大豆开花逆转现象的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以晚熟大豆(Glycine max(L.)Merr.)品种自贡冬豆纯系为主要试验材料,在
    人工控制光照长度的条件下,对大豆开花逆转的类型、诱导开花逆转的光照条件、温度
    效应、不同叶片在成花和开花逆转过程中的作用、大豆结荚习性的可变性、开花逆转的
    形态解剖及品种差异等进行了研究,进一步完善了“短日处理(开花)、长日处理(持
    续营养生长)、短日—长日处理(开花逆转)三种处理方法(发育状态)相互比较、自
    贡冬豆纯系为材料”的可用于大豆个体发育和光周期反应机制研究的实验材料系统。主
    要结果总结如下:
     1.将大豆开花逆转的类型划分为整株逆转和局部逆转两大类,其中局部逆转分为
    花逆转和花序逆转两种,花序逆转包括顶端花序逆转和侧生花序逆转。
     2.观察短日—长日处理后花序和花形态的变化,发现在少数新发生的分枝上,可
    出现侧生花序逆转。
     3.研究顶端花序类型与短日及长日条件的关系。结果表明,随短日处理日数的增
    加,营养芽类型逐渐减少,顶端花序逆转类型先增后减,短花序形式逐渐增多。提出短
    花序类型是苗期短日诱导效果最强的形式,花序逆转是生殖生长和营养生长的过渡类
    型。
     4.不同时期暗期光间断试验结果表明,在大豆发育的不同时期,以红光方式结束
    的暗期光间断处理,均延缓或阻止自贡冬豆的生殖发育,促进营养生长,说明大豆从出
    苗至近成熟的不同阶段,均有光周期反应,光敏色素始终是光周期信号的接受者,大豆
    开花、结实有相近的光周期需求和信号接受机制。
     5.确定短日处理期间不同叶片的作用,发现在幼苗期,一对单叶可接受足以引起
    植株转向生殖发育的短日信号。由此可见,单叶是本实验系统中大豆品种自贡冬豆幼苗
    光周期信号的接受器官。
     6.研究光温互作对顶端花序逆转的影响,证明温度通过影响光周期反应的强弱影
    响自贡冬豆的发育。高温不仅可加强短日促进作用,也加强长日抑制作用。
     7.在顶端花序发育过程中进行长日处理,使自贡冬豆的顶端出现正常总状花序至
    营养生长顶端的各种类型。说明大豆结荚习性是一定发育状况下基因型与环境因子共同
    作用的结果,三种结荚习性类型可因环境不同而相互转变。
     8.对逆转植株进行形态解剖,并探讨了大豆开花逆转的普遍性。
The phenomena of flower reversion, inflorescence reversion and whole-plant
     reversion were observed and could be induced under suitable photoperiod
     treatments in Zigongdongdou, a late maturing soybean variety from Sichuan
     Province, China. After emergence, the seedlings were treated with I 2h short day
     (SD) for about 10 days. During the SD treatment, all the trifoliolate leaves were
     taken off as soon as they appeared. Then, the plants were transferred to a long day
     (LD, >1 5h) condition. Under the treatment, it was found that the plants initiated
     flower primordia and then formed a terminal inflorescence, but the upper part of
     the inflorescence was reversed to vegetative structure. The normal flowers,
     reversed flowers (with one bract and two bracteoles but without floral organs) and
     normal vegetative buds could be seen on the same inflorescence. In another
     situation, when the normally flowering plants at Ri to R3 were transferred and
     treated under LD (>1 5h), the existed flowers and young pods dropped down, new
     branches appeared and the whole plant reversed to vegetative growth. This
     phenomenon was designated as whole-plant reversion. The reversed 慺lowers?could
     be found on the newly formed branches occasionally and the reversed plants could
     bloom again and mature if transferred to SD for enough days.
     Flowering reversion could also be induced through night break with red light
     (R) and its effect could be reversed with far-red (Fr) light exposure. Flower
     reversion and inflorescence reversion were found on the plants treated with 1 2h SD
     for 13 days after emergence and then treated under 1 4h SD with night break of red
     light (R), Fr-R or R-Fr-R. The whole-plant reversion could be induced with above
     night break after flowering, too.
     Photo-thermal interaction was evident in induction of flowering reversion of
     soybeans. The LD inhibiting effect on flowering was stronger under a higher
     temperature than under a lower one.
     The flowering reversion is a newly found phenomenon and might be of
     importance in studying the ontogeny and development of soybean.
