电沉积制备氧化亚铜薄膜及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Preparation and Performance Investigation of Cu_2O Thin Films by Electrodeposition
  • 作者:孙芳
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2008
  • 导师:王子忱
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-05-01
摘要
首先,通过条件控制制备出不同形貌的Cu2O薄膜,有三个主要形貌的薄膜形成:室温搅拌条件下,醋酸铜电解液中直接在ITO导电玻璃上电沉积出规则的树枝状结构的Cu2O薄膜;向醋酸铜电解液中加入简单盐作为形貌控制剂,发现含Cl-离子盐的加入能够明显改变Cu2O晶体的形貌,并且随着Cl-离子浓度的增加,Cu2O晶体的形貌从星形逐渐向方形结构变化;向醋酸铜电解液中加入CTAB、DTAC等阳离子表面活性剂作为添加剂来控制电沉积Cu2O晶体形貌的研究,发现Cu2O薄膜的形貌从星形、花瓣形到多孔球形结构的变化过程。同时,我们还讨论了形成不同形貌的可能机理。
     其次,我们对制备的薄膜进行了性能研究,发现树枝形结构的Cu2O薄膜在电催化氧化葡萄糖方面具有较好的性能,可作为无酶葡萄糖传感器的开发与应用;方形结构的Cu2O薄膜的表面光电压信号较强,在光电子器件方面有应用前景;多孔球形的Cu2O薄膜的光致发光性能较好,说明该结构的Cu2O薄膜在光学器件方面具有较好的应用前景。
     最后,利用已经制备好的Cu2O薄膜,通过一定的化学反应制备系列CuO薄膜和Ag/Cu2O复合薄膜。一方面Cu2O起到硬模板的作用,其形貌在CuO薄膜中可被成功复制;另一方面,通过简单化学方法,制得了Ag/Cu2O复合薄膜,为复合材料的制备提供了一种简单可行的方法。
It is well-known that semiconductor materials are used extensively in many fields, such as aerospace industry and electronics industry. Cuprous oxide (Cu2O) is a metal-oxide p-type semiconductor with a band gap of about 2.0 eV, which has attracted much current interest because of its potential applications in solar energy conversion, catalysis and gas sensors. The applications of Cu2O thin films in other fields have not a well development, so, it is worth while to study the Cu2O thin films. Electrodeposition is a good solution process that can be applied in the growth of semiconductor films from aqueous or nonaqueous solutions. The advantages of electrodeposition compared with other techniques include low process temperature, economy, simplicity and possibility of making large area thin films. At present, the researches about morophogical control of electrodepositing Cu2O thin films on indium-doped tin oxide (ITO) glass substrate are mainly concentrate on Cu(NO3)2 and CuSO4 electrolytes. It has not a detailed research in Cu(Ac)2 electrolyte. So, we develop the technology of electrodepositing Cu2O thin film in an acetate bath directly on ITO glass substrate. By controlling reaction condition, we obtain Cu2O thin films with different morphologies and study the photoluminescence spectrum(PL), surface photovoltage spectroscopy(SPS) and electrocatalytical response to the oxidation of glucose properties of the prepared Cu2O thin films. We are searching for novel applications in other fields.The content and innovation of this thesis are listed as following: (1) We all know that the particle size and morphology of materials have a great impact on their performance. So, different morphologies of Cu2O thin films are prepared by controlling the reaction condition.
     (a) The effect of stirring of electrolyte on the growth of Cu2O films is studied under room-temperature. The stirring condition changes the direction and rate of crystal growth and rusults in Cu2O crystals with dendrite structure, which is obviously different from that obtained from static electrolyte. By increasing reaction temperature, growth rate of nucleus is greater than that of nucleation, which results in aggregation of crystals and reduced dendrite structure.
     (b) We study the effect of simple salts as controlling agents on the morphology of Cu2O thin films by electrodepositing in cupric acetate solution. We demonstrate that Cl- ions can change the Cu2O crystal morphology and the morphologies evolve from star-like to cube-like by increasing the concentration of Cl- ions of the capping agents. One formation reason of various shapes might be attributed to the adsorption of Cl- ions on different crystal faces and hindered the crystal growth perpendicular to the plane. The other formation reason might be the outcome of the interplay between the faceting tendency of the stabilizing agent and the growth kinetics (rate of supply Cu2+ to the crystallographic planes).
     (c) Novel well-defined Cu2O thin films are electrodeposited on ITO substrates by adding cationic surfactant (cetyl trimethyl ammonium bromide (CTAB) or dodecyl trimethyl ammonium chloride (DTAC)) with similar structure as shape controlled agents in cupric acetate solution. To the best of our knowledge, this research has not been reported before. The effects of the quantity of cationic surfactant, the temperature and concentration of electrolyte are studied. It is shown that the morphologies evolve from flower-leaves to spheres with increasing concentration of cationic surfactant (CTAB or DTAC). The formation mechanism of obtained different morphologies might be attributed to the adsorption of cationic surfactant (CTAB or DTAC), which in turn change the surface energies of different crystal faces and affect the growth kinetics. We believe that alkyl chains play a key role in controlling the morphologies of the electrodeposited Cu2O thin films than other ions effect during electrodeposition.
     We systematically study the effect of several reaction factors on the morphologies of electrodepositing Cu2O thin films in cupric acetate solution and multi-morphologies can be formed. The possible formation mechanism of different morphologies has been discussed.
     (2) The interactions between properties and structures are investigated. The obtained results are listed as following:
     (a) Cu2O thin films with star, cubic and dendrite structures as electrodes all have electrocatalytic response of the oxidation of glucose except for that with sphere structure. Cu2O thin films with dendrite structures have a better electrocatalytic response of the oxidation of glucose and high sensitivity compared with other structures, which reveal that they can be used to construct an enzymeless glucose sensor.
