过渡金属离子催化的气相氧原子转移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属催化氧原子转移反应在石油化工、生物过程以及环境化学中具有特别重要的意义。目前催化剂的设计和改进逐渐由纯技艺型向分子设计水平方向转变。但是,催化剂分子设计需要建立在对催化机理有着全面深入认识的基础上。但是由于溶剂效应等外在因素的干扰,人们很难认清反应的活性中心以及中间体的内禀特性等。气相实验结合理论计算可以排除常规实验中诸多干扰因素,揭示催化反应的内禀属性,为催化剂的开发和设计提供理论指导。本文以过渡金属离子Mn~+、Fe~+、Co~+和Ni~+催化N_2O与CO、烷烃(C_2H_6)、炔烃(C_2H_2)和芳香烃(C_6H_6)的氧原子转移反应为研究对象,采用量子化学方法,系统研究过渡金属离子催化氧原子转移反应的内禀机理,确定控制氧原子转移催化效率的本质因素。理论计算结果表明:
     在金属离子中介的CO还原N_2O反应中,Co~+和Ni~+首先通过N-O插入机理与N_2O反应脱掉氮气生成氧化物MO+,随后氧化物被CO还原并通过O-C耦合机理再生金属离子并释放CO_2。自旋禁忌和较高的能垒阻碍了NiO~+的生成,CoO~+的形成因自旋反转而效率低下。因此Co+和Ni+对CO还原N_2O反应不具备催化特性。当有第二个N_2O与Co~+配位时,Co~+/2N_2O/CO反应势能面由于官能团效应而大幅降低,促进反应进行。Fe~+催化N_2O氧化乙炔始于Fe~+(6D和4F)分别通过直接的氧提取和N-O插入机理与N_2O反应生成FeO~+。在第二步催化循环中,乙炔与新生成的FeO+结合后可经直接H提取机理得到产物乙炔醇;也可以经过环化形成c-CHCHOFe~+后,伴随有直接离解(脱甲酰基甲烯)、C-C插入(脱乙烯酮)、C-to-O氢转移(脱乙炔醇)和/或C-to-C氢转移(脱乙烯酮和CO)四条可能的反应通道,其中最有利的反应路径是沿环化至C-to-C氢转移的脱乙烯酮和CO通道。脱CO伴随产物FeCH_2+被另一分子N_2O还原过程组成了催化循环的第三步。该过程经历初始的直接氧提取生成OFeCH2+后,发生分子内重排形成甲醛加合物Fe+-OCH2。考虑到从初始反应获得的能量,此反应在能量上也是非常有利的。
     在Fe+和Co+参与的N_2O氧化乙烷反应中,首先Fe+和Co+还原N_2O得到相应的金属氧化物离子。第二步,乙烷与新生成的氧化物结合后,可经直接H提取和/或逐步H转移生成羟基中间体(HO)M+(CH2CH3) (M = Fe和Co)。最后羟中间体经β-H转移通道发生脱水和脱乙烯反应,或通过C-O耦合通道生成乙醇并使金属离再生子。脱水伴随产物MC_2H4+也可以进一步被N_2O氧化。氧化首先通过N-O激发脱掉氮气生成OMC_2H4+,随后体系可经直接H提取机理生成乙烯醇并再生M+,此外Fe+体系还生成FeC_2H2+和FeOH+两种副产物。OMC_2H4+也可以经环化生成c-CH2CH2OM+,随后发生C-to-O氢转移(脱乙烯醇)、C-O耦合(脱环氧乙烷)、C-to-C氢转移(脱乙醛)和/或α-H提取(脱乙醛)反应,其中Fe+还可以通过C-C插入机理脱甲醛以及通过C-to-C氢转移和/或α-H提取机理脱甲烷。脱乙烯伴随产物MOH2+进一步与N_2O反应逐步脱掉氮气和水分子生成活性MO +。对N_2O氧化乙烷反应,Fe+具有良好的催化活性,但是由于产物复杂并伴随大量副产物,其选择性较差。Co+参与的反应主要产物为乙醛和乙醇,具有较好的选择性,但是受生成CoO+的速率过低的影响在室温下不具备催化活性。
     Mn~+、Co~+和Ni~+催化N_2O氧化苯气相反应包含MO~+和M~+(C6H_6)中介的两种催化循环。在M~+(C_6H_6)中介的催化循环中,Mn+和Co~+初始形成M~+(C6H_6)后,N_2O与之配位并被金属离子激发形成(C_6H_6)M~+O(N_2)。热的(C_6H_6)M~+O(N_2)释放掉一分子氮后可经非自由基和/或氧-插入两种机理生成苯酚并再生催化剂M~+。M~+与苯结合时获得的巨大能量不仅提供了N-O激发的驱动力,而且促使苯的氧化可以沿单一势能面(Mn+的七重态和Co+的三重态势能面)以单态反应方式进行。在MO+中介的反应循环中,由于第一步形成金属氧化物过程中受高反应能垒和/或自旋反转限制,阻碍了Mn~+、Co~+和Ni~+以MO~+中介的方式对苯的N_2O氧化进行有效催化。
The oxygen-atom transport catalyzed by transition metal ions is of paramount importance in chemical engineering, biology, and environmental process. Now, it is more and more popular in designing and improving catalysts at a molecular level, which is based on the extensively understanding of the catalytic reaction mechanisms. In“real-life situation”, however, the solvents and other disturbing factors obscure the intrinsic features of a reaction center or the reactive intermediates. Gas-phase experiments combining with theoretical calculations are particularly well-suited for the elucidation of basic properties of isolated molecules and probing the elementary reactions because they are not hampered by various disturbing factors. In this thesis, the reaction of N_2O with CO, alkane (C_2H_6), alkine (C_2H2), and arene (C6H_6) catalyzed by Mn+, Fe~+, Co~+, and Ni+ is chosen as a model for studying the catalysis of oxygen-atom transport by quantum chemistry calculations. The intrinsic mechanisms of these reactions are systematically investigated and the rate-determining steps are elucidated. The calculated results are as follows.