    
     Wu Cunxiang, Master Candidate in Crop Physiology
     Supervised by Prof Han Tianfu
引文
1.白书农.拟南芥菜突变体及植物发育研究的遗传学途径.见:陈吉龙,马海飞主编.发育生物学进展.北京:高等教育出版社,1994,328~340
    2.白书农,谭克辉.拟南芥菜(Arabidopsis thaliana)—植物发育分子生物学研究的重要模式材料.植物学集刊,1992,6,31~43
    3.白素兰.孙敬三.光温外界信号、植株状态与成花决定.植物学通报,1999,16(4):381~386
    4.蔡可.植物生殖器官分化与碳水化合物及氨基酸的关系.植物生理学通讯,1964,(4):39~45
    5.蔡可,唐锡华.植物由生殖生长逆转到营养生长的研究.植物生理学报,1965,2(4):375~384
    6.曹大铭.大豆结荚习性的研究—不同结荚习性大豆的主要区别与识别.作物学报,1982,8(2):81~86
    7.程宁辉,胡建广,赵相山,李添生,高燕萍,杨金水,光照和黑暗条件下大豆和玉米基因表达差异的初步研究.复旦学报(自然科学版),1997,36(5):524~530
    8.种康,雍伟东,谭克辉.高等植物春化作用研究进展.植物学通报,1999,16(5):481~487
    9.戴尧仁.植物光敏素(Phytochrome)及其在生理过程中的作用.植物生理学通讯,1965,32~42
    10.傅家瑞.植物光敏素.植物生理生化进展,科学出版社,北京,1982,第一期,31~47
    11.傅永福,盂繁静.植物成花转变过程的基因调控.植物生理学通讯,1997,33(5):393~400
    12.傅永福,孟繁静.植物的成花决定.植物生理学通讯,1997,33(2):81~87
    13.傅永福,孟繁静.植物的成花生理信号(综述).中国农业大学学报,1998,3(3):1~11
    14.顾雪松,陈章良,朱玉贤.光敏色素与光调控.植物学报,1997,39(7):675~681
    15.郭世昌.大豆结荚习性的生态类型及其在品种工作上的重要性.农业学报,1958,10(3):197~203
    16.韩天富.大豆开花后的光周期反应.大豆科学,1996,15(1):69~73
    17.韩天富,盖钧镒,王金陵,周东兴.大豆开花逆转现象的发现.作物学报,1998,24(2):168~171
    18.韩天富,王金陵.大豆开花后光周期反应的研究.植物学报,1995,37(11):863~869
    19.韩天富,王金陵.中国大豆不同生态类型开花至成熟期对光周期的反应.作物学报,1996,22(1):20~25
    
    
    20.韩天富,王金陵,谭克辉,徐继.光周期对大豆叶片过氧化物酶活力和同工酶谱的影响.东北农业大学学报,1995,26(3):214~219
    21.韩天富,王金陵,谭克辉,徐继.开花前、后的光周期处理对大豆叶片蛋白质组分的影响.大豆科学,1995,14(2):95~100
    22.韩天富,王金陵,邹继军,杨庆凯,陈霞.大豆开花后阶段对开花前不同光照处理的反应.大豆科学,1995,14(4):283~289
    23.韩玉珍,李睿,孟繁静.拟南芥开花的光周期调节.植物生理学通讯,1998,34(5):401~406
    24.贺超兴.长日光周期对水稻幼穗发育的影响及其对光敏核不育水稻育性转换的作用研究.中国科学院植物研究所博士论文,北京,1995
    25.蒋青,李扬汉.有限性和无限性大豆的解剖初探.大豆科学,1990,9,(3):213~219
    26.金仕萍,金淑梅,曹国仪,任锡畴.牵牛开花诱导和几种磷酸酯酶的消长变化.植物学报,1986,28(5):492~497
    27.李立武,谭克辉.牵牛光周期诱导过程中相关特异蛋白质出现时期的研究,中国科学(B辑),1990,(11):1152~1156
    28.李文雄,曾寒冰.春小麦穗分化的特点及其与高产栽培的关系.中国农业科学,1979,(1):1~9
    29.李秀菊,孟繁静.不同光周期处理的大豆开花结荚进程的影响.大豆科学,1996,15(4):289~294
    30.李秀菊,孟繁静.玉米赤霉烯酮在大豆花序建成中的作用.植物生理学通讯,1996,32(5):334~338
    31.李秀菊,盂繁静.大豆成花的光周期诱导研究Ⅱ.顶芽内植物激素及同化物的变化.中国农业大学学报,1997,2(1):51~55
    32.李秀菊,孟繁静.大豆成花诱导期间游离氨基酸含量与组分变化.大豆科学,1997,16(3):218~222
    33.李秀珍,郝乃斌,谭克辉.冬小麦春化过程中可溶性蛋白质组成的变化与形态发生的关系.植物学报,1987,29(5):492~498
    34.刘日新,刘桂云.大豆结实器官形成与光照长度的关系.植物生理学通讯,1960,(1):8~13
    35.逯斌,黄华粱,谭克辉.冬小麦春化过程中开花特异蛋白的分析等电聚焦研究初报.植物学集刊,1991,第5集,219~222
    36.逯斌,谭克辉,林兵,黄华粱.冬小麦春化过程中低温诱导的与花芽分化相关的mRNA和蛋白质的合成.植物生理学报,1992,18(2):113~120
    37.米国华,李文雄.小麦幼穗分化的温光反应研究 2.光周期反应对小麦穗分化的影响.东北农业大学学报,1996,27:209~218
    38.米国华,李文雄.小麦幼穗分化的温光反应研究—春化对小麦穗分化的影响.东北农业大学学报,1996,27:124~131
    
    
    39.米国华,李文雄.小麦穗分化过程中的光温组合效应研究.作物学报,1998,24(4):470~474
    40.米国华,李文雄.转换光周期对春性小麦叶片数的影响.中国农业科学,1998,31(2):36~40
    41.任锡畴.光周期与植物开花.植物生理生化进展,1982,北京,科学出版社,第一期,75—89
    42.任锡畴,柳可九.盐蒿(Suaeda heteroptera Kitag)开花的光周期习性及代谢抑制剂对其开花的影响.植物生理学报,1979,5(2):109~116
    43.谭克辉.低温诱导植物开花的机理.植物生理生化进展.1983,北京,科学出版社,第二期,90~107
    44.谭克辉.春化过程中特异蛋白质的合成.植物学集刊,1992,第6期,13~16
    45.谭克辉,郝乃斌.光周期诱导开花过程中植物体内核酸及蛋白质的变化.植物生理生化进展,北京:科学出版社,1984,153~165
    46.田佩占.大豆育种的结荚习性问题,遗传学报,1975.2:337~343
    47.田佩占.大豆品种南北种植的主要性状变化规律及其应用.中国农业科学,1979,(1):56~61