     (b) Cu2O thin films with star, cubic and dendrite structures as electrodes all have SPS property except for that with sphere structure. The reason of surface photovoltaic response might be attributed to the defects of Cu2O crystal structure and the impurity of Cu2O thin films. Cu2O thin films with cubic structures have a good photovoltaic response than other structures, which reveal a potential application in photoelectron devices.
     (c) Cu2O thin films with different morphologies by this electrodeposition all have different PL properties. This reason might be attributed to the defects of Cu2O crystal structure. We also find that Cu2O thin films composed of porous spheres have better PL properties and demonstrate potential optical applications.
     (3) CuO and Ag/Cu2O thin films have been obtained by the chemical reaction with the electrodeposited Cu2O thin films under certain conditions.
     The obtained results are listed as following:
     (a) CuO thin films can be prepared by heating the obtained Cu2O thin films, which can be reacted with oxygen. The colour of thin films changes from brick-red to black. And CuO thin films combine with ITO substrate still well. The morphology of CuO thin films can be controlled by the morphology of Cu2O thin films, which will improve the application in the field of apparatus.
     (b) Ag/Cu2O composite films can be obtained by certain chemical reaction with Cu2O thin films, which dip in low concentration H2SO4 and AgNO3 solution, respectively. The colour of thin films changes from brick-red to argentine. The morphology of Ag/Cu2O composite films also can be controlled by the morphology of Cu2O thin films.
     This approach combined the electrodeposition and chemical reactions and it can provide a simple and workable method to control the morphologies of other films by controlling Cu2O thin films.
     In conclusion, several morphologies of Cu2O thin films are obtained by electrodepositon in cupric acetate. The optical properties and electrocatalytic glucose properties are investigated and have better results. So, Cu2O thin films present potential applications in photoelectron devices and enzymeless glucose sensor. This approach combined the electrodeposition and chemical reactions can be used in other film prepration.
引文
[1] 陈治明,王建农,半导体器件的材料物理学基础,北京:科学出版社,1999,26:9.
    [2] 陈光华,邓金祥,纳米薄膜技术与应用,北京:化学工业出版社,2004:12.
    [3] 李永军,刘春艳,有序纳米结构薄膜材料,北京:化学工业出版社,2006:8.
    [4] 吴锦雷,纳米光电功能薄膜,北京:北京大学出版社,2006:46.
    [5] 郑伟涛,薄膜材料与薄膜技术,北京:化学工业出版社,2004:285.
    [6] 大连理工大学无机化学教研室,无机化学(第四版),北京:高等教育出版社,2001:575-582.
    [7] 司徒杰,化工产品手册无机化工产品(第三版),北京:化学工业出版社,1999:721-723.
    [8] 严宣申,王长富,普通无机化学(第二版),北京:北京大学出版社,2003:165-167.
    [9] 周公度,化学辞典,北京:化学工业出版社,2004:780.
    [10] M. Smith, V. Gotovac, L. Aljinovic, M. Lucic-Lavcevic, An investigation of the electrochemical and photoelectrochemical properties of the cuprous oxide/liquid phase boundary, Surf. Sci., 1995, 335: 171-176.
    [11] A.E. Rakhshani, Y. Makdisi, X. Mathew, Deep energy levels and photoelectrical properties of thin cuprous oxide films, Thin Solid Films, 1996, 288(1-2): 69-75.
    [12] 邹炳锁,汤国庆,张桂兰,陈文驹,李铁津,张岩,肖良质,氧化亚铜纳米微粒的制备及光学特性,科学通报,1993,38(18):1649-1651.
    [13] 陈之战,施尔畏,李汶军,郑燕清,仲维卓,水热条件下 Cu2O 的连生习性,人工晶体学报,2001,30(4):369-374.
    [14] 于振花,氧化亚铜的制备、表征及其氧化动力学[硕士学位论文],山东:中国海洋大学,2005.
    [15] 浦宝康,IMO 与船底防污,交通环保,2000,21(4):42-43.
    [16] 倪余伟,王贵森,无毒防污涂料的进展,涂料工业,1999,7:32-33.
    [17] 曾德芳,海洋污损生物与船体防污涂料,交通环保,1996,17(6):37-39.
    [18] 付玉斌,氧化亚铜防污漆表面附着的异养细菌的研究,材料开发与应用,2000,15(1):13-16.
    [19] 盛梅,许淮,朱毅青,半导体光催化剂及其在环境保护中的应用,江苏石油化工学院学报,2001,13(3):40-43.
    [20] X. Wang, T. Lou, Photodegradation of dissolved organic matter and its impact on the biological processes, Photographic Science and Photochemistry, 2004, 22(4): 298-305.
    [21] 何星存,梁伟夏,黄智,陈孟林,可见光响应的“Cu 核-Cu2O 壳”型光催化剂性能的研究,现代化工,2005,25(11):38-41.
    [22] 刘洪禄,张爱茜,吴海锁,黄智,王连生,氧化亚铜光催化降解对硝基苯酚,环境化学,2004,23(5):490-494.
    [23] 梁宇宁,黄智,覃思晗,甘庆华,Cu2O 光催化降解水中对硝基苯酚的研究,环境污染治理技术与设备,2003,4(10):36-39.
    [24] 孟楠,张爱茜,吴海锁,黄智,王连生,TiO2 与 Cu2O 光催化降解对硝基苯酚比较研究,第二届全国环境化学学术报告会论文集,上海:2004:66-70.
    [25] J. Li, L. Liu, Y. Yu, Y. Tang, H. Li, F. Du, Preparation of highlyphotocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method, Electrochem. Commun., 2004, 6(9): 940-943.
    [26] 陈金毅,刘小玲,李阊轮,李家麟,纳米氧化亚铜可见光催化分解亚甲基蓝,华中师范大学学报(自然科学版),2002,36(2):200-203.