     In the gas-phase Co~+ and Ni+-mediated N_2O reduction by CO, firstly, metal ions reaction with N_2O forms N_2 and MO+ via the N-O insertion mechanism. Then, the nascent oxide reduction by CO could account for the M+-regenerated product, CO_2, through the C-O coupling mechanism. The NiO+ formation is inhibited by both the high energy barrier and the spin inversion. On the other hand, spin inversion also slows down the reaction rate in CoO+ formation process. Thus, both metal ions are unable to work as a catalyst in N_2O reduction by CO. Coordination of second N_2O by Co~+ has a positive effect, leading the catalytic reaction could proceed along a thermodynamically and kinetically highly favorable path.
     The Fe~+-catalyzed oxidation of acetylene by N_2O starts with Fe~+(6D and 4F) reaction with N_2O yielding FeO+ through direct O-abstraction and N-O insertion mechanisms, respectively. For the second leg of catalytic cycles, after the coordination of acetylene by nascent FeO+, the reaction could yield ethynol via direct H abstraction mechanism. Alternatively, the system also converts into a“metallaoxacyclobutene”structure, followed by four possible pathways, i.e., direct dissociation (for producing formylcarbene), C-C insertion (for products ketene), C-to-O hydrogen shift (for ethynol), and/or C-to-C hydrogen shift (for ketene and CO). The most favorable channel is oxidation to ketene and carbon monoxide along the cyclization - C-to-C hydrogen shift pathway. Reduction of the CO loss partner FeCH2+ by another N_2O molecule constitutes the third step of the catalytic cycle, which involves a direct abstraction of O-atom from N_2O giving OFeCH2+ and then an intramolecular rearrangement to form formaldehyde adduct Fe~+-OCH2. Considering the energy acquired from the initial reactants, this reaction is also energetically favored.
     In the gas-phase Fe~+ and Co~+-mediated oxidation of ethane by N_2O, Fe~+ and Co~+ reduction N_2O gives rise to metal oxide ion firstly. For second step of the catalytic cycle, after the coordination of ethane by nascent oxide, the direct and/or stepwise (metal ion mediated) H shift could carry the system into hydroxyl intermediate (HO)M+(CH2CH3), which could account for H2O and C_2H4 loss products viaβ-H shift channel and ethanol elimination product through C-O coupling pathway. The H2O loss partner MC_2H4+ could react with another N_2O molecule. N_2O coordinates to MC_2H4+ and gets activated by metal ion to yield (C_2H4)M+O(N_2) through a N-O insertion mechanism. The thermal (C_2H4)M+O(N_2) would release a nitrogen molecule and then is further oxidized through two different mechanisms, i.e., direct H abstraction and/or cyclization. The former mechanism accounts for the ethenol formation. Additionally, for Fe~+, the reaction also could form the byproducts of FeC_2H2+ and FeOH+. The other mechanism involves a c-CH2CH2OM+ structure, followed by four possible pathways, i.e., C-to-O hydrogen shift (for producing ethenol), C-O coupling (for products oxirane), C-to-C hydrogen shift (for acetaldehyde), and/orα-H abstraction (for acetaldehyde). Additionally, for Fe~+, the reaction also could form formaldehyde via C-C insertion pathway and methane throughα-H abstraction channel. The C_2H4 loss partner MOH2+ also could react with N_2O generating active MO+ after stepwise loss of N_2 and H2O. Fe~+ could catalyze the reaction of ethane with N_2O, but its selectivity is very poor because yielding a lot of byproducts. For Co~+, the mainly products are acetaldehyde and ethanol, indicating a good selectivity. However, Co~+ is unable to work as a catalyst due to the poor efficiency of the CoO+ formation at room temperature.
     The Mn+, Co~+, and Ni+-catalyzed oxidation of benzene by N_2O may involve two different catalytic cycles, i.e., mediated by M+(benzene) and MO+, respectively. In the M+(benzene)-mediated catalytic cycle, for both Mn+ and Co~+, after the initial formation of M+(benzene), the oxidant N_2O coordinates to the nascent complex and gets activated by metal ion to yield (C6H_6)M+O(N_2) through a N-O insertion mechanism. The thermal (C6H_6)M+O(N_2) would release a nitrogen molecule and then is further oxidized to phenol regenerating the active catalyst M+ through two different mechanisms, i.e., nonradical and/or O-insertion. The large energy acquired from the benzene association not only provide the driving force for the N-O activation as well as the whole oxidation reaction but also make it possible for the benzene oxidation to proceed on a same potential energy surface (PES, septet for Mn+ and triplet for Co~+) under the single-state reactivity (SSR) paradigm. For the alternative MO+-mediated oxidation mechanism, spin inversion as well as high energy barrier in the course of the N-O activation imply that both Mn+, Co~+, and Ni+ are unable to work as a catalyst.
引文
[1] Hughes M. D., Xu Y. J., Jenkins P., et. al. Tunable Gold Catalysts for Selective Hydrocarbon Oxidation Under Mild Conditions[J]. Nature, 2005, V437(7062): 1132-1135.
    [2] Kapteijin F., Mirasol J. R., Moulijin J. A. Heterogeneous Catalytic Decomposition of Nitrous Oxide[J]. Applied Catalysis B: Environmental, 1996, V9(1-4): 25-64.
    [3] Hecker W. C., Bell A. T. Reduction of NO by CO Over Silica-Supported Rhodium: Infrared and Kinetic Studies[J]. Journal of Catalysis, 1983, V84(1): 200-215.
    [4] Delahay G., Mauvezin M., Guzmán-Vargas A., et al. Effect of the Reductant Natural on the Catalytic Removal of N2O on Fe-zeolite-βCatalysts[J]. Catalysis Communications, 2002, V3(8): 385-389.
    [5] Iwamoto M., Hamada H. Removal of Nitrogen Monoxide from Exhaust Gases Through Novel Catalytic Processes[J]. Catalysis Today, 1991, V10(1): 57-71.
    [6] Wang X., Chen H. Y., Sachtler W. M. H. Selective Reduction of NOx with Hydrocarbons Over Co/MFI Prepared by Sublimation of CoBr2 and Other Methods[J]. Applied Catalysis B: Environmental, 2001, V29(1): 47-60.
    [7] Adelman B. J., Beutel T., Lei G. D., et al. Mechanistic Cause of Hydrocarbon Specificity Over Cu/ZSM-5 and Co/ZSM-5 Catalysts in the Selective Catalytic Reduction of NOx[J]. Journal of Catalysis, 1996, V158(1): 327-335.