    48.童哲.光形态建成和光敏色素.见:吴相钰,赵微平,匡廷云,王学臣主编.植物生理补充教材—纪念56年教学讨论会40周年.1996,中国植物学会生理专业委员会 北京植物生理学会,第36节,1~18
    49.童哲,光敏核不育水稻的发育生物学研究评述.植物学报,1998,40(3):189~199
    50.童哲.朱国清.水稻120kDa光敏色素的提纯.植物学报,1989,31(12):879~902
    51.汪越胜,盖钧镒.1999,中国春播大豆熟期组地理分布的研究.中国油料作物学报,1999,21(3):23~26
    52.王伟.叶片衰老的分子调控.世界农业,1998,(5):33~35
    53.王春新.花的发育,见:刘良式等编著,植物分子遗传学.北京:科学出版社,1997,353~451
    54.王晋华.大豆茎生长习性类型的鉴别及环境变异.南京农业大学博士论文,南京,1998
    55.许智宏.植物发育与生殖的研究:进展和展望.植物学报,1999,41(9):909~920
    56.赵大中,雍伟东,种康,谭克辉.高等植物开花研究现状简述.植物学通报,1999,16(2):157~162
    57.赵可夫,张爱华,周澍波,李明亮.短日照植物菊芋光周期反应的研究.植物学报,1984,26(4):392~396
    58.朱之垠.大豆器官的形态建成.大豆科学,1983,2(1):31~37
    59.祝其昌.大豆结荚习性的研究,Ⅰ.不同结荚习性的本质区别及其分类.大豆科学,1984.3(4):318~326
    60.Alexander R,Krol VD,N-H Chua.Flower development in Petunia.Plant Cell,1993,5:1195~1203
    
    
    61.Arnim von A, Deng X-W. Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 215~243
    62.Astorga G A, Estrella, L H. Evolution of light-regulated plant promoters. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 525~555
    63.Azuma H, Toyota M, Asakawa Y. Yamaoka S. Garcia-franco J G, Dieringer G, Thien L B, Kawano S. Chemical divergence in floral scents of Magnolia and Allied genera(Magnoliaceae). Plant Species Biol, 1997, 12:69-83
    64.Bagnard C. Floraison et reversion chez Sinapis alba. Ⅰ. Utilisation, pour l'etude de la mise a fleurs, du delai de floraison et du nombre de feuilles de l'axe principal et des axes lateraux. Can J Bot, 1980, 58: 1138-1143
    65.Bagnard C. Florasion et reversion chez Sinapis alba. Ⅱ. Caracteres moephologiques de plantes proteuse de reversion. Can J Bot, 1980, 58: 2335~2342
    66.Bagnard C. Floraison et reversion chez Sinapis alba. Ⅲ. Effets immediats et diffrers de divers regimes d'eclairement appliques pendant la phase post-inductrice. Can J Bot, 1983, 61: 3386~3392
    67.Bartholomew D P. Inflorescence development of Pineapple(Ananas comosus [L.] Merr.) induced to flower with ethephon. Bot Gaz, 1977, 138: 312~320
    68.Bassett C L, Mothershed C P. Galau G A. Polypeptide profiles from cotyledons of developing and photoperiodically induced seedling of the Japanese Morning Glory(Pharbitis[Ipomoea] nil). J Plant Growth Regul, 1991, 10: 147~155
    69.Battey N H, Lyndon R F. Changes in apical growth and phyllotaxis on flowering and reversion in Impatients balsamina L. Ann Bot, 1984, 54: 553~567
    70.Battey N H, Lyndon R F. Determination and Differentiation of Leaf and Petal Primordia in Impatiens balsamina. Ann Bot, 1988, 61: 9~16
    71.Battey N H, Lyndon, R F. Reversion of flowering. Bot Rev, 1990, 56: 162~189
    72.Bernar R L. Two genes affecting stem termination in Soybeans. Crop Sci, 1972, 12: 235~239
    73.Bernier G. The control of evocation and morphogenesis. Annu Rev Plant Physiol Plant Mol Bio, 1988, 39: 175~219
    74.Bernier G. Growth changes in the shoot of Sinapis alba during transition to flowering, J Exp Bot, 1997, 48: 1071~1077
    75.Bernier G, Havelange A, Houssa C, Petitjean A, and Lejeune P. Physiological signals that induce flowering. Plant Cell, 1993, 5: 1147~1155