    [27] 刘小玲,陈金毅,周文涛,李家麟,纳米氧化亚铜太阳光催化氧化法处理印染废水,华中师范大学学报(自然科学版),2002,36(4):475-477.
    [28] 朱俊武,陈海群,谢波,杨绪杰,陆路德,汪信,纳米 Cu2O 的制备及其对高氯酸铵热分解的催化性能,催化学报,2004,25(8):637-640.
    [29] 刘静峰,田德余,邓鹏图,超微细 Cu2O 对 RDX/AP/HTPB 推进剂组分热分解特性影响的研究,火炸药学报,1998,2:1-4.
    [30] 王长波,李斌,氧化亚酮和三氧化钼对 PVC 阻燃和抑烟作用,化学与粘合,2002,3:120-122.
    [31] 李斌,王建祺,张爱英,用锥形量热仪研究 Cu2O 和 MoO3 对 PVC阻燃抑烟的作用,科学通报,1998,43(8):836-840.
    [32] 黄险波,张亮,李定华,李颖,涂洪斌,氧化亚铜在聚氯乙烯燃烧热降解中的作用,北京理工大学学报,1997,17(5):590-594.
    [33] 李越湘,吕功煊,李树本,半导体光催化分解水研究进展,分子催化,2001,15(1): 72-78.
    [34] 邵文柱,沙德生,V.V.伊万诺夫,杨德庄,氧化亚铜基金属陶瓷导电性的试验研究,材料科学与工艺,1999,7(2):109-112.
    [35] 王学峰,张勇,高同春,井冈霉素与氧化亚铜复配制剂对水稻稻曲病防效测定,安徽农业科学,2005,33(9):1601-1622.
    [36] 刘勋,陈时洪,用氧化亚铜从人发水解液中沉淀胱氨酸的研究,氨基酸和生物资源,2003,25(1):55-57.
    [37] 周玉华,黄熙怀,氧化亚铜在玻璃中的着色,硅酸盐学报,1965,4(1):66-69.
    [38] 王现全,杀菌组合物,中国专利,00109476,2000-12-13.
    [39] 近藤保夫,金田润也,青野泰久,阿部辉宜,复合材料及其应用,中国专利,02119923.X,2003-03-12.
    [40] 近藤保夫,金田润也,青野泰久,阿部辉宜,稻垣正寿,斋藤隆一,小池义彦,荒川英夫,复合材料及其应用,中国专利,02119922.1,2002-10-30.
    [41] 陈琰,褚万学,一种耐极压重负荷润滑脂,中国专利,94118783,1996-06-12.
    [42] 石家庄市华达工贸公司,一种保健药兜带,中国专利,92231788,1993-05-12.
    [43] S.V. Manoj, M. Sharma, K.S. Gupta, Role of cuprous oxide in the autoxidation of aqueous sulphur dioxide and its atmospheric implications, Atmos. Environ., 1999, 33(10): 1503-1512.
    [44] J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors, Chem. Mater., 2006, 18(4): 867-871.
    [45] Y.H. Lee, I.C. Leu, S.T. Chang, C.L. Liao, K.Z. Fung, The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium, Electrochim. Acta, 2004, 50(2-3): 553-559.
    [46] K. Akimoto, S. Ishizuka, M.Yanagita, Y. Nawa, G.K. Paul, T. Sakurai, Thin film deposition of Cu2O and application for solar cells, Sol. Energy, 2006, 80(6): 715-722.
    [47] V. Georgieva, M. Ristov, Electrodeposited cuprous oxide on indium tin oxide for solar applications, Sol. Energ. Mat. Sol. C., 2002, 73(1): 67-73.
    [48] Y.-M. Lu, C.-Y. Chen, M.H. Lin, Effect of hydrogen plasma treatment on the electrical properties of sputtered N-doped cuprous oxide films, Mat. Sci. Eng. B-Solid, 2005, 118(1-3): 179-182.
    [49] S. Liang, C.R. Gorla, N. Emanetoglu, Y. Liu, W.E. Mayo, Y. Lu, Epitaxial growth of (1120) ZnO on (0112) Al/sub 2/O/sub 3/ by metalorganic chemical vapor deposition, J. Elec. Materials, 1998, 27(11): 72-76.
    [50] Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback, Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD, J. Elec. Materials, 2000, 29(1): 69-74.
    [51] B. Hahn, G. Heindel, E. Pschorr-Schoberer, W. Gebhardt, MOCVD layer growth of ZnO using DMZn and tertiary butanol, Semicon. Sci. Technol., 1998, 13(7): 788-791.
    [52] C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, H. Shen, Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition, J. Appl. Phys., 1998, 85(5): 2595-2602.
    [53] J. Ramirez-Ortiz, T. Ogura, J. Medina-Valtierra, S.E. Acosta-Ortiz, J.A. de los Reyes, V.H. Lara, A catalytic application of Cu2O and CuO films deposited over fiberglass, Appl. Surf. Sci., 2001, 174:177-184.
    [54] T. Kosugi, S. Kaneko, Novel spray-pyrolysis deposition of cuprous oxide thin films, J. Am. Ceramic Society, 1998, 81(12):3117-3124.
    [55] A.O. Musa, T. Akomolafe, M.J. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties, Sol. Energ. Mat. Sol. C., 1998, 51(3-4): 305-316.
    [56] A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, M. Okuda, Transparentconducting Al-doped ZnO thin films prepared by pulsed laser deposition, J. Appl. Phys., 1996, 35(1A): 56-59.
    [57] S. Hayamizu, H. Tabata, H. Tanaka, T. Kawai, Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition, J. Appl. Phys., 1996, 80(2): 787-791.
    [58] V. Craciun, J. Elders, J.G..E. Gardenier, I.W. Boyd, Characteristics of high quality ZnO thin films deposited by pulsed laser deposition, Appl. Phys. Lett., 1994, 65(23): 2963-2965.