    [8] Praserthdam P., Chaisuk C., Panit A., et al. Some Aspects About the Nature of Surface Species on Pt-Based And MFI-Based Catalysts for the Selective Catalytic Reduction of NO by Propene Under Lean-Burn Condition[J]. Applied Catalysis B: Environmental, 2002, V38(3): 227-241.
    [9] Niu J. H., Yang X. F., Zhu A. M., et. al. Plasma-Assisted Selective Catalytic Reduction of NOx by C2H2 Over Co-HZSM- Catalyst[J]. Catalysis Communications, 2006, V7(5): 297-301.
    [10] Schr?der D., Schwarz H., Theopold K. H. et al. Organometallic Oxidation Catalysis[M]. Heidelberg: Springer Berlin, 2007: V22.
    [11] Bohme D. K., Schwarz H. Gas-Phase Catalysis by Atomic and Cluster Metal Ions: TheUltimate Single-Site Catalysts[J]. Angewandte Chemie International Edition, 2005, V44(16): 2336-2354.
    [12] Schwarz H., Schr?der D. Concepts of Metal-Mediated Methane Functionalization. An Intersection of Experiment and Theory[J]. Pure and Applied Chemistry, 2000, V72(12): 2319-2332.
    [13] Lunsford J. H. Catalytic Conversion of Methane to More Useful Chemicals and Fuels: a Challenge for the 21st Century[J]. Catalysis Today, 2000, V63(2-4): 165-174.
    [14] Labinger J. A. Selective Alkane Oxidation: Hot and Cold Approaches to a Hot Problem[J]. Journal of Molecular Catalysis A: Chemical, 2004, V220(1): 27-35.
    [15] Mendelovici L., Lunsford J. H. Partial Oxidation of Ethane to Ethylene and Acetaldehyde Over a Supported Molybdenum Catalyst[J]. Journal of Catalysis, 1985, V94(1): 37-50.
    [16] Wang Y., Otsuka K.. Partial Oxidation of Ethane by Reductively Activated Oxygen Over Iron Phosphate Catalyst[J]. Journal of Catalysis, 1997, V171(1): 106-114.
    [17] Kondratenko E. V., Cherian M., Baerns M. Oxidative Dehydrogenation of Propane Over Differently Structured Vanadia-Based Catalysts in Thepresence of O2 and N2O[J]. Catalysis Today, 2006, V112(1-4): 60-63.
    [18] Nieto Lopez J. M., Dejoz A., Vazquez M. I., et. al. Oxidative Dehydrogenation of n-Butane on MgO-Supported Vanadium Oxide Catalysts[J]. Catalysis Today, 1998, V40(2-3): 215-228.
    [19]任通,闫亮,张汉鹏等.以N2O为氧化剂,Fe-P-O催化剂气相催化氧化苯制苯酚的研究[J].分子催化, 2003, V5(17): 342-346.
    [20] Niu S., Hall M. B. Theoretical Studies on Reactions of Transition-Metal Complexes[J]. Chemical Reviews, 2000, V100(2): 353-406.
    [21] Eller K., Schwarz H. Organometallic Chemistry in the Gas Phase[J]. Chemical Reviews, 1991, V91(6): 1121-1177.
    [22] Allison J., Ridge D. P. Reactions of Transition Metal Ions with Alkyl Halides and Alcohols in the Gas Phase: Evidence for Metal Insertion and Beta-Hydrogen Atom Shift[J]. Journal of the American Chemical Society, 1976, V98(23): 7445-7447.
    [23] Li F. X., Zhang X. G., Armentrout P. B. The Most Reactive Third-Row Transition Metal:Guided Ion Beam and Theoretical Studies of the Activation of Methane by Tr+[J]. International Journal of Mass Spectrometry, 2006, V255-256(1): 279-300.
    [24] Cheng P., Bohme D. K. Gas-Phase Reactions of Atomic Lanthanide Cations with Sulfer Hexafluoride: Periodicity in Reactivity[J]. Inorganic Chemistry, 2006, V45(19): 7856-7893.
    [25] Engeser M., Schr?der D., Schwarz H. Gas-Phase Dehydrogenation of Methanol with Mononuclear Vanadium-Oxide Cations[J]. Chemistry - A European Journal, 2005, V11(20): 5975-5987.
    [26] Kretzschmar I. Schr?der D., Schwarz H., et al. Gas-Phase Thermochemistry of the Early Cationic Transition-Metal Sulfides of the Second Row: YS+, ZrS+, and NbS+[J] International Journal of Mass Spectrometry, 2006, V249-250(1): 263-278.
    [27] Kappes M. M., Staley R. H. Gas-Phase Oxidation Catalysis by Transition-Metal Cations[J]. Journal of the American Chemical Society, 1981, V103(5): 1286-1287.
    [28] Rowe B. R., Viggiano A. A., Fehsenfeld F. C., et. al. Reactions Between Neutrals Clustered on Ions[J]. Journal of Chemical Physics, 1982, V76(1): 742-743.
    [29] Andersson M., Rosén A. Catalytic Oxidation of Hydrogen on Free Platinum Clusters[J]. Journal of Chemical Physics, 2002, V117(15): 7051-7054.
    [30] Koyanagi G. K., Caraiman D., Blagojevic V., et al. Gas-Phase Reactions of Transition-Metal Ions with Molecular Oxygen: Room-Temperature Kinetics and Periodicities in Reactivity[J]. The Journal of Physical Chemistry A, 2002, V106(18): 4581-4590.
    [31] Br?nstrup M., Schr?der D., Kretzschmar I., et. al. Platinum Dioxide Cation: Easy to Generate Experimentally but Difficult to Describe Theoretically[J]. Journal of the American Chemical Society, 2001, V123(1): 142-147.
    [32] Lautens M., Klute W., Tam W. Transition Metal-Mediated Cycloaddition Reactions[J]. Chemical Reviews, 1996, V96(1), 49-92.
    [33] Bakhtiar R., Drader J. J., Jacobson D. B. Iron-Mediated [4+2] Cycloaddition of 1,3-Butadiene with Ethyne and Propyne in the Gas Phase[J]. Journal of the American Chemical Society, 1992, V114(21): 8304-8306.
    [34] Berg C., Kaiser S., Schindler T., et. al. Evidence for Catalytic Formation of Benzenefrom Ethylene on Tungsten Ions[J]. Chemical Physics Letters, 1994, V231(2-3): 139-143.
