowski, S.; Pastorin, G., et al., Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes[J]. Angewandte Chemie-International Edition 2005, 44 (39), 6358-6362.
    [68]. Lacotte, S.; Garcia, A.; Decossas, M., et al., Interfacing functionalized carbon nanohorns with primary phagocytic cells[J]. Advanced Materials 2008, 20 (12), 2421-26.
    [69]. Dumortier, H.; Lacotte, S.; Pastorin, G., et al., Functionalized carbon nanotubes are noncytotoxic and preserve the functionality of primary immune cells[J]. Nano Letters 2006, 6 (1), 1522-1528.
    [70]. Kam, N. W. S.; O'Connell, M.; Wisdom, J. A., et al., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica 2005, 102 (33), 11600-11605.
    [71]. Chen, X.; Lee, G. S.; Zettl, A., et al., Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics[J]. Angewandte Chemie-International Edition 2004, 43 (23), 6111-6116.
    [72]. Bakota, E. L.; Aulisa, L.; Tsyboulski, D. A., et al., Multidomain Peptides as Single-Walled Carbon Nanotube Surfactants in Cell Culture[J]. Biomacromolecules 2009, 10 (8), 2201-2206.
    [73]. Cheng, J. P.; Fernando, K. A. S.; Veca, L. M., et al., Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus[J]. Acs Nano 2008, 2 (10), 2085-2094.
    [74]. Worle-Knirsch, J. M.; Pulskamp, K.; Krug, H. F., Oops they did it again! Carbon nanotubes hoax scientists in viability assays[J]. Nano Letters 2006, 6 (6), 1261-1268.
    [75]. Belyanskaya, L.; Manser, P.; Spohn, P., et al., The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction[J]. Carbon 2007, 45 (13), 2643-2648.
    [76]. Gwinn, M.; Vallyathan, V., Nanoparticles: Health effects - Pros and cons[J]. Environmental Health Perspectives 2006, 114 (12), 1818-1825.
    [77]. Kam, N. W. S.; Jessop, T. C.; Wender, P. A., et al., Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells[J]. Journal of the American Chemical Society 2004, 126 (22), 6850-6851.
    [78]. Kam, N. W. S.; Dai, H. J., Carbon nanotubes as intracellular protein transporters: Generality and biological functionality[J]. Journal of the American Chemical Society 2005, 127 (16), 6021-6026.
    [79]. Lacerda, L.; Bianco, A.; Prato, M., et al., Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo[J]. Journal of Materials Chemistry 2008, 18 (1), 17-22.
    [80]. Singh, R.; Pantarotto, D.; Lacerda, L., et al., Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers[J]. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (9), 3357-3362.
    [81]. Pastorin, G.; Wu, W.; Wieckowski, S., et al., Double functionalisation of carbon nanotubes for multimodal drug delivery[J]. Chemical Communications 2006, (11),1182-1184.
    [82]. Jung, S.; Cha, M.; Park, J., et al., Dissociation of Single-Strand DNA: Single-Walled Carbon Nanotube Hybrids by Watson-Crick Base-Pairing[J]. Journal of the American Chemical Society 2010, 10 (132), 10964–10966.
    [83]. Liu, Z.; Winters, M.; Holodniy, M., et al., siRNA delivery into human T cells and primary cells with carbon-nanotube transporters[J]. Angewandte Chemie-International Edition 2007, 46 (12), 2023-2027.
    [84]. Kam, N. W. S.; Liu, Z.; Dai, H. J., Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing[J]. Journal of the American Chemical Society 2005, 127 (36), 12492-12493.
    [85]. Wong, H. L.; Bendayan, R.; Rauth, A. M., et al., Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles[J]. Advanced Drug Delivery Reviews 2007, 59 (6), 491-504.
    [86]. Feazell, R. P.; Nakayama-Ratchford, N.; Dai, H., et al., Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(IV) anticancer drug design[J]. Journal of the American Chemical Society 2007, 129 (27), 8438-8439.
    [87]. Chen, J. Y.; Chen, S. Y.; Zhao, X. R., et al., Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery[J]. Journal of the American Chemical Society 2008, 130 (49), 16778-16785.