    [59] N. Kikuchi, K. Tonooka, Electrical and structural properties of Ni-doped Cu2O films prepared by pulsed laser deposition, Thin Solid Films, 2005, 486(1-2): 33-37.
    [60] C.R. Sekhar, Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties, Sol. Energ. Mat. Sol. C., 2001, 68(3-4): 307-312.
    [61] 刘明辉,张丽莎,贾志勇,唐一文,余颖,华中师范大学学报(自然科学版),2006,40(1):75.
    [62] B. Balamurugan, B.R. Mehta, Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation, Thin Solid Films, 2001, 396 (1-2): 90-96.
    [63] L. Huang, H. Wang, Z. Wang, A. Mitra, D. Zhao, Y. Yan, Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase, Chem. Mater., 2002,14(2): 876-880.
    [64] R. Liu, E.A. Kulp, F. Oba, E.W. Bohannan, F. Ernst, J.A. Switzer, Epitaxial electrodeposition of high-aspect-ration Cu2O (110) nanostructures on InP(111), Chem. Mater., 2005, 17: 725-729.
    [65] Y. Tang, Z. Chen, Z. Jia, L. Zhang, J. Li, Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films, Mater. Lett., 2005, 59(4): 434-438.
    [66] G. Kavei, A.M. Gheidari, The effects of surface roughness and nanostructure on the properties of indium tin oxide (ITO) designated for novel optoelectronic devices fabrication, J. Mater. Process. Tech., In Press, Corrected Proof, Available online 1 February 2008.
    [67] Y. Su, S. Li, Y. Chen, L. Xu, Q. Zhou, B. Peng, S. Yin, Y. Feng, Controlled growth of novel doorframe-like ITO nanostructures and their photoluminescence properties, Mater. Lett., 2007, 61: 3818-3821.
    [68] H. Kim, A. Pique, J.S. Horwitz, Electrical optical and structural properties of indium tin oxide thin films for organic light-emitting devices, J. Appl. Phys., 1999: 74:3444-3446.
    [69] S.M. Tadayyon, K. Griffiths, P.R. Norton, C. Tripp, Z. Popovic, Work function modification of indium-tin-oxide used in organic light emitting devices, J. Vac. Sci. Technol. A, 1999, 17(4): 1773-1778.
    [70] M.J. Siegfried, K.-S. Choi, Elucidating the effect of additives on the growth and stability of Cu2O surface via shape transformation of pre-grown crystals, J. Am. Chem. Soc., 2006, 128: 10356-10357.
    [71] H. Li, R. Liu, R. Zhao, Y. Zheng, W. Chen, Z. Xu, Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids, Cryst. Growth Des., 2006, 6(12): 2795-2798.
    [72] M. J. Siegfried, K.-S. Choi, Directing the architecture of cuprous oxide crystals during electrochemical growth, Angew. Chem. Int. Ed., 2005, 44(21): 3218-3223.
    [73] H. Yang, J. Ouyang, A. Tang, Y. Xiao, X. Li, X. Dong, Y. Yu, Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles, Mater. Res. Bull., 2006, 41(7): 1310-1318.
    [74] S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Novel NO2 gas sensor based on cuprous oxide thin films, Sensor. Actuat. B-Chem., 2006, 113(1): 468-476.
    [75] W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.-H. Baeck, E.W. McFarland, A Cu2O/TiO2 heterojunction thin film cathode for photoeletrocatalysis, Sol. Energ. Mat. Sol. C., 2003, 77(3): 229-237.
    [76] C.A.N. Fernando, T.M.W.J. Bandara, S.K. Wethasingha, H2 evolution from a photoelectrochemical cell with n-Cu2O photoelectrode under visible light irradiation, Sol. Energ. Mat. Sol. C., 2001, 70(2): 121-129.
    [77] S. Ishizuka, S. Kato, Y. Okamoto, K. Akimoto, Hydrogen treatment for polycrystalline nitrogen-doped Cu2O thin film, J. Cryst. Growth, 2002, 237-239: 616-620.
    [78] Y.H. Lee, I.C. Leu, S.T. Chang, C.L. Liao, K.Z. Fung, The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium, Electrochim. Acta, 2004, 50(2-3): 553-559.
    [79] A.S. Reddy, G.V. Rao, S. Uthanna, P.S. Reddy, Structural and optical studies on dc reactive magnetron sputtered Cu2O films, Mater. Lett., 2006, 60(13-14): 1617-1621.
    [1] L.P. Colletti, B.H. Flowers, J.L. Stickney, Formation of thin films of CdTe, CdTe, and CdS by electrochemical atomic layer epitaxy, J. Electrochem. Soc., 1998, 145(5): 1442-1449.
    [2] L.P. Colletti, J.L. Stickney, Optimization of the growth of CdTe thin films formed by electrochemical atomic layer epitaxy in an automated deposition system, J. Electrochem. Soc., 1998, 145(10): 3594-3602.
    [3] J. Ruach-Nir, Y. Zhang, R. Popovitz-Biro, I. Rubinstein, G. Hodes, Shape control in electrodeposited, epitaxial CdSe nanocrystals on (111) gold, J. Phys. Chem. B, 2003, 107(10): 2174-2179.
    [4] J.A. Switzer, M.G. Shumsky, E.W. Bohannan, Electrodeposited ceramic single crystals, Science, 1999, 284(5412): 293-296.
    [5] J.A. Switzer, H.M. Kothari, P. Poizot, S. Nakanishi, E.W. Bohannan, Enantiospecific electrodeposition of a chiral catalyst, Nature, 2003, 425: 490-493.
    [6] R. Liu, A.A. Vertegel, E.W. Bohannan, Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold, Chem. Mater., 2001, 13(2): 508-512.
    [7] M.P. Nikiforov, A.A. Vertegel, M.G. Shumsky, J.A. Switzer, Epitaxial electrodeposition of Fe3O4 on single-crystal Au(111), Adv. Mater., 2000, 12(18): 1351-1353.