    76.Biddulph O. Histological variations in Cosmos. Bot Gaz. 1935, 97: 139~155
    77.Blazquez M A, Soowal L N, Lee Ⅰ, and Weigel D. LEAFY expression and flower initiation in Arabidopsis. Development, 1997, 124: 3835~3844
    78.Bodson M, Outlaw W H. Elevation in the sucrose content of the shoot apical meristem of Sinapis alba at floral evocation. Pl Physiol, 1985, 79: 420~424
    
    
    79. Borthwick H A, Parker M W. Floral initiation in Billoxi Soybeans as influenced by age and position of leaf receiving photoperiodic treatment. Bot Gaz, 1940, 101: 806~817
    80. Borthwick H A, Parker M W. Effectiveness of photoperiodic treatments of plants of different age. Bot Gaz, 1938, 100: 245~249
    81. Borthwick H A, Parker M W. Photoperiodic perception in Biloxi Soybean. Bot Gaz, 1938, 100: 374~387
    82. Borthwick H A, Parker M W. Influence of photoperiods upon the differentiation of meristems and the blossoming of Biloxi soybeans. Bot Gaz, 1938, 99: 825~839
    83. Bradford K J, Trewavas A J. Sensitiviry thresholds and variable time scales in plant hormone action. Pl Physiol, 1994, 105: 1029~1036
    84. Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E. Control of inflorescence architecture in Antirrhinum. Nature. 1996. 379: 791~797
    85. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science, 1997, 275: 80~83
    86. Bradley D, Vincent C, Carpenter R, Coen E. Pathways for inflorescence and floral induction in Antirrhinum. Development, 1996. 122: 1535~1544
    87. Chasan R, Walbot V. Mechanisms of plant reproduction: questions and approaches. Plant Cell, 1993, 5: 1139~1146
    88. Cherry J H. Association of rapidly metabolised DNA and RNA. Science, 1964, 146: 1066~1069
    89. Coen E S, Romero J M, Doyle S, et al. floricaula: A homeotic gene required for flower development in Antirrhinum majus. Cell, 1990, 63: 1311~1322
    90. Coen E S, Carpenter R. The metamorphosis of flowers. Plant Cell, 1993, 5: 1175~1181
    91. Coen E S, Meyerowitz M. The war of the whorls: genetic interaction controlling flower development. Nature, 1991, 353: 31~37
    92. Coen E S. The role of homeotic genes in flower development and evolution. Ann Rev Plant Physiol Plant Mol Biol, 1991, 42: 241~279
    93. Colasanti J, Zhuang Yuan, and Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in Maize. Cell, 1998, 93: 593~603
    94. Collins W T, Salisbury F B, Ross C W. Growth regulator and flowering Ⅲ. Antimetabolites, Planta, 1963, 60: 131~144
    95. Cordero, R E, Murray J R, Hackett W P. Plastochron indices fop juvenile and mature forms of Headera helix L(Araliaceae). Amer J Bot, 1985, 72: 324~327
    96. Crauford R M M. The photoperiodic reaction in relation to development in Salvia splendens. Ann Bot, 1961, 25: 78~84
    
    
    97. Davis M H, Simmons S R. Far-red light reflected from neighbouring vegetation promotes shoot elongation and accelerates in spring barley plants. Plant Cell Environ, 1994, 17: 829~836