    [88]. Liu, Z.; Sun, X. M.; Nakayama-Ratchford, N., et al., Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery[J]. Acs Nano 2007, 1 (1), 50-56.
    [89]. Zhang, X. K.; Meng, L. J.; Lu, Q. G., et al., Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes[J]. Biomaterials 2009, 30 (30), 6041-6047.
    [90]. Ali-Boucetta, H.; Al-Jamal, K. T.; McCarthy, D., et al., Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics[J]. Chemical Communications 2008, 12(1), 459-461.
    [91]. Dhar, S.; Liu, Z.; Thomale, J., et al., T Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device [J]. Journal of the American Chemical Society 2008, 130 (34), 11467-11476.
    [92]. Liu, Z.; Cai, W. B.; He, L. N., et al., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice[J]. Nature Nanotechnology 2007, 2(1), 47-52.
    [93]. Zhongmin, O.; Baoyan, W.; Da, X., et al., Functional single-walled carbon nanotubes based on an integrin alpha /sub v/ beta /sub 3/ monoclonal antibody for highly efficient cancer cell targeting[J]. Nanotechnology 2009, 105102 (7 pp.).
    [94]. Kim, Y.; Lillo, A. M.; Steiniger, S. C. J., et al., Targeting heat shock proteins on cancer cells: Selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand[J]. Biochemistry 2006, 45 (31), 9434-9444.
    [95]. Wang, H.; Wang, J.; Deng, X., et al., Biodistribution of carbon single-wall nanotubes in mice[J]. Journal of Nanoscience and Nanotechnology 2004, 2 (4), 1019-1024.
    [96]. Liu, Z.; Davis, C.; Cai, W. B., et al., Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (5), 1410-1415.
    [97]. Yang, S. T.; Fernando, K. A. S.; Liu, J. H., et al., Covalently PEGylated carbon nanotubes with stealth character in vivo[J]. Small 2008, 4 (7), 940-944.
    [98]. Deng, X.; Jia, G.; Wang, H., et al., Translocation and fate of multi-walled carbon nanotubes in vivo[J]. Carbon 2007, 45 (7), 1419-1424.
    [99]. Shvedova, A.; Kisin, E.; Murray, A., et al., Exposure of human bronchial epithelial cells to carbon nanotubes caused oxidative stress and cytotoxicity[J]. Proceedings of the Meeting of the Society for Free Radical Research, European Section 2003, 91-103.
    [100]. Poland, C. A.; Duffin, R.; Kinloch, I., et al., Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study[J]. Nature Nanotechnology 2008, 3 (7), 423-428.
    [101]. Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R., et al., A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice[J]. Nature Nanotechnology 2008, 3 (4), 216-221.
    [102]. Yang, S. T.; Wang, X.; Jia, G., et al., Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice[J]. Toxicology Letters 2008, 181 (3), 182-189.
    [103]. Zhang, Z. H.; Yang, X. Y.; Zhang, Y., et al., Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth[J]. Clinical Cancer Research 2006, 15 (12),4933-4939.
    [104]. Liu, Z.; Chen, K.; Davis, C., et al., Drug delivery with carbon nanotubes for in vivo cancer treatment[J]. Cancer Research 2008, 68 (16), 6652-6660.
    [105]. Bhirde, A. A.; Patel, V.; Gavard, J., et al., Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery[J]. Acs Nano 2009, 3 (2), 307-316.
    [106]. Wu, W.; Li, R. T.; Bian, X. C., et al., Covalently Combining Carbon Nanotubes with Anticancer Agent: Preparation and Antitumor Activity[J]. Acs Nano 2009, 3 (9), 2740-2750.
    [1]. Dai, H. J., Carbon nanotubes: Synthesis, Intergration and Properties[J]. Accounts of Chemical Research 2002, 35(12), 1035-1044.
    [2]. Zhao, Y.; F., S. J., Noncovalent Functionalization of Single-Walled Carbon Nanotubes[J]. Accounts of Chemical Research 2009, 42 (8), 1161-1171.
    [3]. Liang, F.; Chen, B., A Review on Biomedical Applications of Single-Walled Carbon Nanotubes[J]. Current Medicinal Chemistry 17 (1), 10-24.