    [8] A.A. Vertegel, M.G. Shumsky, J.A. Switzer, Epitaxial electrodeposition of thallic oxide on single crystal gold, Electrochim. Acta, 2000, 45(20): 3233-3239.
    [9] P. Poizot, C.-J. Hung, M.P. Nikiforov, E.W. Bohannna, J.A. Switzer, Anelectrochemical method for CuO thin film deposition from aqueous solution, Electrochem.Solid ST., 2003, 6(2): 21-25.
    [10] E.W. Bohannan, M.G. Shumsky, J.A. Switzer, Epitaxial electrodeposition of copper( Ⅰ) oxide on single-crystal gold (100), Chem. Mater., 1999, 11(9): 2289-2291.
    [11] J.C. Ziegler, A. Reitzle, O. Bunk, J. Zegenhagen, D.M. Kolb, Metal deposition on n-Si(111): H electrodes, Electrochim. Acta, 2000, 45(28): 4599-4605.
    [12] J.C. Ziegler, G. Scherb, O. Bunk, A. Kazimirov, L.X. Cao, D.M. Kolb, R.L. Johnson, J. Zegenhagen, Pb deposition on n-Si(111): H electrodes: an in situ X-ray study, Surf. Sci., 2000, 452(1-3):150-160.
    [13] T. Pauporte, D. Lincot, Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride, Appl. Phys. Lett., 1999, 75(24): 3817-3819.
    [14] J.A. Switzer, R. Liu, E.W. Bohannan, F. Ernst, Epitaxial electrodeposition of a crystalline metal oxide onto single-crystalline silicon, J. Phys. Chem. B, 2002, 106(48): 12369-12372.
    [15] R. Liu, E.W. Bohannan, J.A. Switzer, F. Oba, F. Ernst, Epitaxial electrodeposition of Cu2O films onto InP(001), Appl. Phys. Lett., 2003, 83(10): 1944-1946.
    [16] R. Liu, F. Oba, E.W. Bohannan, F. Ernst, J.A. Switzer, Shape control in epitaxial electrodeposition: Cu2O nanocubes on InP(001), Chem. Mater., 2003, 15(26): 4882-4885.
    [17] P. Yu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Room-temperature gain spectra and lacing in microcrystalline ZnO thin film, J. Cryst. Growth, 1998, 184/185(4): 601-604.
    [18] J. Lee, Y. Tak, Selective electrodeposition of ZnO onto Cu2O, Electrochem. Commun., 2000, 2(11): 765-768.
    [19] 朱立群,功能膜层的电沉积理论与技术,北京:北京航空航天大学出版社,2005.
    [20] Y. Nakamura, N. Kaneko, M. Watanabe, H. Nezu, Effects of saccharin and aliphatic alcohols on the electrocrystallization of nickel, J. Appl. Electrochem., 1994, 24: 227-232.
    [21] R. Liu, E. A. Kulp, F. Oba, E. W. Bohannan, F. Ernst, J. A. Switzer, Epitaxial electrodeposition of high-aspect-ration Cu2O (110) nanostructures on InP(111), Chem. Mater., 2005, 17: 725-729.
    [22] V. Georgieva, M. Ristov, Electrodeposited cuprous oxide on indium tin oxide for solar applications, Sol. Energ. Mat. Sol. C., 2002, 73: 67-73.
    [23] M. J. Siegfried, K.-S.Choi, Elucidating the effect of additives on the growth and stability of Cu2O surface via shape transformation of pre-grown crystals, J. Am. Chem. Soc., 2006, 128: 10356-10357.
    [24] H. Li, R. Liu, R. Zhao, Y. Zheng, W. Chen, Z. Xu, Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids, Cryst. Growth Des., 2006, 6(12): 2795-2798.
    [25] M. J. Siegfried, K.-S. Choi, Directing the architecture of cuprous oxide crystals during electrochemical growth, Angew. Chem. Int. Ed., 2005, 44(21): 3218-3223.
    [26] M.J. Siefried, K.-S. Choi, Electrochemical crystallization of cuprous oxide with systematic shape evolution, Adv. Mater., 2004, 16(19): 1743-1746.
    [27] Y. Tang, Z. Chen, Z. Jia, L. Zhang, J. Li, Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films, Mater. Lett., 2005, 59(4): 434-438.
    [28] W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.-H. Baeck, E.W. McFarland, A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis, Sol. Energ. Mat. Sol. C., 2003, 77(3): 229-237.
    [29] C.A.N. Fernando, T.M.W.J. Bandara, S.K. Wethasingha, H2 evolution from a photoelectrochemical cell with n-Cu2O photoelectrode under visible light irradiation, Sol. Energ. Mat. Sol. C., 2001, 70(2): 121-129.
    [30] S. Ishizuka, S. Kato, Y. Okamoto, K. Akimoto, Hydrogen treatment for polycrystalline nitrogen-doped Cu2O thin film, J. Cryst. Growth, 2002, 237-239: 616-620.
    [31] Y.H. Lee, I.C. Leu, S.T. Chang, C.L. Liao, K.Z. Fung, The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium, Electrochim. Acta, 2004, 50(2-3): 553-559.
    [32] A.S. Reddy, G.V. Rao, S. Uthanna, P.S. Reddy, Structural and optical studies on dc reactive magnetron sputtered Cu2O films, Mater. Lett., 2006, 60(13-14): 1617-1621.
    [33] J. Ramirez-Ortiz, T. Ogura, J. Medina-Valtierra, S.E. Acosta-Ortiz, J.A. de los Reyes, V.H. Lara, A catalytic application of Cu2O and CuO films deposited over fiberglass, Appl. Surf. Sci., 2001, 174:177-184.
    [34] H. Yang, J. Ouyang, A. Tang, Y. Xiao, X. Li, X. Dong, Y. Yu, Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles, Mater. Res. Bull., 2006, 41(7): 1310-1318.