    98. Doebley J, Lukens L. Transcriptional regulators and evolution of plant form. Plant Cell, 1998, 10: 1075~1082.
    99. Donnison I S, Francis D. Experimental control of floral reversion in isolated shoot apices of the long-day plant Silene coeli-rosa. Physiol Plant, 1994, 92: 329~335
    100. Downs R J. Photoreversibility of flower initiation. Pl Physiol. 1956, 31: 279~284
    101. Evans L T. Flower induction and the florigen concept. Annu Rev Pl Physiol, 1971, 22: 365~395
    102. Ferguson C J, Huber S C, Hong P H, Singer S R. Determination for inflorescence development is a stable state, separable from determination for flower development in Pisum sativum L. buds. Planta, 1991, 185: 518~522
    103. Fisher J E. Floral induction in Soybeans. Bot Gaz, 1955, 117: 156~165
    104. Fisher J E. The transformation of stamens to ovaries and of ovaries to inflorescence in Triticum aestivum L. under short-day treatment. Bot Goz, 1972, 133: 78~85
    105. Fredericq H, Greef J A. Influence, reversible par la lumiere rouge-clair, de courts eclairements rouge-fonce a la fin de la photoperiode, sur la croissance et la teneur en chlorophylies de Marchantia polymorpha L. Photochem Photobiol, 1966, 5:
    431~440
    106. Galinat W C, Naylor A W. Relation of photoperiod to inflorescence proliferation in Zea mays L. Amer J Bot, 1951, 38: 38~47
    107. Gallie D R. Posttranscriptional regulation of gene expression in plants. Annu Rev Pl Physiol Plant Mol Biol, 1993, 44: 77~105
    108. Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants, J Agric Res. 1920, 18: 553~606
    109. Garner W W, Allard H A. Further studies in photoperiodism, the response of the plant to relative length of day and night, J Agri Res, 1923, 23: 871~920
    110. Gebhardt J S, Mcdaniel C N. Induction and floral determination in the terminal bud of Nicotiana tabacum L.cv. Maryland Mammoth, a short-day plant. Planta, 1987, 172: 526~530
    111. Genoud T, Millar A J, Nishizawa N, Kay S A, Schafer E, Nagatani A, and Nam-Hai Chua.An Arabidopsis mutant hypersensitive to red and far-red light signals. Plant Cell, 1998, 10: 889~904
    112. Gibby D D, Salisbury F B. Participation of long-day inhibition in flowering of Xanthium strumarium L. Pl Physiol, 1971,47: 784~789
    113. Giese A C. Seasonal photosensitivity of Blepharisma: the role of temperature. Photochem Photobiol, 1979, 29: 121~126
    
    
    114. Gifford E M. Initiation and early, development of the inflorescence in Pineapple(Ananas comosus, 'Smooth cayenne') treated with acetylene. Amer J Bot. 1969, 56: 892~897
    115. Gota Y, Umemura L. RNA in developing plant cells. Ann Rev Pl Physiol, 1964, 15: 17~36
    116. Greef J A. On phytochrome and cytochromes in photoperiodic phenomena: a biochemical approach. Photochem Photobiol, 1966, 5: 485~487
    117. Guard A T. Development of floral organs of the soybean. Bat Gaz, 1931, 91: 97—102
    118. Guiamet J J, Willemoes J G, and Montaldi E R. Modulation of progressive leaf senescence by the red: far-red ratio of incident light. Bat Gaz, 1989, 150: 148~151
    119. Guo H W, Yang H Y, Mockler T C, and Lin C T. Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998, 279: 1360~1363
    120. Gupta D N, Sen S P. RNA synthesis in leaves during initiation of the reproductive phases in rice: the day-neutral IR-8. Plant Cell Physiol, 1981, 22: 267~273