    [4]. Liu, Z.; Tabakman, S.; Welsher, K., et al., Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery[J]. Nano Research 2009, 2 (2), 85-120.
    [5]. Singh, R.; Lillard, J. W., Nanoparticle-based targeted drug delivery[J]. Experimental and Molecular Pathology 2009, 86 (3), 215-223.
    [6]. Kostarelos, K.; Bianco, A.; Prato, M., Promises, facts and challenges for carbon nanotubes in imaging and therapeutics[J]. Nature Nanotechnology 2009, 4 (10), 627-633.
    [7]. Tran, P. A.; Zhang, L. J.; Webster, T. J., Carbon nanofibers and carbon nanotubes in regenerative medicine[J]. Advanced Drug Delivery Reviews 2009, 61 (12), 1097-1114.
    [8]. Prato, M.; Kostarelos, K.; Bianco, A., Functionalized carbon nanotubes in drug design and discovery[J]. Accounts of Chemical Research 2008, 41 (1), 60-68.
    [9]. Yang, W. R.; Thordarson, P.; Gooding, J. J., et al., Carbon nanotubes for biological and biomedical applications[J]. Nanotechnology 2007, 18 (41), 412001 (12pp).
    [10]. Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R., et al., A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice[J]. Nature Nanotechnology 2008, 3 (4), 216-221.
    [11]. Hussain, M. A.; Kabir, M. A.; Sood, A. K., On the cytotoxicity of carbon nanotubes[J]. Current Science 2009, 96 (5), 664-673.
    [12]. Tejral, G.; Panyala, N. R.; Havel, J., Carbon nanotubes: toxicological impact on human health and environment[J]. Journal of Applied Biomedicine 2009, 7 (1), 1-13.
    [13]. Bellucci, S., Carbon Nanotubes Toxicity[J]. Nanoparticles and Nanodevices in Biological Applications 2009, 197(4), 47-67.
    [14]. Yang, S. T.; Wang, X.; Jia, G., et al., Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice[J]. Toxicology Letters2008, 181 (3), 182-189.
    [15]. Sitharaman, B.; Shi, X. F.; Walboomers, X. F., et al., In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for, bone tissue engineering[J]. Bone 2008, 43 (2), 362-370.
    [16]. Shi, X.; Sitharaman, B.; Pham, Q. P., et al., In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites[J]. Journal of Biomedical Materials Research A 2008, 86 (3), 813-823.
    [17]. Lacerda, L.; Prato, M.; Bianco, A., et al., Improved Tissue Distribution, Renal Clearance and Toxicity Profile of Functionalized Carbon Nanotubes[J]. Nsti Nanotechnology 2008, 2(786), 509-511.
    [18]. Shvedova, A. A.; Castranova, V.; Kisin, E. R., et al., Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells[J]. J Toxicol Environ Health A 2003, 66 (20), 1909-1926.
    [19]. Shvedova, A.; Kisin, E.; Murray, A., et al., Exposure of human bronchial epithelial cells to carbon nanotubes caused oxidative stress and cytotoxicity[J]. Proceedings of the Meeting of the Society for Free Radical Research, European Section 2003, 91-103.
    [20]. Alpatova, A. L.; Shan, W. Q.; Babica, P., et al., Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions[J]. Water Research 2010, 44 (2), 505-520.
    [21]. Cheng, C.; Muller, K. H.; Koziol, K. K. K., et al., Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells[J]. Biomaterials 2009, 30 (25), 4152-4160.
    [22]. Lin, C.; Fugetsu, B.; Su, Y. B., et al., Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells[J]. Journal of Hazardous Materials 2009, 170 (2-3), 578-583.
    [23]. Deng, X. Y.; Wu, F.; Liu, Z., et al., The splenic toxicity of water soluble multi-walled carbon nanotubes in mice[J]. Carbon 2009, 47 (6), 1421-1428.
    [24]. Panessa-Warren, B. J.; Maye, M. M.; Warren, J. B., et al., Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure[J]. Environmental Pollution 2009, 157 (4), 1140-1151.
    [25]. VanHandel, M.; Alizadeh, D.; Zhang, L. Y., et al., Selective uptake ofmulti-walled carbon nanotubes by tumor macrophages in a murine glioma model[J]. Journal of Neuroimmunology 2009, 208 (1-2), 3-9.
    [26]. Knief, P.; Clarke, C.; Herzog, E., et al., Raman spectroscopy--a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity[J]. Analyst 2009, 134 (6), 1182-1191.
    [27]. Wang, J.; Sun, R. H.; Zhang, N., et al., Multi-walled carbon nanotubes do not impair immune functions of dendritic cells[J]. Carbon 2009, 47 (7), 1752-1760.
    [28]. Tong, H. Y.; Mcgee, J. K.; Saxena, R. K., et al., Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice[J]. Toxicology and Applied Pharmacology 2009, 239 (3), 224-232.
    [29]. Koyama, S.; Kim, Y. A.; Hayashi, T., et al., In vivo immunological toxicity in mice of carbon nanotubes with impurities[J]. Carbon 2009, 47 (5), 1365-1372.
    [30]. Jones, C. F.; Grainger, D. W., In vitro assessments of nanomaterial toxicity[J]. Advanced Drug Delivery Reviews 2009, 61 (6), 438-456.
    [31]. Zhongmin, O.; Baoyan, W.; Da, X., et al., Functional single-walled carbon nanotubes based on an integrin alpha /sub v/ beta /sub 3/ monoclonal antibody for highly efficient cancer cell targeting[J]. Nanotechnology 2009, 105102 (7 pp.).
    [32]. Aviles, F.; Cauich-Rodriguez, J. V.; Moo-Tah, L., et al., Evaluation of mild acid oxidation treatments for MWCNT functionalization[J]. Carbon 2009, 47 (13), 2970-2975.
    [33]. Wang, X.; Jia, G.; Wang, H., et al., Diameter Effects on Cytotoxicity of Multi-Walled Carbon Nanotubes[J]. Journal of Nanoscience and Nanotechnology 2009, 9 (5), 3025-3033.
    [34]. Jos, A.; Pichardo, S.; Puerto, M., et al., Cytotoxicity of carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2[J]. Toxicology in Vitro 2009, 23 (8), 1491-1496.
    [35]. Su, Y. Y.; He, Y.; Lu, H. T., et al., The cytotoxicity of cadmium based, aqueous phase - Synthesized, quantum dots and its modulation by surface coating[J]. Biomaterials 2009, 30 (1), 19-25.
    [36]. Dong, L. F.; Witkowski, C. M.; Craig, M. M., et al., Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells[J]. Nanoscale Research Letters 2009, 4 (12), 1517-1523.
    [37]. Mansur, H. S.; Costa, E. D.; Mansur, A. A. P., et al., Cytocompatibilityevaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2009, 29 (5), 1574-1583.
    [38]. Yang, H.; Liu, C.; Yang, D. F., et al., Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition[J]. Journal of Applied Toxicology 2009, 29 (1), 69-78.
    [39]. Srinivasan, C., Toxicity of carbon nanotubes - Some recent studies[J]. Current Science 2008, 95 (3), 307-308.
    [40]. Kostarelos, K., The long and short of carbon nanotube toxicity[J]. Nature Biotechnology 2008, 26 (7), 774-776.
    [41]. Sayes, C. M.; Liang, F.; Hudson, J. L., et al., Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro[J]. Toxicology Letters 2006, 161 (2), 135-142.
    [42]. Lacerda, L.; Ali-Boucettal, H.; Herrero, M. A., et al., Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes[J]. Nanomedicine 2008, 3 (2), 149-161.
    [43]. Lacotte, S.; Garcia, A.; Decossas, M., et al., Interfacing functionalized carbon nanohorns with primary phagocytic cells[J]. Advanced Materials 2008, 20 (12), 2421-26.
    [44]. Dumortier, H.; Lacotte, S.; Pastorin, G., et al., Functionalized carbon nanotubes are noncytotoxic and preserve the functionality of primary immune cells[J]. Nano Letters 2006, 6 (1), 1522-1528.
    [45]. Kam, N. W. S.; O'Connell, M.; Wisdom, J. A., et al., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction[J]. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (33), 11600-11605.
    [46]. Cheng, J. P.; Fernando, K. A. S.; Veca, L. M., et al., Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus[J]. Acs Nano 2008, 2 (10), 2085-2094.
    [47]. Jia, G.; Wang, H.; Yan, L., et al., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene[J]. Environmental Science & Technology 2005, 39 (5), 1378-1383.
    [1]. Wong, H. L.; Bendayan, R.; Rauth, A. M., et al., Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles[J]. Advanced Drug Delivery Reviews 2007, 59 (6), 491-504.
    [2]. Xu, Z. H.; Zhang, Z. W.; Chen, Y., et al., The characteristics and performance of a multifunctional nanoassembly system for the co-delivery of docetaxel and iSur-pDNA in a mouse hepatocellular carcinoma model[J]. Biomaterials 2010, 31 (5), 916-922.
    [3]. Mehnert, W.; Mader, K., Solid lipid nanoparticles - Production, characterization and applications[J]. Advanced Drug Delivery Reviews 2001, 47 (2-3), 165-196.
    [4]. Singh, R.; Lillard, J. W., Nanoparticle-based targeted drug delivery[J]. Experimental and Molecular Pathology 2009, 86 (3), 215-223.
    [5]. Ali-Boucetta, H.; Al-Jamal, K. T.; McCarthy, D., et al., Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics[J]. Chemical Communications 2008, 12(1), 459-461.
    [6]. Lacotte, S.; Garcia, A.; Decossas, M., et al., Interfacing functionalized carbon nanohorns with primary phagocytic cells[J]. Advanced Materials 2008, 20 (12), 2421-2426.
    [7]. Kostarelos, K.; Lacerda, L.; Pastorin, G., et al., Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type[J]. Nature Nanotechnology 2007, 2 (2), 108-113.
    [8]. Lacerda, L.; Raffa, S.; Prato, M., et al., Cell-penetrating CNTs for delivery of therapeutics[J]. Nano Today 2007, 2 (6), 38-43.
    [9]. Prato, M.; Kostarelos, K.; Bianco, A., Functionalized carbon nanotubes in drugdesign and discovery[J]. Accounts of Chemical Research 2008, 41 (1), 60-68.
    [10]. Chen, J. Y.; Chen, S. Y.; Zhao, X. R., et al., Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery[J]. Journal of the American Chemical Society 2008, 130 (49), 16778-16785.
    [11]. Klumpp, C.; Kostarelos, K.; Prato, M., et al., Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics[J]. Biochimica Et Biophysica Acta-Biomembranes 2006, 1758 (3), 404-412.
    [12]. Kam, N. W. S.; Dai, H. J., Single walled carbon nanotubes for transport and delivery of biological cargos[J]. Physica Status Solidi B-Basic Solid State Physics 2006, 243 (13), 3561-3566.
    [13]. Bianco, A.; Kostarelos, K.; Prato, M., Applications of carbon nanotubes in drug delivery[J]. Current Opinion in Chemical Biology 2005, 9 (6), 674-679.
    [14]. Kam, N. W. S.; Dai, H. J., Carbon nanotubes as intracellular protein transporters: Generality and biological functionality[J]. Journal of the American Chemical Society 2005, 127 (16), 6021-6026.
    [15]. Kam, N. W. S.; O'Connell, M.; Wisdom, J. A., et al., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction[J]. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (33), 11600-11605.
    [16]. Kam, N. W. S.; Liu, Z.; Dai, H. J., Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing[J]. Journal of the American Chemical Society 2005, 127 (36), 12492-12493.
    [17]. Wu, W.; Wieckowski, S.; Pastorin, G., et al., Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes[J]. Angewandte Chemie-International Edition 2005, 44 (39), 6358-6362.
    [18]. Kam, N. W. S.; Jessop, T. C.; Wender, P. A., et al., Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells[J]. Journal of the American Chemical Society 2004, 126 (22), 6850-6851.
    [19]. Pastorin, G.; Wu, W.; Wieckowski, S., et al., Double functionalisation of carbon nanotubes for multimodal drug delivery[J]. Chemical Communications 2006, 6 (11), 1182-1184.
    [20]. Feazell, R. P.; Nakayama-Ratchford, N.; Dai, H., et al., Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(IV) anticancer drug design[J].Journal of the American Chemical Society 2007, 129 (27), 8438-8439.
    [21]. Liu, Z.; Sun, X. M.; Nakayama-Ratchford, N., et al., Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery[J]. Acs Nano 2007, 1 (1), 50-56.
    [22]. Zhang, X. K.; Meng, L. J.; Lu, Q. G., et al., Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes[J]. Biomaterials 2009, 30 (30), 6041-6047.
    [23]. Cheng, J. P.; Fernando, K. A. S.; Veca, L. M., et al., Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus[J]. Acs Nano 2008, 2 (10), 2085-2094.
    [1]. Kam, N. W. S.; Dai, H. J., Single walled carbon nanotubes for transport and delivery of biological cargos[J]. Physica Status Solidi B-Basic Solid State Physics 2006, 243 (13), 3561-3566.
    [2]. Kam, N. W. S.; Dai, H. J., Carbon nanotubes as intracellular protein transporters: Generality and biological functionality[J]. Journal of the American Chemical Society 2005, 127 (16), 6021-6026.
    [3]. Kam, N. W. S.; O'Connell, M.; Wisdom, J. A., et al., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction[J]. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (33), 11600-11605.
    [4]. Kam, N. W. S.; Liu, Z.; Dai, H. J., Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing[J]. Journal of the American Chemical Society 2005, 127 (36), 12492-12493.
    [5]. Kam, N. W. S.; Jessop, T. C.; Wender, P. A., et al., Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells[J]. Journal of the American Chemical Society 2004, 126 (22), 6850-6851.
    [6]. Liu, Z.; Tabakman, S.; Welsher, K., et al., Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery[J]. Nano Research 2009, 2 (2), 85-120.
    [7]. Kortylewski, M.; Swiderski, P.; Herrmann, A., et al., In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses[J]. Nature Biotechnology 2009, 27 (10), 925-933.
    [8]. Liu, Z.; Davis, C.; Cai, W. B., et al., Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (5), 1410-1415.
    [9]. Liu, Z.; Chen, K.; Davis, C., et al., Drug delivery with carbon nanotubes for in vivo cancer treatment[J]. Cancer Research 2008, 68 (16), 6652-6660.
    [10]. Liu, Z.; Cai, W. B.; He, L. N., et al., In vivo biodistribution and highlyefficient tumour targeting of carbon nanotubes in mice[J]. Nature Nanotechnology 2007, 2 (1), 47-52.
    [11]. Liu, J.; Meisner, D.; Kwong, E., et al., A novel trans-lymphatic drug delivery system: Implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres[J]. Biomaterials 2007, 28 (21), 3236-3244.
    [12]. Lu, Y. H.; Wu, J.; Wu, J. M., et al., Role of formulation composition in folate receptor-targeted liposomal doxorubicin delivery to acute myelogenous leukemia cells[J]. Molecular Pharmaceutics 2007, 4 (5), 707-712.
    [13]. Liu, Z.; Winters, M.; Holodniy, M., et al., siRNA delivery into human T cells and primary cells with carbon-nanotube transporters[J]. Angewandte Chemie-International Edition 2007, 46 (12), 2023-2027.
    [14]. Liu, Z.; Sun, X. M.; Nakayama-Ratchford, N., et al., Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery[J]. Acs Nano 2007, 1 (1), 50-56.
    [15]. Deng, X.; Jia, G.; Wang, H., et al., Translocation and fate of multi-walled carbon nanotubes in vivo[J]. Carbon 2007, 45 (7), 1419-1424.
    [16]. Lacerda, L.; Ali-Boucettal, H.; Herrero, M. A., et al., Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes[J]. Nanomedicine 2008, 3 (2), 149-161.
    [17]. Ali-Boucetta, H.; Al-Jamal, K. T.; McCarthy, D., et al., Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics[J]. Chemical Communications 2008, 12 (1), 459-461.
    [18]. Lacotte, S.; Garcia, A.; Decossas, M., et al., Interfacing functionalized carbon nanohorns with primary phagocytic cells[J]. Advanced Materials 2008, 20 (12), 2421-2426.
    [19]. Lacerda, L.; Prato, M.; Bianco, A., et al., Improved Tissue Distribution, Renal Clearance and Toxicity Profile of Functionalized Carbon Nanotubes[J]. Nsti Nanotech 2008, Vol 2, Technical Proceedings 2008, 509-511.
    [20]. Kostarelos, K.; Bianco, A.; Prato, M., Hype around nanotubes creates unrealistic hopes[J]. Nature 2008, 453 (7193), 280-280.
    [21]. Lacerda, L.; Soundararajan, A.; Singh, R., et al., Dynamic Imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion[J]. Advanced Materials 2008, 20 (2), 225-230.
    [22]. Lacerda, L.; Herrero, M. A.; Venner, K., et al., Carbon-nanotube shape and individualization critical for renal excretion[J]. Small 2008, 4 (8), 1130-1132.
    [23]. Lacerda, L.; Bianco, A.; Prato, M., et al., Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo[J]. Journal of Materials Chemistry 2008, 18 (1), 17-22.
    [24]. Kostarelos, K.; Lacerda, L.; Pastorin, G., et al., Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type[J]. Nature Nanotechnology 2007, 2 (2), 108-113.
    [25]. Lacerda, L.; Raffa, S.; Prato, M., et al., Cell-penetrating CNTs for delivery of therapeutics[J]. Nano Today 2007, 2 (6), 38-43.
    [26]. Singh, R.; Pantarotto, D.; Lacerda, L., et al., Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers[J]. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (9), 3357-3362.
    [27]. Dumortier, H.; Lacotte, S.; Pastorin, G., et al., Functionalized carbon nanotubes are noncytotoxic and preserve the functionality of primary immune cells[J]. Nano Letters 2006, 6 (1), 1522-1528.
    [28]. Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R., et al., A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice[J]. Nature Nanotechnology 2008, 3 (4), 216-221.
    [29]. Yang, H.; Liu, C.; Yang, D. F., et al., Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition[J]. Journal of Applied Toxicology 2009, 29 (1), 69-78.
    [30]. Yang, S. T.; Wang, X.; Jia, G., et al., Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice[J]. Toxicology Letters 2008, 181 (3), 182-189.
    [31]. Zhang, Z. H.; Yang, X. Y.; Zhang, Y., et al., Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth[J]. Clinical Cancer Research 2006, 15 (12), 4933-4939.
    [32]. Wu, W.; Li, R. T.; Bian, X. C., et al., Covalently Combining Carbon Nanotubes with Anticancer Agent: Preparation and Antitumor Activity[J]. Acs Nano 2009, 3 (9), 2740-2750.
    [33]. Bhirde, A. A.; Patel, V.; Gavard, J., et al., Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery[J]. Acs Nano 2009, 3 (2), 307-316.
    [34].柳益书;姚礼庆;周平红, et al.,磁性阿霉素隐形脂质体对裸鼠移植性人胃癌疗效研究[J].江苏大学学报(医学版) 2004, 14 (2), 93-96.
    [35]. Okuno, S.; Harada, M.; Yano, T., et al., Complete regression of xenografted human carcinomas by camptothecin analogue-carboxymethyl dextran conjugate (T-0128)[J]. Cancer Res 2000, 60 (11), 2988-2995.
    [36]. Jenkins, W. T.; Evans, S. M.; Koch, C. J., Hypoxia and necrosis in rat 9L glioma and Morris 7777 hepatoma tumors: comparative measurements using EF5 binding and the Eppendorf needle electrode[J]. International Journal of Radiation Oncology ? Biology ? Physics 2000, 46 (4), 1005-1017.
    [37].陈菊;姜苗;田邵丹,, et al.,复方浙贝颗粒对阿霉素导致P388模型小鼠外周血象影响研究[J].现代生物医学进展2009, 9 (16), 3006-3010.
    [38].秦绪军;海春旭;何伟, et al.,复合抗氧化剂对大鼠肝癌阿霉素化疗外周血的保护作用[J].中国现代医学杂志2006, 16 (15), 2290-2293.
    [39]. Berends, M. A.; van Oijen, M. G.; Snoek, J., et al., Reliability of the Roenigk classification of liver damage after methotrexate treatment for psoriasis: a clinicopathologic study of 160 liver biopsy specimens[J]. Archives of Dermatology 2007, 143 (12), 1515-1519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700