    [35] S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Novel NO2 gas sensor based on cuprous oxide thin films, Sensor. Actuat. B-Chem., 2006, 113(1): 468-476.
    [36] T. Mahalingam, J.S.P. Chitra, S. Rajendran, M. Jayachandran, M.J. Chockalingam, Galvanostatic deposition and characterization of cuprous oxide thin films, J. Cryst. Growth, 2000, 216(1-4): 304-310.
    [37] 周延春,材料研究学报,1996,10(5):512-516.
    [38] 陈志钢,唐一文,张丽莎,张新,贾志勇,余颖,溶液温度和衬底对电化学沉积Cu2O薄膜形貌的影响,2005,23(4):570-573.
    [39] 陈国华,王光信,电化学方法应用,北京:化学工业出版社,2002:37.
    [40] J.A. Switzer, H.M. Kothari, E.W. Bohannan, Thermodynamic to kinetic transition in epitaxial electrodeposition, J. Phys. Chem. B, 2002, 106(16): 4027-4031.
    [41] J.A. Switer, C.-J. Hung, L.-Y. Huang, E.R. Switzer, D.R. Kammler, T.D. Golden, E.W. Bohannan, Electrochemical self-assembly of copper/cuprous oxide layered nanostructures, J. Am. Chem. Soc., 1998, 120: 3530-3531.
    [42] E.W. Bohannan, L.-Y. Huang, F.S. Miller, M.G. Shumsky, J.A. Switzer, In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu2O layered nanostructures, Langmuir, 1999, 15(3): 813-818.
    [43] T. Mahalingam, J.S.P. Chitra, J.P. Chu, P.J. Sebastian, Preparation and microstructural studies of electodeposited Cu2O thin films, Mater. Lett., 2004, 58(11): 1802-1807.
    [44] L. Huang, H. Wang, Z. Wang, A. Mitra, D. Zhao, Y. Yan, Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase, Chem. Mater., 2002,14(2): 876-880.
    [45] H. Luo, J. Zhang, Y. Yan, Electrochemical deposition of mesoporouscrystalline oxide semiconductor films from lytropic liquid crystalline phases, Chem. Mater., 2003, 15(20): 3769-3773.
    [46] A.-L. Daltin, A. Addad, J.-P. Chopart, Potentiostatic deposition and characterization of cuprous oxide films and nanowires, J. Cryst. Growth, 2005, 282(3-4): 414-420.
    [47] L.C. Wang, N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar, M. Tao, Electrodeposited copper oxide films: effect of bath pH on grain orientation and orientation-dependent interfacial behavior, Thin Solid Films, 2007, 515(5): 3090-3095.
    [48] L. Xu, Y. Guo, Q. Liao, J. Zhang, D. Xu, Morphological Control of ZnO Nanostructures by Electrodeposition, J. Phys. Chem. B, 2005, 109(28): 13519-13522.
    [49] Z.L. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, J. Phys. Chem. B, 2000, 104: 1153-1175.
    [50] J.H. Adair, E. Suvaci, Morphological control of particles, Curr. Opin. Colloid Interface Sci., 2000, 5(1-2): 160-167.
    [51] F. Caruso, Hollow capsule processing through colloidal templating and self-assembly, Chem. Eur. J., 2000, 6(3): 413-419.
    [52] A.B. Bourlinos, D. Petridis, M.A. Karakassides, Synthesis and characterization of hollow clay microspheres through a resin template approach, Chem. Commun., 2001(16): 1518.
    [53] Z. Zhong, Y. Yin, B. Gates, Y. Xia, Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads, Adv. Mater., 2000, 12(3): 206-209.
    [54] D. Zhang, L. Qi, J. Ma, H. Cheng, Synthesis of submicrometer-sizedhollow silver spheres in mixed polymer-surfactant solutions, Adv. Mater., 2002, 14(20): 1499-1502.
    [55] X.M. Sun, Y.D. Li, Ga2O3 and GaN semiconductor hollow spheres, Angew. Chem. Int. Ed., 2004, 43(29): 3827-3831.
    [56] Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale kirkendall effect, Science, 2004, 304: 711-714.
    [57] L. Xu, X. Chen, Y. Wu, C. Chen, W. Li, W. Pan, Y. Wang, Solution-phase synthesis of single-crystal hollow Cu2O spheres with nanoholes, Nanotechnology, 2006, 17(5): 1501-1505.
    [58] H. Liu, Y. Ni, F. Wang, G. Yin, J. Hong, Q. Ma, Z. Xu, Fabrication of submicron Cu2O hollow spheres in an O/W/O multiple emulsions, Colloid. Surface. A, 2004, 235(1-3): 79-82.
    [59] Y. Chang, J.J. Teo, H.C. Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres, Langmuir, 2005, 21(3): 1074-1079.
    [1] 陈国珍,黄贤智,郑朱梓等,荧光分析法(第二版),北京:科学出版社, 1990:8-10.
    [2] R. Nakamura, Y. Nakato, Primary intermediates of oxygen photoevolution reaction on TiO2(Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements, J. Am. Chem. Soc., 2004, 126: 1290-1298.
    [3] Y. Liu, R.O. Claus, Blue light emitting nanosized TiO2 colloids, J. Am. Chem. Soc., 1997, 119: 5273-5274.
    [4] L.Q. Jing, Y.C. Qu, B.Q. Wang, S.D. Li, B.J. Jiang, L.B. Yang, W. Fu, H.G. Fu, J.Z. Shun, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells, 2006, 90: 1773-1787.
    [5] 刘恩科,朱秉生,罗晋生等,半导体物理学,西安交通大学出版社,1998:201-227.
    [6] Z. Benamara, B. Akkal, A. Boudissa, L. Bideux, B. Gruzz, Characterization of the M.S structure by the surface photoelectrical voltage method, Microelectron. J., 1999, 30: 659-664.
    [7] J. Ferber, J. Luther, Modeling of photovoltage and photocurrent in dye-sensitized titanium dioxide solar cells, J. Phys. Chem. B, 2001, 105(21): 4895-4903.
    [8] F. Pichot, B.A. Gregg, The photovoltage-determining mechanism in dye-sensitized solar-cells, J. Phys. Chem. B, 2000, 104(1): 6-10.
    [9] N. Ashkenasy, M. Leibovitch, Y. Shapira, F.H. Pollak, G.T. Burnham, X. Wang, Surface-photovoltage spectroscopy of an InGaAs/GaAs/AlGaAs singlequantum well laser structure, J. Appl. Phys., 1998, 83(2): 1146-1149.
    [10] J.S. Liang, S.D. Wang, Y.S. Huang, C.W. Tien, Y.M. Chang, C.W. Chen, N.Y. Li, K.K. Tiong, F.H. Pollak, Surface photovoltage spectroscopy as a valuable nondestructive characterization technique for GaAs/GaAlAs vertical-cavity surface-emitting laser structures, J. Phys-Condens. Mat., 2003, 15(2): 55-66.
    [11] L.C. Clark Jr., C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N.Y. Acad. Sci. 1962, 102:29-45.
    [12] S.J. Updike, G.P. Hicks, The enzyme electrode, Nature, 1967, 214: 986-988.
    [13] I.-H. Yeo, D.C. Johnson, Electrochemical response of small organic molecules at nickel-copper alloy electrodes, J. Electroanal. Chem., 2001, 495(2): 110-119.
    [14] G. Kokkinidis, N. Xonoglou, Comparative study of the electrocatalytic influence of underpotential heavy metal adatoms on the anodic oxidation of monosaccharides on Pt in acid solutions, Bioelectrochem. Bioenerg., 1985, 14(4-6): 375-387.
    [15] G. Wittstock, A. Strubing, R. Szargam, G. Werner, Glucose oxidation at bismuth-modified platinum electrodes, J. Electroanal. Chem., 1998, 444(1): 61-73.
    [16] X. Zhang, K.-Y. Chan, J.-K. You, Z.-G. Lin, A.C.C. Tseung, Partial oxidation of glucose by a PtWO3 electrode, J. Electroanal. Chem., 1997, 430(1-2): 147-153.
    [17] P. Luo, F. Zhang, R. Baldwin, Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids andrelated compounds in flow systems, Anal. Chim. Acta, 1991, 244: 169-178.
    [18] L. Nagy, G. Nagy, P. Hajos, Copper electrode based amperometric detector cell for sugar and organic acid measurements, Sensor. Actuat. B-Chem., 2001, 76(1-3): 494-499.
    [19] I.-H. Yeo, D.C. Johnson, Anodic response of glucose at copper-based alloy electrodes, J. Electroanal. Chem., 2000, 484(2): 157-163.
    [20] S. Mho, D.C. Johnson, Electrocatalytic response of carbohydrates at copper-alloy electrodes, J. Electroanal. Chem., 2001, 500(1-2): 524-532.
    [21] T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, S. Hirono, Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method, Electrochem. Commun., 2002, 4(5): 468-471.
    [22] S.T. Farrell, C.B. Breslin, Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles, Electrochim. Acta, 2004, 49(25): 4497-4503.
    [23] K.B. Mala, S. Hrapovic, Y. Liu, D. Wang, J.H.T. Luong, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes, Anal. Chim. Acta, 2004, 516(1-2): 35-41.
    [24] H. Liu, X. Su, X. Tian, Z. Huang, W. Song, J. Zhao, Preparation and electrocatalytic performance of functionalized copper-based nanoparticles supported on the gold surface, Electroanal., 2006, 18(21): 2055-2060.
    [25] D. Pan, J. Chen, S. Yao, L. Nie, J. Xia, W. Tao, Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at copper-modified gold electrode, Sensor. Actuat. B, 2005, 104: 68-74.
    [26] X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode, Anal. Biochem., 2007, 363: 143-150.
    [27] G.L. Luque, M.C. Rodríguez, G.A. Rivas, Glucose biosensors based on the immobilization of copper oxide and glucose oxidase within a carbon paste matrix, Talanta, 2005, 66: 467-471.
    [28] C.Batchelor-Mcauley, G.G. Wildgoose, R.G. Compton, L. Shao, M.L.H. Green, Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes, Sensor. Actuat. B, accepted 23 January 2008.
    [29] T.R.I. Cataldi, D. Centonze, I.G. Casella, E. Desimoni, Anion-exchange chromatography with electrochemical detection of alditols and sugars at a Cu2O-carbon composite electrode, J. Chromatogr. A, 1997, 773: 115-121.
    [1] J.A. Switzer, H.M. Kothari, E.W. Bohannan, Thermodynamic to kinetic transition in epitaxial electrodeposition, J. Phys. Chem. B, 2002, 106(16): 4027-4031.
    [2] R. Liu, F. Oba, E.W. Bohannan, F. Ernst, J.A. Switzer, Shape control in epitaxial electrodeposition: Cu2O nanocubes on InP(001), Chem. Mater., 2003, 15(26): 4882-4885.
    [3] R. Liu, E.A. Kulp, F. Oba, E.W. Bohannan, F. Ernst, J.A. Switzer, Epitaxial electrodeposition of high-aspect-ration Cu2O (110) nanostructures on InP(111), Chem. Mater., 2005, 17: 725-729.
    [4] J.A. Switer, C.-J. Hung, L.-Y. Huang, E.R. Switzer, D.R. Kammler, T.D.Golden, E.W. Bohannan, Electrochemical self-assembly of copper/cuprous oxide layered nanostructures, J. Am. Chem. Soc., 1998, 120: 3530-3531.