    121. Guthrie AI et al. Random amplified polymorphic DNA markers: a system for identifying and differentiating isolates of colletotrichum graminicola. Phytopathology, 1992, 82: 823~835
    122. Harrison J H. Suppressive effects of 2-Thiouracil on differentiation and flowering in Cannabis sativa. Science, 1960, 132: 1943~1944
    123. Havelange A, Bodson M, Bernier G. Partial floral evocation by exogenous cytokinin in the long-clay plant Sinapis alba. Physiol Plant. 1986, 67: 695~701
    124. Hempel F D, Feldman L J. Specification of chimeric flowering shoots in wild-type Arabidopsis. Plant J, 1995, 8: 725~731
    125. Hempel F D, Weigel D, Mandel M A, Ditta G, Zambryski P C, Feldman L J, Yanofsky M F. Floral determination and expression of floral regulatory genes in Arabidopsis. Development, 1997, 124: 3845~3853
    126. Hendricks S B. Photoperiodism. Agron J, 1958, 50: 724~729
    127. Hess D. Die selektive cines an der bluhindustion beteiligten ribosenucleinsaure Eiweissystems durch 2-thiouracil. Planta, 1959, 54: 74~94
    128. Huala E, Sussex M. Determination and cell interactions in reproductive meristems. Plant Cell, 1993, 5: 1157~1165
    129. Kasperbauer M J, Hunt P G. Crop ecology, production and management: Far-red light affects photosynthate allocation and yield of tomato over red mulch. Crop Sci, 1998, 38: 970~974
    130. Kasperbauer M J, Gardner F P, Loomis W E. Interaction of photoperiod and vernalization in flowering of sweet clover(Melilotus). Plant Physiol, 1962, 37: 165~170
    131. Kavon, D L, Zeevaart A D. Simultaneous inhibition of translocation of photosynthate and of the floral stimulus by localized low-temperature treatment in the short-day plant Pharbitis nil. Planta, 1979, 144: 201~204
    
    
    132. Khudairi A K, Hamner K. C. The relative sensitivity of Xanthium leaves of different ages to photoperiodic induction. Plant Physiol, 1954, 29: 251~257
    133. Kinet J M. Environmental, chemical, and genetic control of flowering. Hort Rev, 1993, 7: 279~334
    134. Krishnamoorthy H N, Nanda K K. Effect of intercalated long days and light interruption of dark period on flowering, extension growth and senescence of Impatiens balsamina. Physiologia Plantarum, 1967, 20: 760~770
    135. Krishnamoorthy H N, Nanda K K. Floral bud reversion in Impatiens balsamina under noninductive photoperiods. Planta, 1968, 80: 43~51
    136. Kumar S, Nanda K K. GA_3 and salicylic acid-caused changes in RNA associated with flowral induction in Impatiens balsamina exposed to inductive and non-inductive photoperiods. Indian J Exp Biol, 1981, 19: 961~65
    137. Lam S L, Leopold A C. Reversion from flowering to the vegetative state in Xanthium. Amer J Bot, 1960, 47: 256~259
    138. Lam S L, Leopold A C. Reversion and reinduction of flowering in Perilla. Amer J Bot, 1961, 48: 306~310
    139. Lam S L. Movement of the flower stimulus in Xanthium. Amer J Bot, 1965, 52: 924~928
    140. Lamtte C E, Curry T M, Palmer R G, and Albertsen M C. Developmental anatomy and morphology of fascination in the Soybean(Glycine max). Bot Gaz, 1988, 149: 389~407
    141. Lang A. Physiology of flowering. Ann Rev Plant Physiol, 1952, 3: 265~306
    142. Lawrence B K, Fehr W R. Reproductive response of Soybean to night interruption. Crop Sci, 1981, 755~757
    143. Lejecune P, Requier G M C, Kinet J M. Sucrose increase during floral induction in the phloem sap collected at the apical part of the shoot of the long-day plant Sinapis alba L.