    [35] Heinemann C., Cornehl H. H., Schwarz H. Hydrocarbon Activation by“Bare”Uranium Cations: Formation of a Cationic Uranium-Benzene Complex from Three Ethylene Units[J]. Journal of Organometallic Chemistry, 1995, V501(1-2): 201-209.
    [36] Gehret O., Irion M. P. Reactions of Fen+ Clusters (n = 2-11) with C6H6 and C6D6. Ligand Isomerization in the Benzene Precursor Ion Fe4(C2H2)3+[J]. Chemical Physics Letters, 1996, V254(5-6): 379-383.
    [37] Ryzhov V., Dunbar R. C. Interactions of Phenol and Indole with Metal Ions in the Gas Phase: Models for tyr and trp Side-Chain Binding[J]. Journal of the American Chemical Society, 1999, V121(10): 2259-2268.
    [38] Wesendrup R., Schwarz H. Catalytic Benzene Formation in the Gas-Phase Reactions of MC4H4+ (M = Ru, Rh) with C2H2[J]. Organometallics, 1997, V16(3): 461-466.
    [39] Walters R. S., Jaeger T. D., Duncan M. A. Infrared Spectroscopy of Ni+(C2H2)n Complexes: Evidence for Intracluster Cyclization Reactions[J]. The Journal of Physical Chemistry A, 2002, V106(44): 10482-10487.
    [40] Wesendrup R., Schr?der D., Schwarz H. Catalytic Pt+-Mediated Oxidation of Methane by Molecular Oxygen in the Gas Phase[J]. Angewandte Chemie International Edition in English, 1994, V33(11): 1174-1176.
    [41] Pavlov M., Blomberg M. R. A., Siegbahn P. E. M., et. al. Pt+-Catalyzed Oxidation of Methane: Theory and Experiment[J]. The Journal of Physical Chemistry A, 1997, V101(8): 1567-1579.
    [42] Br?nstrup M., Schr?der D., Schwarz H. Platinum-Mediated Coupling of Methane and Small Nucleophiles (H2O, PH3, H2S, CH3NH2) as a Model for C-N, C-O, C-P, and C-S Bond Formation in the Gas Phase[J]. Organometallics, 1999, V18(10): 1939-1948.
    [43] Buckner S. W., Gord J. R., Freiser B. S.. Gas-Phase Chemistry of Transition Metal-Imido and Nitrene Ion Complexes. Oxidative Addition of N-H Bonds in NH3 and Transfer of NH from a Metal Center to an Alkene[J]. Journal of the American Chemical Society, 1988, V110(20): 6606-6612.
    [44] Liyanage R., Armentrout P. B. Ammonia Activation by Iron: State-Specific Reactions ofFe+(6D, 4F) with ND3 and the Reaction of FeNH+ and D2[J]. International Journal of Mass Spectrometry, 2005, V241(2-3): 243-260.
    [45] Ranatunga D. R. A., Hill Y. D., Freiser B. S. Gas-Phase Chemistry of the Yttrium-Imido Cation YNH+ with Alkenes:β-Hydrogen Activation by a d0 System via a Multicentered Transition State[J]. Organometallics, 1996, V15(4): 1242-1250.
    [46] Lopez N., N?rskov J. K.. Catalytic CO Oxidation by a Gold Nanopartical: a Density Functional Study[J]. Journal of the American Chemical Society, 2002, V124(38): 11262-11263.
    [47] Bernhardt T. M. Gas-Phase Kinetics and Catalytic Reactions of Small Silver and Gold Clusters[J] International Journal of Mass Spectrometry, 2005, V243(1): 1-29.
    [48] Sanchez A., Abbet S., Heiz U., et. al. When Gold is not Noble: Nanoscale Gold Catalyusts[J]. The Journal of Physical Chemistry A, 1999, V103(48): 9573-9578.
    [49] Zemski K. A., JUstes D. R., Castleman Jr. A. W. Studies of Metal Oxide Clusters: Elucidation Reactive Sites Responsible for the Activity of Transition Metal Oxide Catalysts[J]. The Journal of Physical Chemistry B, 2002, V106(24): 6136-6148.
    [50] Wallace W. T., Whetten R. L. Coadsorption of CO and O2 on Selected Gold Clusters: Evidence for Efficient Room-Remperature CO2 Generation[J]. Journal of the American Chemical Society, 2002, V124(25): 7499-7505.
    [51] Waters T., O’Hair R. A. J., Wedd A. G. Catalytic Gas Phase Oxidation of Methanol to Formaldehyde[J]. Journal of the American Chemical Society, 2003, V125(11): 3384-3396.
    [52] Baranov V., Javahery G., Hopkinson A. C., et. al. Intrinsic Coordination Properties of Iron in FeO+:Kinetics at 294±3 K for Gas-Phase Reactions of the Ground States of Fe+ and FeO+ with Inorganic Ligands Containing Hydrogen, Nitrogen, and Oxygen[J]. Journal of the American Chemical Society, 1995, V117(51): 12801-12809.
    [53] Koyanagi G. K., Lavrov V. V., Baranov V., et. al. A Novel Inductively Coupled Plasma/Selected-Ion Flow Tube Mass Spectrometer for the Study of Reactions of Atomic and Atomic Oxide Ions[J]. International Journal of Mass Spectrometry, 2000, V194(1): L1-L5.
    [54] Lavrov V. V., Blagojevic V., Koyanagi G. K., et. al. Gas-Phase Oxidation and Nitration ofFirst-, Second-, and Third-row Atomic Cations in Reactions with Nitrous Oxide: Periodicities in Reactivity[J]. The Journal of Physical Chemistry A, 2004, V108(26): 5610-5624.
    [55] Koyanagi G. K., Bohme D. K. Oxidation Reactions of Lanthanide Cations with N2O and O2: Periodicities in Reactivity[J]. The Journal of Physical Chemistry A, 2001, V105(39): 8964-8968.
    [56] Blagojevic V., Orlova G., Bohme D. K. O-Atom Transport Catalysis by Atomic Ccations in the Gas Phase: Reduction of N2O by CO[J]. Journal of the American Chemical Society, 2005, V127(10): 3545-3555.