    [5] E.W. Bohannan, L.-Y. Huang, F.S. Miller, M.G. Shumsky, J.A. Switzer, In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu2O layered nanostructures, Langmuir, 1999, 15(3): 813-818.
    [6] T. Mahalingam, J.S.P. Chitra, J.P. Chu, P.J. Sebastian, Preparation and microstructural studies of electodeposited Cu2O thin films, Mater. Lett., 2004, 58(11): 1802-1807.
    [7] L. Huang, H. Wang, Z. Wang, A. Mitra, D. Zhao, Y. Yan, Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase, Chem. Mater., 2002,14(2): 876-880.
    [8] H. Luo, J. Zhang, Y. Yan, Electrochemical deposition of mesoporous crystalline oxide semiconductor films from lytropic liquid crystalline phases, Chem. Mater., 2003, 15(20): 3769-3773.
    [9] T. Mahalingam, J.S.P. Chitra, S. Rajendran, M. Jayachandran, M.J. Chockalingam, Galvanostatic deposition and characterization of cuprous oxide thin films, J. Cryst. Growth, 2000, 216(1-4): 304-310.
    [10] A.-L. Daltin, A. Addad, J.-P. Chopart, Potentiostatic deposition and characterization of cuprous oxide films and nanowires, J. Cryst. Growth, 2005, 282(3-4): 414-420.
    [11] L.C. Wang, N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar, M. Tao, Electrodeposited copper oxide films: effect of bath pH on grain orientation and orientation dependent interfacial behavior, Thin Solid Films, 2007, 515(5): 3090-3095.
    [12] 李赫,半导体材料的电沉积制备及其形貌控制研究[博士学位论文],浙江大学,2007.
    [13] A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science, 1996, 271: 933-937.
    [14] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dementional nanostructures: synthesis, characterization, and applications, Adv. Mater., 2003, 15(5): 353-389.
    [15] J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y. Qian, Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles, J. Phys. Chem. B, 2005, 109(19): 9463-9467.
    [16] H. Hou, Y. Xie, Q. Li, Large-scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons, Cryst. Growth Des., 2005, 5(1): 201-205.
    [17] B. Liu, H.C. Zeng, Mesoscale organization of CuO nanoribbons: formation of “dandelions” , J. Am. Chem. Soc., 2004, 126: 8124-8125.
    [18] D.F. Zhang, L.D. Sun, J.L. Yin, C.H. Yan, R.M. Wang, Attachment-Driven Morphology Evolvement of Rectangular ZnO Nanowires, J. Phys. Chem. B, 2005, 109(18): 8786-8790.
    [19] C.H. Liu, J.A. Zapien, Y. Yao,X.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, S.T. Lee, High-density, ordered ultraviolet light-emitting ZnO nanowire arrays, Adv. Mater., 2003, 15(10): 838-841.
    [20] X.G. Zheng, C.N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima, Observation of charge stripes in cupric oxide, Phys. Rev. Lett., 2000, 85(24): 5170-5173.
    [21] M.A. Brookshier, C.C. Chusuei, D.W. Goodman, Control of CuO particleaize on SiO2 by apin coating, Langmuir, 1999, 15(6): 2043-2046.
    [22] R.V. Kumar, R. Elgamiel, Y. Diamant, A. Gedanken, J. Norwig, Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) and its effect on crystal growth of copper oxide, Langmuir, 2001, 17(5): 1406-1410.
    [23] J.B. Reitz, E.I. Solomon, Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity, J. Am. Chem. Soc., 1998, 120: 11467-11468.
    [24] J.A. Switzer, H.M. Kothari, P. Poizot, S. Nakanishi, E.W. Bohannan, Enantiospecific electrodeposition of a chiral catalyst, Nature, 2003, 425: 490-493.
    [25] X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery, J. Phys. Chem. B, 2004, 108(18): 5547- 5551.
    [26] C.T. Hsieh, J.M. Chen, H.H. Lin, et al, Field emission from various CuO nanostructures, Appl. Phys. Lett., 2003, 83(26): 3383-3385.
    [27] S. Chen, D.L. Carroll, Silver nanoplates: size control in two dimensions and formation mechanisms, J. Phys. Chem. B, 2004, 108(18): 5500-5506.
    [28] 张立德,跨世纪的新领域:纳米材料科学,科学,1997,45(1):13-17.
    [29] H. Gerisher, A. Heller, The role of oxygen in photooxidation of organic molecules of on semiconductor particles, J. Phys. Chem., 1991, 95(13): 5261-5267.
    [30] H. Gerisher, A. Heller, Photocatalytic oxidation of organic molecules atTiO2 particles by sunlight in aerated water, J. Electrochem. Soc., 1992, 139(1): 113-118.
    [31] 果玉忱,半导体物理学,国防工业出版社,1998:18-20.
    [32] A.L. Linsebigler, G.Q. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 1995, 95(3): 735-758.
    [33] J.R. Nicole, P. Pichat, A. Foissy, Effect of deposited Pt particles on the surface charge of TiO2 aqueous suspensions by potentiometry, Electrophoresis and labeled ion adsorption, J. Phys. Chem., 1998, 90(12): 2733-2738.
    [34] M. Takahashi, K. Mita, H. Toyuki, Pt-TiO2 thin films on glass substrates as efficient photocatalysts, J. Mater. Sci. 1989, 24(1): 243-246.
    [35] A. Sclafani, M.N. Mozzanega, P. Pichat, Effect of silver deposites on the photocatalytic activity of titanium dioxide samples for the dehydrogeneration of oxidation of 2-propanol, J. Photochem. Photobiol. A, 1991, 59(2): 181-189.
    [36] C.M. Wang, Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds, J. Am. Chem. Soc., 1992, 114(13): 5230-5234.
    [37] Y.M. Gao, Improvement of photocatalytic activity of titanium dioxide by dispersion of Au on TiO2, Mater. Res. Bull., 1991, 26(12): 1247-1254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700