    Planta, 1993, 190: 71~74
    144. Levy Y Y, Dean C. The transition to flowering. Plant Cell, 1998, 10: 1973~1989
    145. Liu Z, Running M P, and Meyerowitz E M. TSO1 functions in cell division during Arabidopsis flower development. Development, 1997, 124: 665~672
    146. Lord E M, Eckard K J. Shoot development in Citrus sinensis L. (Washington navel orange). Ⅱ. Alteration of developmental fate of flowering shoots after GA_3 treatment. Bot Gaz, 1987, 148: 17~22
    147. Lumsden P J, Youngs J A, Thomas B, and Vince-Prue. Evidence that photoperiodic, dark time measurement in Pharbitis nil involves a circadian rather than a semidian rhythm. Plant Cell Environ, 1995. 18: 1403~1410
    148. Luo D, Carpenter R, Vincent C, Copsey L, Coen E. Origin of floral asymmetry in Antirrhinum. Nature, 1995, 383: 794~799
    149. Lyndon R F. A modification of flowering and phyllotaxis in Silene. Ann Bot. 1979, 43: 553~558
    
    
    150. Lyndon R F. Rates of growth and primordial initiation during flower development in Silene at different temperatures. Ann Bot, 1979, 43: 539~551
    151. Ma H. To be or not to be, a flower control of floral meristem identity. Treads in Genet, 1998, 14: 26~32
    152. Ma H. The on and off of floral regulatory genes. Cell, 1997, 89: 821~824
    153. McDaniel C N. Developmental physiology of floral initiation in Nicotiana tabacum L. J Exp Bot, 1996, 47: 465~475
    154. McDaniel C N, and Hartnett L K. Flowering as metamorphosis: two sequential signals regulate floral initiation in Lolium temulentum. Development. 1996, 122: 3661~3668
    155. McHughen A. Development of tobacco petals in vitro. Ann Bot, 1977, 41: 1073~1976
    156. Medford J Ⅰ. Vegetative Apical Meristems. Plant Cell, 1992, 4: 1029~1039
    157. Meeks-Wagner D R. Gene expression in the early floral meristem. Plant Cell, 1993, 5: 1167~1174
    158. Meyerowitz E M. Genetic control of cell division patterns in developing plants. Cell, 1997, 88: 299~308
    159. Miksche J P. Developmental vegetative morphology of Glycine max. Agron J. 1961, 53: 121~128
    160. Mohan Ram H Y, Wadhi M. Morphogenic potentialities of flower buds of Kalanchoe pinnata Pres. grown in vitro. Ann Bot, 1968, 32: 825~832
    161. Murneek A E. Length of day and temperature effects in Rudbeckia. Bot Gaz, 1940, 102: 269~279
    162. Nanda K K, Krishnamoorthy H N. Photoperiodic studies on growth and development of Impatiens balsamina L. Ⅱ. Floral bud initiation, flower opening and extension growth. Planta, 1967, 72: 338~343
    163. Nanda K K, Krishnamoorthy H N, Anuradha T A. Floral induction by gibberellic acid in Impatiens balsamina, a qualitative short-day plant. Planta, 1967, 76: 367~370
    164. Nissen O, Weigel D. Modulating the timing of flowering. Curr Opinion Biotech, 1997, 8: 195~199
    165. Nitsch C, Nitsch J P. The induction of flowering in vitro in stem segments of Plumbago indica L. Planta, 1967, 72: 371~384
    166. Novak B, Greppin H. High-freguency oscillations and circadian thythm of the membrane potential in Spinach leaves. Planta, 1979, 144: 235~240
    167. O'Neill S D. The photoperiodic control of flowering: progress toward understanding the mechanism of induction. Photochem Photobiol, 1992, 56: 789~801
    168. Okamuro J K, Boer B W, and Jofuku K D, Regulation of Arabidopsis flower development. Plant Cell, 1993, 5: 1183~1193
    
    
    169. Parker M W, Borthwick H A. Growth and composition of Biloxi soybean grown in a controlled environment with radiation from different carbon-arc sources. Plant Physiol. 1949, 24: 345~358
    170. Poethig R S. Phase change and the regulation of shoot morphogenesis in plants. Science, 1990, 250: 923~930
    171. Pouteau S, Nicholls D, Took F, Coen E, Battey N. Transcription pattern of a FIM homologue in Impatiens during floral development and reversion. Plant J, 1998, 14: 235~246
    172. Pouteau S, Nicholls D, Tooke F, Coen E, Battey N. The induction and maintenance of flowering in Impatiens. Development, 1997, 124: 3343~3351
    173. Pouteau S, Took F, Battey N. Quantitative control of inflorescence formation in Impatiens balsamina. Pl Physiol, 1998, 118: 1191~1201
    174. Quail P H, Boylan M T, Parks B M, Short T W. Yong Xu, Wagner, D. Phytochromes: photosensory perception and signal transduction. Science, 1995, 268: 675~680
    175. Rawson H M. An upper limit for spikelet number per ear in wheat as controlled by photoperiod. Aust J Agric Res, 1971, 22: 537~546
    176. Sachs R M. Nutrient diversion: an hypothesis to explain chemical control of flowering. Hort Science, 1977, 12: 220~222
    177. Saitoh K, Isobe S, Kuroda T. Differentiation and development stages of floral organ as influenced by nodal position on the stem and raceme order in a determinate type of soybean. Jpn J Crop Sci, 1998, 67: 85~90
    178. Sarma K S, Vora A B. Spike initiation in Plantago ovata Forssk. Ann Bot, 1985, 55: 263~265
    179. Schmidt S, Egerer J. Growth and RNA metabolism of apple buds in relation to generative development. Arch Gartenbau, 1982, 30: 249~61
    180. Schwabe W W. Factors controlling Flowering in the Chrysanthemum. J Exp Bot, 1951, 2: 223~237
    181. Seidlova F, and Stichova J J. The anatomy of the shoot apex of Hyoscyamus niger L. reversed from the generative to the vegetative state. Biologia Plant, 1965, 7: 376~379
    182. Shanmugasundaram S, Lee M S. Flower-inducing potency of different kinds of leaves in Soybean, Glycine max(L.) Merr. Bot Gaz, 1981, 142: 36~39
    183. Shanmugasundaram S, Tscou S C S. Photoperiod and critical duration for flower induction in Soybean. Crop Sci, 1978, 18: 598~601
    184. Simon R, Igeno M I, and Coupland G. Activation of floral meristem identity genes in Arabiodopsis. Nature, 1996, 384: 59~62
    185. Slafer G A, Rawson H M. Sensitivity of wheat phasic development to major environmental factors: A re-examination of some assumptions made by physiologists and modelers. A ust J Pl Physiol, 1994, 21: 393~426
    
    
    186. Stein O L, Fosket E B. Comparative developmental anatomy of shoots of juvenile and adult Hedera helix. Amer J Bot, 1969, 56: 546~551
    187. Sung Z R, Belachew A, Shunong B, Bertrand-Garcia R. EMF, an Arabidopsis gene required for vegetative shoot development. Science, 1992, 258: 1645~1647
    188. Thomas J F, Raper C D. Morphological response of soybeans as governed by photoperiod, temperature, and age at treatment. Bot Gaz, 1977, 138: 321~328
    189. Thomas J F, Kanchanapoom M L. Shoot meristem activity during floral transition in Glycine max(L.) Merr. Bot Gaz, 1991, 152: 139~147
    190. Thomas J F, Raper C D Jr. Photoperiod effects on Soybean growth during the onset of reproductive development under various temperature regimes. Bot Gaz, 1983. 144: 471~476
    191. Thomas J F, Raper C D Jr. Photoperiod regulation of floral initiation for Soybean plant at different ages. Crop Sci, 1984, 611~616
    192. Thomas J F, Raper C D Jr. Internode and petiole elongation of Soybean in response to photoperiod and end-of-day light quality. Bot Gaz, 1985, 146: 495~500
    193. Thomas R. G. The initiation and growth of axillary bud primordia in relation to flowering in Trifolium repens L. Ann Bot, 1962, 26: 329~344
    194. Thompson P A. Reversal of photoperiodic induction of strawberries with maleic hydrazide. Nature, 1963, 200: 146~148
    195. Ting C. L. Genetic studies on the wild and cultivated soybean, J Amer Soci Agron, 1946, 38: 381~393
    196. Took F, Pouteau S, Battey N. Non-reversion of Impatiens in the absence of meristem commitment. J Exp Bot, 1998, 49: 1681~1688
    197. Tran Thnh van K, Toubart P, Cousson A, Darvill A G, Gollin D J. Chelf, P., and Albersheim, P., Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharins. Nature, 1985, 615~617
    198. Van Schaik P H, Probst A H. The inheritance of inflorescence, peduncle length, flowers per node, and percent flower shedding in Soybeans. Agron J, 1958, 50: 98~102
    199. Veit B, Schmidt R J, Hake S, and Yanofsky M F. Maize floral development: new genes and old mutants. Plant Cell, 1993, 5: 1205~1215
    200. Vince D. An interpretation of the promoting effect of far-red light on the flowering of long-day plants. Photochem Photobiol, 1966, 5: 449~450
    201. Vince-Prue D. Photoperiodism in plants. McGraw-Hill Company(UK) Limited. 1975, 30~56
    202. Wang Z, Acock M, and Acock B. Photoperiod sensitivity during flower development of Opium Poppy(Papaver somniferum L.). Ann Bot, 1997, 79: 129~132
    
    
    203. Wee Y C, Rao A N. Development of the inflorescence and "crown" of Ananas comosus after treatment with acetylene, NAA, and ethephon. Amer J Bot, 1979, 66: 351~360
    204. Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature, 1995, 377: 495~500
    205. Williams J G K, et al. DNA polymorphism amplified by arbitrary primers. Nucleic Acis Res, 1990, 18: 6531~6535
    206. Wycherley P R. Vegetative proliferation of floral spikelets in British grasses. Ann Bot, 1954, 18: 119~127
    207. Zeevaart A D. Physiology of flower formation. Ann Rev Pl Physiol, 1976, 27: 321~348

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700