    [57] Blagojevic V., Jarvis M. J. Y., Flaim E., et. al. Gas-Phase Reduction of Oxides of Nitrogen with CO Catalyzed by Atom Transition-Metal Cations[J]. Angewandte Chemie International Edition in English, 2003, V42(40): 4923-4927.
    [58] Clemmer D. E., Chen Y. M., Khan F. A., et. al. State-Specific Reactions of Fe+(a6D,a4F) with D2O and Reactions of FeO+ with D2[J]. The Journal of Physical Chemistry, 1994, V98(26): 6522-6529.
    [59] Filatov M., Shaik S. Theoretical Investigation of Two-State-Reactivity Pathways of H-H Activation by FeO+: Addition-Elimination,“Rebound”, and Oxene-Insertion Mechanisms[J]. The Journal of Physical Chemistry A, 1998, V102(21): 3835-3846.
    [60] Jackson T. C., Jacobson D. B., Freiser B. S.. Gas-Phase Reaction of FeO+ with Hydrocarbons[J]. Journal of the American Chemical Society, 1984, V106(5): 1252-1257.
    [61] Kang H., Beauchamp J. L. Gas-Phase Studies of Alkane Oxidation by Transition-Metal Oxides. Ion-Beam Studies of CrO+[J]. Journal of the American Chemical Society, 1986, V108(19): 5663-5668.
    [62] Ryan M. F., St?ckigt D., Schwarz H. Oxidation of Benzene Mediated First-Row Transition-Metal Oxide Cations: the Reactivity of ScO+ Through NiO+ in Comparison[J]. Journal of the American Chemical Society, 1994, V116(21): 9565-9570.
    [63] Schr?der D., Schwarz H. Fe@-Catalyzed Gas-Phase Oxidation of Ethane by N2O[J]. Angewandte Chemie International Edition in English, 1990, V29(12): 1431-1433.
    [64] Ryan M. F., Fiedler A., Schr?der D. et al. Stoichiometric Gas-Phase Oxidation Reactions of Co+ with Molecular Hydrogen, Methane, and Small Alkanes[J]. Organometallics,1994, V13(10): 4072-4081.
    [65] Da?i? A., Zhao X., Bohme D. K. Exploration of the Catalytic Oxidation of Ethylene with N2O Mediated by Atomic Alkaline-Earth Metal Cations[J]. International Journal of Mass Spectrometry, 2006, V254(3): 155-162.
    [66] Koyanagi G. K., Caraiman D., Blagojevic V., et. al. Gas-Phase Reactions of Transition-Metal Ions with Molecular Oxygen: Room-Temperature Kinetics and Periodicities in Reactivity[J]. The Journal of Physical Chemistry A, 2002, V106(18): 4581-4590.
    [67] Bohme D. K. PAH and Fullerene Ions and Ion/Molecule Reactions in Interstellar and Circumstellar Chemistry[J]. Chemical Reviews, 1992, V92(7): 1487-1508.
    [68] Schr?der D., Wesendrup R., Schalley C. A., et. al. Gas-Phase Reactions of Aliphatic Alcohols with‘Bare’FeO+[J]. Helvetica Chimica Acta, 1996, V79(1): 123-132.
    [69] Teng Y., Yamaguchi Y., Takemoto T., et. al. The Enhancement Effects of Added Methanol on Methane-Selective Oxidation in the Gas Phase Reaction of CH4-O2-NO2[J]. Physical Chemistry Chemical Physics, 2000, V2(15): 3429-3433.
    [70] Schr?der D., Holthausen M. C., Schwarz H. Radical-Like Activation of Alkanes by the Ligated Copper Oxide Cation (Phenanthroline)CuO+[J]. The Journal of Physical Chemistry B, 2004, V108(38): 14407-14416.
    [71] Holthausen M. C., Koch W. A Theoretical View on Co+-Mediated C-C and C-H Bond Actibations in Ethane[J]. Journal of the American Chemical Society, 1996, V118(41): 9932-9940.
    [72] Fedorov G. D., Gordon S. M. A Theoretical Study of the Reaction Paths for Cobalt Cation + Propane[J]. The Journal of Physical Chemistry A, 2000, V104(11): 2253-2260.
    [73] Chiodo S., Kondakova O., Michelini M. C., et al. Theoretical Study of Two-State Reactivity of Transition Metal Cations: the“Difficult”Case of Iron Ion Interacting with Water, Ammonia, and Methane[J]. The Journal of Physical Chemistry A, 2004, V108(6): 1069-1081.
    [74] Bayse C. A. Theoretical Study of the Reaction of Yttium with Formaldehyde[J]. The Journal of Physical Chemistry A, 2002, V106(16): 4226-4229.
    [75] Liu C., Zhang D., Bian W. Theoretical Investegation of the Reaction of Co+ with OCS[J].The Journal of Physical Chemistry A, 2003, V107(41): 8618-8622.
    [76] Schwarz H. On the Spin-Forbiddeness of Gas-Phase Ion-Molecule Reactions: a Fruitful Intersection of Experimental and Computational Studies[J]. International Journal of Mass Spectrometry, 2004, V237(1): 75-105.
    [77] Rondinelli F., Russo N., Toscano M. On the Origin of the Different Performance of Iron and Manganese Monocations in Catalyzing the Nitrous Oxide Reduction by Carbon Oxide[J]. Inorganic Chemistry, 2007, V46(18): 7489-7493.
    [78] Chiodo S., Rondinelli F., Russo N., et al. On the Catalytic Rol of Ge+ and Se+ in the Oxygen Transport Activation of N2O by CO[J]. Journal of Chemical Theory and Computation, 2008, V4(2); 316-321.
    [79] Wang Y. C., Zhang J. H., Geng Z. Y., et al. Theoretical Investigation for the Reaction of NO2 with CO catalyzed by Sc+[J]. Chemical Physics Letters, 2007, V446(1-3): 8-13.
    [80] Wang Y. C., Wang Q. Y., Geng Z. Y., et al. DFT Study of the Spin-Forbidden Reaction of N2O and CO Catalyzed by Pt+[J]. Chemical Physics Letters, 2008, V460(1-3): 13-17.
    [81] LüL.L., Liu X. W., et. al. DFT Study of the Spin-Forbidden Reaction Between Ti+ and N2O[J]. Journal of Molecular Structure: THEOCHEM, 2006, V774(1-3): 59-65.
    [82] Delabie A., Pierloot K. The Reaction of Cu(I) (1S and 3D) with N2O: an Ab Initio Study[J]. The Journal of Physical Chemistry A, 2002, V106(23): 5679-5685.
    [83] Monfort X. S., Sodupe M., Branchadell V. Spin-Forbidden N2O Dissociation in Cu-ZSM-5[J]. Chemical Physics Letters, 2003, V368(1-2): 242-246.
    [84] Chen H. T., Musaev D. G., Irle S., et al. Mechanisms of the Reactions of W and W+ with NOx (x = 1, 2): a Computational Study[J]. The Journal of Physical Chemistry A, 2007, V111(5): 982-991.
    [85] Martinez A., Goursot A., Coq B., et al. Theoretical Study of the Dissociation of N2O in a Transition Metal Ion-Catalyzed Reaction[J]. The Journal of Physical Chemistry B, 2004, V108(26): 8823-8829.
    [86] Xia F,, Chen J., Zeng K., et al. Density Functional Characterization of Reactions of Bimetallic Carbenes PtMCH2+ (M = Pt, Au) with NH3 in the Gas Phase[J]. Organometallics, 2005, V24(8): 1845-1851.
    [87] Xia F., Chen J., Cao Z. X. Relativistic Density-Functional Study on the DehydrogenationReactivity of PtMCH2+ (M = Cu, Ag, Au, Pt) Toward NH3[J]. Chemical Physics Letters, 2006, V418(4-6): 386-391.
    [88] Yoshizawa K., Shiota Y., Yamabe T. Methane-Methanol Conversion by MnO+, FeO+, and CoO+: A Theoretical Study of Catalytic Selectivity[J]. Journal of the American Chemical Society, 1998, V120(3): 564-572.
    [89] Yumura T., Amenomori A., Kagawa Y., et al. Mechanism for the Formaldehyde to Formic Acid and the Formic Acid to Carbon Dioxide Conversions Mediated by an Iron-Oxo Species[J]. The Journal of Physical Chemistry A, 2002, V106(4): 621-630.
    [90] Shiota Y., Suzuki K., Yoshizawa K. Mechanism for the Direct Oxidation of Benzene to Phenol by FeO+[J]. Organometallics, 2005, V24(14): 3532-3538.
    [91] Chrétien S., Salahub D. R. Kohn-Sham Density-Functional Study of the Formation of Benzene from Acetylene on Iron Clusters, Fe/Fen+ (n = 1-4)[J]. Journal of Chemical Physics, 2003, V119(23): 12291-12299.
    [92] Socaciu L. D., Hagen J., Bernhardt T. M., et al. Catalytic CO Oxidation by Free Au2-: Experiment and Theory[J]. Journal of the American Chemical Society, 2003, V125(34): 10437-10445.
    [93] RoithováJ., Hru?ák J., Schr?der D., et al. A Gas-Phase Study of the Gold-Catalyzed Coupling of Alkynes and Alcohols[J]. Inorganica Chimica Acta, 2005, V358(14): 4287-4292.
    [94] Frisch M. J., Trucks G. W., Schlegel H. B., et al. GAUSSIAN 03, revision B.05, Gaussain Inc., Pittsburgh, PA, 2003.
    [95] Glendening E. D., Badenhoop J. K., Reed A. E., et al. NBO5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001.
    [96] Pauling L. The Nature of the Chemical Bond[M]. 3rd Edition. Ithaca New York: Cornell Universtiy Press, 1960.
    [97] Mulliken R. S. Bonding Power of Electrons and Theory of Valence[J]. Chemical Reviews, 1931, V9(3): 347-388.
    [98] Fukui K., Fujimoto H. Frontier Orbitals and Reaction Paths: Selected Papers of Kenichi Fuki[M]. Hackensack: World Scientific Publishing Company, 1997.
    [99]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    [100]林梦海.量子化学简明教程[M].北京:化学工业出版社,2005.
    [101]丁讯雷.金团簇上小分子吸附的第一性原理研究[D].合肥:中国科学技术大学,2004.
    [102]廖沐真.量子化学从头计算方法[M].北京:清华大学出版社,1984.
    [103] Foresman J. B., Frisch E. Exploring Chemistry with Electronic Structure Methods[M]. 2nd Edition. Pittsburgh, PA: Gaussian, Inc, 1996.
    [104] Kohn W. Nobel Lecture: Electronic Structure of Matter - Wave Functions and Density Functionals[J]. Reviews of Modern Physics, 1999, V71(5): 1253-1266.
    [105] Parr R. G., Yang W. Density-Functional Theory of Atoms and Molecules[M]. London: Oxford University Press, 1989.
    [106] Frisch ?., Frisch M. J., Trucks G. W. Gaussian 03 User’s Reference[M] Pittsburgh, PA: Gaussian, Inc, 2003.
    [107] Andzelm J., Wimmer E. Density functional Gaussian-Type-Orbital Approach to Molecular Geometries, Vibrations, and Reaction Energies[J]. Journal of Chemical Physics, 1992, V96(2): 1280-1303-5652.
    [108] Chiodo S, Russo N, Sicila E. Newly Developed Basis Sets for Density Functional Calculations[J]. Journal of Computational Chemistry, 2005, V26(2): 175-183.
    [109] Reed A. E., Curtiss L. A., Weinhold F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint[J]. Chemical Reviews, V88(6): 899-926.
    [110] Stephens P. J., Devlin F. J., Chabalowski C. F., et al. Ab Inito Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. The Journal of Physical Chemistry, 1994, V98(45): 11623-11627.
    [111] Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange[J]. Journal of Chemical Physics, 1993, V98(7): 5648-5652.
    [112] Lee C. T., Yang W. T., Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density[J]. Physical Review B 1988, V37(2): 785-789.
    [113] Salahub, D. R. The Challenge of d and f Electrons: Theory and Computation[M]. Zerner, M. C. Washington, D.C.: American Chemical Society, 1989: 1-392.
    [114] Parr R. G., Yang, W. Density-Functional Theory of Atoms and Molecules[M]. Oxford: Oxford University Press, 1989: 1-342.
    [115] Tommaso D. D., Marino T., Rondinelli F., et al. CO2 Activation by Nb+ and NbO+ in the Gas Phase. A Case of Two-State Reactivity Process[J]. Journal of Chemical Theory and Computation, 2007, V3(3): 811-815.
    [116] Li T. H., Wang C. M., Yu S. E., et al. A Theoretical Study on the Gas Phase Reaction of Au+ with CH3F[J]. Chemical Physics Letters, 2008, V463(4-6): 334-339.
    [117] Zhao L. M., Zhang R. R., Guo W. Y., et al. Does the Co+-Assisted Decarbonylation of Acetaldehyde Occur Via C-C or C-H Activation? A Theoretical Investigation Using Density Functional Theory. [J]. Chemical Physics Letters, 2006, V414(1-3): 28-33.
    [118] Zhao L. M., Guo W. Y., Yang T. F. et al. Theoretical Survey of the Potential Energy Surface of Methyl Nitrite + Cu+ Reaction[J]. The Journal of Physical Chemistry A, 2008, V112(3): 533-541.
    [119] Frisch M. J., Pople, J. A. Binkley, J. S. Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian basis sets[J]. Journal of Chemical Physics, 1984, V80(7): 3265-3269.
    [120] Seeger R., Pople, J. A. Self-Consistent Molecular Orbital Methods. XVIII. Constraints and Stability in Hartree–Fock Theory[J]. Journal of Chemical Physics, 1977, V66(7): 3045-3050.
    [121] Bauernschmitt R., Ahlrichs R. Stability Analysis for Solutions of the Closed Shell Kohn–Sham Equation[J]. Journal of Chemical Physics, 1996, V104(22): 9047-9052.
    [122] Glendening E. D, Badenhoop J. K., Reed A. E., et al. NBO5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001.
    [123] Reed A. E., Curtiss L. A., Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint[J]. Chemical Reviews, 1988, V88(6): 899-926.
    [124] Foster J. P., Weinhold F. Natural Hybrid Orbitals[J]. Journal of the American Chemical Society, 1980, V102(24): 7211-7218.
    [125] Torrent M., SolàM., Frenking G. Theoretical Studies of Some Transition-Metal-Mediated Reactions of Industrial and Synthetic Importance[J]. Chemical Reviews, 2000, V100(2): 439-494.
    [126] Moore C. E. Atomic Energy Levels[M]. Washintong, D.C.: National Bureau ofStandards, 1952.
    [127] Freiser B S. Organometallic Ion Chemistry[M]. Dordrecht: Kluwer, 1996.
    [128] Goebel S., Haynes C. L., Khan F. A., et al. Collision-Induced Dissociation Studies of Co(CO)x+, x = 1-5: Sequential Bond Energies and the Heat of Formation of Co(CO)4[J]. Journal of the American Chemical Society, 1995, V117(26): 6994-7002.
    [129] Heinemann C., Schwarz J., Schwarz H. Comment on: The Binding Energy of Ni+N2O[J]. Chemical Physics Letters, 1995, V247(4-6): 611-613.
    [130] Koyanagi G. K., Bohme D. K. Gas-Phase Reactions of Carbon Dioxide with Atomic Transition-Metal and Main-Group Cations: Room-Temperature Kinetics and Periodicities in Reactivity[J]. The Journal of Physical Chemistry A: 2006, V110(4): 1232-1241.
    [131] Khan F. A., Steele D. L., Armentrout P. B. Ligand Effects in Organometallic Thermochemistry: The Sequential Bond Energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3)[J]. The Journal of Physical Chemistry, 1995, V99(19): 7819-7828.
    [132] Harris N., Shaik S., Schr?der D., et al. Single- and Two-State Reactivity in the Gas-Phase C-H Bond Activation of Norbornane by“Bare”FeO+[J]. Helvetica Chimica Acta, 1999, V82(10): 1784-1797.
    [133] Shaik S., Danovich D., Fiedler A., et al. Two-State Reactivity in Organometallic Gas-Phase Ion Chemistry[J]. Helvetica Chimica Acta, 1995, V78(6): 1393-1407.
    [134] Weisshaar J. C. Bare Transition Metal Atoms in the Gas Phase: Reactions of M, M+, and M2+ with Hydrocarbons[J]. Accounts of Chemical Research, 1993, V26(4): 213-219.
    [135] Armentrout P. B., Halle L. F., Beauchamp, J. L. Reaction of Cr+, Mn+, Fe+, Co+, and Ni+ with O2 and N2O. Examination of the Translational Energy Dependence of the Cross Sections of Endothermic Reactions[J]. Journal of Chemical Physics, 1982, V76(5): 2449-2457.
    [136] Kretzschmar H., Fiedler A., Harvey J. N., et al. Effects of Sequential Ligation of Molybdenum Cation by Chalcogenides on Electronic Structure and Gas-Phase Reactivity[J]. The Journal of Physical Chemistry A, 1997, V101(35): 6252-6264.
    [137] Yang X. Y., Wang Y. C., Geng Z. Y. et al. Theoretical Study of the Reactivity of 4d Transition Metal Ions with N2O[J]. Chemical Physics Letters, 2006, V430(4-6): 265-270.
    [138] Schr?der D., Schwarz H. FeO@ Activates Methane[J]. Angewandte Chemie International Edition in English, 1990, V29(12): 1433-1434.
    [139] Schwarz H. Activation of Methane[J]. Angewandte Chemie International Edition in English, 1991, V30(7): 820-821.
    [140] Ryan M. F., Fiedler A., Schr?der D. et al. Radical-like Behavior of Manganese Oxide Cation in Its Gas-Phase Reactions with Dihydrogen and Alkanes[J]. Journal of the American Chemical Society, 1995, V117(7): 2033-2044.
    [141] Schr?der, D.; Schwarz, H. C-H and C-C Bond Activation by Bare Transition-Metal Oxide Cations in the Gas Phase[J]. Angewandte Chemie International Edition in English, 1995, V34(18): 1973-1995.
    [142] Danovich D., Shaik S. Spin-Orbit Coupling in the Oxidative Activation of H-H by FeO+. Selection Rules and Reactivity Effects[J]. Journal of the American Chemical Society, 1997, V119(7): 1773-1786.
    [143] Fiedler A., Schr?der D., Shaik S., Schwarz H. Electronic Structures and Gas-Phase Reactivities of Cationic Late-Transition-Metal Oxides[J]. Journal of the American Chemical Society, 1994, V116(23): 10734-10741.
    [144] Yoshizawa K., Shiota Y., Yamabe T. Intrinsic Reaction Coordinate Analysis of the Conversion of Methane to Methanol by an Iron–Oxo Species: A Study of Crossing Seams of Potential Energy Surfaces[J]. Journal of Chemical Physics, 1999, V111(2): 538-545.
    [145] Shiota Y., Yoshizawa K. Methane-to-Methanol Conversion by First-Row Transition-Metal Oxide Ions: ScO+, TiO+, VO+, CrO+, MnO+, FeO+, CoO+, NiO+, and CuO+[J]. Journal of the American Chemical Society, 2000, V122(49): 12317-12326.
    [146] Shiota Y., Yoshizawa K. A Spin–Orbit Coupling Study on the Spin Inversion Processes in the Direct Methane-to-Methanol Conversion by FeO+[J]. Journal of Chemical Physics, 2003, V118(13): 5872-5879.
    [147] Yoshizawa K., Shiota Y., Kagawa Y., et al. Femtosecond Dynamics of the Methane-Methanol and Benzene-Phenol Conversions by an Iron-Oxo Species[J]. The Journal of Physical Chemistry A, 2000, V104(12): 2552-2561.
    [148] Yoshizawa K., Kagawa Y. Reaction Pathways for the Oxidation of Methanol toFormaldehyde by an Iron-Oxo Species[J]. The Journal of Physical Chemistry A, 2000, V104(41): 9347-9355.
    [149] Yoshizawa K., Shiota Y., Yamabe T. Reaction Pathway for the Direct Benzene Hydroxylation by Iron-Oxo Species[J]. Journal of the American Chemical Society, 1999, V121(1): 147-153.
    [150] Elkind J. L., Armentrout P. B. Does Ground State Fe+ (Iron(1+)) React with Hydrogen[J]? Journal of the American Chemical Society, 1986, V108(10): 2765-2767.
    [151] Fiedler A., Schr?der D., Schwarz H., et al. "Bare" Iron Methoxide Cation: A Simple Model To Probe the Mechanism ofβ-Hydrogen Transfer in Organometallic Compounds[J]. Journal of the American Chemical Society, 1996, V118(21): 5047-5055.
    [152] Schultz R. H., Armentrout P. B. Gas-Phase Metal Ion Ligation: Collision-Induced Dissociation of Aquairon (Fe(H2O)x+) and Iron-Methane (Fe(CH4)x+) (x=1-4)[J]. The Journal of Physical Chemistry, 1993, V97(3): 596-603.
    [153] Schultz R. H., Crellin K. C., Armentrout P. B. Sequential Bond Energies of Iron Carbonyl Fe(CO)x+ (x = 1-5): Systematic Effects on Collision-Induced Dissociation Measurements[J]. Journal of the American Chemical Society, 1991, V113(23): 8590-8601.
    [154] Fisher E. R., Schultz F. R., Armentrout P. B. Guided Ion Beam Studies of The State-Specific Reactions of Iron(1+)(6D,4F) with Methyl Halides (CH3X; X = Cl, Br, I)[J]. The Journal of Physical Chemistry, 1989, V93(21): 7382-7387.
    [155] Armentrout P. B., Sunderlin L. S., Fisher E. R. From cis-Dichloride Complexes to Dihydride Complexes of the Iron Group Metals via Two Successive .eta.2-Dihydrogen Intermediates[J]. Inorganic Chemistry, 1989, V28(25): 4437-4438.
    [156] Tjelta B. L., Walter D., Armentrout P. B. Determination of Weak Fe+–L Bond Energies (L = Ar, Kr, Xe, N2, and CO2) by Ligand Exchange Reactions and Collision-Induced Dissociation[J]. International Journal of Mass Spectrometry, 2001, V204(1-3): 7-21.
    [157] Sugar J., Corliss C. Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases[J]. Journal of Physical and Chemical Reference Data, 1985, V14(1), 1-175.
    [158] Fowler J. E., Galbraith J. M., Vacek G., et al. Substituted Oxirenes (X2C2O, X = BH2,CH3, NH2, OH, F): Can They Be Made[J]? Journal of the American Chemical Society, 1994, V116(20): 9311-9319.
    [159] Vacek G., Galbraith J. M., Yamaguchi Y., et al. Oxirene: To Be or Not To Be[J]? The Journal of Physical Chemistry, 1994, V98(35): 8660-8665.
    [160] Girard Y., Chaquin P. Addition Reactions of 1D and 3P Atomic Oxygen with Acetylene. Potential Energy Surfaces and Stability of the Primary Products. Is Oxirene Only a Triplet Molecule? [J]. The Journal of Physical Chemistry A, 2003, V107(48): 10462-10470.
    [161] Chatt J., Duncansom L. A. Olefin Co-ordination Compounds. Part III. Infra-red Spectra and Structure: Attempted Preparation of Acetylene Complexes[J]. Journal of the Chemical Society, 1953, 2939-2953.
    [162] Gerloch M., Constable E. C. Transition Metal Chemistry[M]. New York: VCH, 1994: Chapter 6.5.
    [163] Schr?der D., Shaik S., Schwarz H. Two-State Reactivity as a New Concept in Organometallic Chemistry[J]. Accounts of Chemical Research, 2000, V33(3): 139-145.
    [164] Zhao L. M., Guo W. Y., Zhang R. R., et al. Theoretical Investigation of the Decarbonylation of Acetaldehyde by Fe+ and Cr+[J]. ChemPhysChem, 2006, V7(6): 1345-1354.
    [165] Chen X. F., Guo W. Y., Zhao L. M., et al. Reaction of Acetaldehyde with Ni+: An Extended Theoretical Study of the Decarbonylation Mechanism of Acetaldehyde by First-Row Transition Metal Ions[J]. The Journal of Physical Chemistry A, 2007, V111(18): 3566-3570.
    [166] Chen X. F., Guo W. Y., Zhao L. M., et al. Theoretical Survey of the Potential Energy Surface of Ni+ + Acetone Reaction[J]. Chemical Physics Letters, 2006, V432(1-3): 27-32.
    [167] Holthausen M. C., Fiedler A., Schwarz H., et al. How Does Fe+ Activate C-C and C-H Bonds in Ethane? A Theoretical Investigation Using Density Functional Theory[J]. The Journal of Physical Chemistry, 1996, V100(15): 6236-6242.
    [168] Yi S. S., Blomberg M. R. A., