金属磁记忆检测机理的试验研究与有限元仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以磁性物理学、技术磁学等理论为指导,以试验研究和数值仿真为手段,研究了不同铁磁材料在不同载荷下的磁记忆信号分布特征,并将金属磁记忆技术引入到疲劳损伤与寿命评估领域,探索疲劳损伤的磁记忆表征规律。
     根据应力的磁效应来源于应力的磁导率效应的理论,利用ANSYS有限元软件对20#钢小孔平板试样进行了力-磁效应的有限元仿真。提取数据并分析了磁场分布规律及检测路径、应力大小对表面漏磁场影响,对磁场强度法向梯度值进行了分析,绘制了法向梯度值的峰值幅度随应力的变化曲线。结果表明,在应力集中部位磁场强度法向分量过零点,切向分量出现最大值,磁力线在应力的加载过程中发生了反转,证明了力磁耦合模型的适用性。分析还表明,应力集中和漏磁场法向梯度值具有很强的相关性,应力分布决定了漏磁场梯度的分布。
     以45#钢为研究对象,分别对无预制缺陷及带缺口平板试样拉伸过程中的磁记忆信号进行了测量与分析。结果表明,在弹性阶段,磁记忆信号较小且分布杂乱,而当应力大于500MPa时,磁记忆信号明显增强。在磁记忆特征值提取方面,利用传统的磁场梯度极值|K|max可以有效的检验应力集中部位。同时本文提出一种新的基于磁记忆信号能量的检测特征值,实验证明可以通过此特征值对试样的安全性做出检测及评估。
     对比分析了45#钢与30CrMnSiNi2A钢拉伸过程中的磁记忆信号,结果表明,不同的铁磁材料在应力的作用下,其法向磁场梯度K值峰值变化规律不同,这与材料的力学性能以及材料的磁学参数有直接的关系。
     以40Cr钢三点弯曲SE(B)试样进行常温疲劳裂纹扩展试验,分别测量了试样在相同载荷条件下不同寿命N时的磁场数据。通过分析磁场数据与裂纹扩展寿命、累积疲劳损伤之间的关系,建立了基于磁记忆信号的损伤参量模型。利用该模型可以有效的评估材料的残余寿命,可为磁记忆检测技术在铁磁性材料早期损伤以及残余寿命评估方面的应用提供借鉴作用。
In this paper, the distribution characteristics of magnetic memory signals of different ferromagnetic materials under different loads were studied by numerical simulation and experiments based on the magneto-physics and magnetic technology. The laws of fatigue damage and residual life assessment using magnetic memory signals were explored.
     According to theory of the stress effects magnetic permeability, the finite element analysis of stress-magnetization effect was done on 20# steel plate specimen with a hole using ANSYS. The magnetic field distribution was analyzed, also the influence of the detection path and the stress state on magnetic memory signal. The curve of the peak values of the normal gradient with the stress was drawn. Through the analysis result, the normal component of the magnetic field appeared a zero-crossing point, the tangential component reaches a maximum, and magnetic flux lines reversed in the stress loading process. It proved the applicability of the magneto-elastic coupling model. Through the analysis, the stress concentration has a strong correlation with the normal gradient of the magnetic field, the stress distribution determines the gradient distribution of leakage magnetic field.
     The magnetic field distributions under different tensile loads were measured for no pre-defect specimens and plate notched specimens of 45# carbon steel respectively. Through the analysis, the magnetic memory signal was small and irregular in the elastic phase, but it increased apparently when the stress is greater than 500MPa. In the aspect of eigenvalue extraction, the traditional magnetic field gradient|K|max can test the stress concentration area validity. A new eigenvalue based on MMM (metal magnetic memory) signal energy was proposed. The experiment confirms that this eigenvalue can effectively detect and evaluate the ferromagnetic items. Through comparative analysis of the magnetic memory signals for 45# steel and 30CrMnSiNi2A steel in the process of tensile loads, the magnetic field gradient K changes differently under the action of stress. It has a direct relationship with the mechanical properties and magnetic parameters of the material.
     The fatigue crack growth experiment was carried out at room temperature for the standard SE(B) specimens of 40Cr steel, the distribution of the surface magnetic field of the specimen was investigated under the same load and different cycle numbers (N). By analyzing relations between the magnetic memory signals and the crack propagation life, the cumulative fatigue damage, a new damage parameter model was established by using magnetic memory signals. According to this model, the residual life of ferromagnetic components can be evaluated excellently. It is a basic research for the application of magnetic memory testing technology in aspects of early damage and residual life assessment of ferromagnetic materials.
引文
[1]Jaap Schijve. Fatigue of Structures and Materials[M]. B.V.:Springer Science+Business Media, 2009.
    [2]Subra Suresh著,王中光等译.材料的疲劳[M].北京:国防工业出版社,1999.
    [3]陈传尧.疲劳与断裂[M].武汉:华中理工大学出版社,2002.
    [4]林丽华,陈立功,顾明元.残余应力测量技术现状及其发展动向[J].机械,1998,25(5):46-49.
    [5]徐虹,滕宏春,崔波等.残余应力非破坏性测量技术的发展现状简介[J].理化检验-物理分册,2003,39(11):595-598.
    [6]陈玉安,周上祺.残余应力X射线测定方法的研究现状[J].无损检测,2001,23(1):19-22.
    [7]王亚民,王彦龙.残余应力的超声波检测系统[J].仪表技术,2004,(4):33~34.
    [8]王威,王社良,徐金兰.磁测残余应力方法及特点对比[J].建筑技术开发,2005,32(2):18-22.
    [9]任吉林,林俊明等.金属磁记忆检测技术[M].北京:中国电力出版社,2000.
    [10]任吉林,邬冠华,宋凯等.金属磁记忆检测机理的探讨[J].无损检测,2002,24(1):2931.
    [11]Jiles.D.C. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials,1986,61(1-2):48-60.
    [12]Jiles.D.C. Theory of the magnetomechanical effect[J]. Journal of Applied Physics,1995, 28(8):1537-1546.
    [13]D.C.Jiles, M.K.Devine. Recent developments in modeling of the stress derivative of magnetization in ferromagnetic materials[J]. Journal of Applied Physics,1994,76(10): 7015-7017.
    [14]Jiles.D.C. A new approach to modeling the magnetomechanical effect[J]. Journal of Applied Physics,2004,95(11):7058-7060.
    [15]Martin J.Sablik, David C.Jiles. Coupled magnetoelastic theory of magnetic and magnetostnctive hysteresis [J]. IEEE Transactions on magnetics,1993,29(3):2113-2123.
    [16]M.J.Sablik. Finite element simulation of magnetic detection of creep damage at seam welds[J]. IEEE Transactions on magnetic,1996,32(5):4290-4292.
    [17]Ken-ichi Yamamoto. Magnetization change due to stress change in a constant magnetic field on amorphous ribbons[J]. Journal of Applied Physics,1997,81(8):5796-5798.
    [18]A. Sipeky, A. Ivanyi. Magnetic hysteresis under applied stress[J]. Physic a B,2006, (372): 177-180.
    [19]J. Pal'a, O. Stupakov. Magnetic behaviour of low-carbon steel in parallel and perpendicular directions to tensile deformation[J]. Journal of Magnetism and Magnetic Materials,2007, 310(1):57-62.
    [20]M. Roskosz, P. Gawrilenko. Analysis of changes in residual magnetic field in loaded notched samples[J]. NDT&E International,2008, (41):570-576.
    [21]仲维畅.金属磁记忆诊断的理论基础[J].无损检测,2001,23(10):424-426.
    [22]丁辉.磁记忆检测裂纹类缺陷的理论模型[J].无损检测,2002,24(2):78-80.
    [23]周俊华,雷银照.正磁致伸缩铁磁材料磁记忆现象的理论探讨[J].郑州大学学报,2003,24(3):101-105.
    [24]黄松岭,李路明等.地磁场在应力致磁畸变产生过程中的影响[J].清华大学学报,2003,43(2):208-210.
    [25]任尚坤,李新蕾,任吉林等.金属磁记忆检测技术的物理机理[J].南昌航空大学学报,2008,(2):11-17.
    [26]邸新杰,李午申,白世武等.焊接裂纹的金属磁记忆定量化评价研究[J].材料工程,2006,(7):56-60.
    [27]梁志芳,王迎娜,李午申等.焊接裂纹金属磁记忆信号特征研究的进展[J].机械科学与工程,2007,26(1):81-83.
    [28]邸新杰,李午申等.焊接裂纹金属磁记忆信号的神经网络识别[J].焊接学报,2009,29(3):94-96.
    [29]董丽虹,徐滨士,董世运.拉伸及疲劳载荷对低碳钢磁记忆信号的影响[J].中国机械工程,2006,17(7):742-745.
    [30]Lihong Dong, Binshi Xu, Shiyun Dong. Influence of stress on the stray field signals of ferromagnetic materials[J]. Journal of University of Science and Technology Beijing,2008, 15(5):580-584.
    [31]Lihong Dong, Xu Binshi, Dong Shiyun. Monitoring fatigue crack propagation of ferromagnetic materials with spontaneous abnormal magnetic signals[J]. International Journal of Fatigue,2008,30(1):1599-1605.
    [32]Haiyan Xing, Minqiang Xu, Rixin Wang. MMM Fatigue Damage Evaluation and Life Prediction Modeling for Ferromagnetic Materials[J]. Fracture and Damage Mechanics V:Key Engineering Materials,2006,324 (1-2):619-622.
    [33]邢海燕,樊久铭,王日新.早期损伤临界应力状态磁记忆检测技术[J].哈尔滨工业大学学报,2009,41(5):26-29.
    [34]Jiancheng Leng, MinqiangXu, Mingxiu Xu. Magnetic field variation induced by cyclic bending stress[J]. NDT & E International,2009,42(5):410-414.
    [35]张卫民.中低碳钢静拉伸时磁记忆效应的实验研究[J].北京理工大学学报,2004,24(7):571-574.
    [36]沈功田等.液化石油气储罐焊疤表面裂纹的磁记忆信号研究[J].无损检测,2004,26(7): 349-351.
    [37]耿荣生.磁记忆检测技术在飞机结构件早期损伤监测的应用前景[J].无损检测,2002,24(3):118-122.
    [38]池永滨.汽轮机叶片金属磁记忆诊断技术[J].无损检测,2002,24(10):440-442.
    [39]Chen Xing, Li Luming, Hu Bin. Magnetic evaluation of fatigue damage in train axles without artificial excitation[J]. Insight,2006,48(6):342-345.
    [40]钟文定.技术磁学(上册)[M].北京:科学出版社,2009.
    [41]钟文定.技术磁学(下册)[M].北京:科学出版社,2009.
    [42]严密,彭晓领.磁学基础与磁性材料[M].浙江大学出版社,2006.
    [43]宛德福.磁性物理学[M].北京:电子工业出版社,1999.
    [44]任吉林,林俊明.电磁无损检测[M].北京:科学出版社,2008.
    [45]田民波.磁性材料[M].北京:清华大学出版社,2001.
    [46]仲维畅.金属磁记忆法诊断的理论基础[J].无损检测,2001,23(10):424-426.
    [47]Jilin REN, Minghang SHU, Kai SONG Simulation of Stress-magnetization Effect on 18CrNi4A Steel by ANSYS[C].17th World Conference on Nondestructive Testing,2008, Shanghai, China.
    [48]倪光正,杨仕友,钱秀英等.工程电磁场数值计算[M].北京:机械工业出版社,2004.
    [49]耦合场分析指南.ANSYS软件公司.
    [50]单元参考手册.ANSYS软件公司.
    [51]建模与划分网格指南.ANSYS软件公司.
    [52]博弈创作室.ANSYS 9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006.
    [53]阎照文等.ANSYS 10.0工程电磁分析技术与实例详解[M].北京:中国水利水电出版社,2006.
    [54]张玲华,郑宝玉.随机信号处理[M].北京:清华大学出版社,2003.
    [55]Jiles D.C. Review of magnetic methods for nondestructive evaluation(Part2) [J]. NDT&E Int, 1990,23(2):83-92.
    [56]A.DUBOV. Technical diagnostics of equipment and constructions with residual life assessment using the method of metal magnetic memory[C].17th World Conference on Nondestructive Testing,2008, Shanghai, China.
    [57]GB/T6398—2000.金属材料疲劳裂纹扩展速率试验方法[S].
    [58]张安哥.疲劳、断裂与损伤[M].西南交通大学出版社,2006.
    [59]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700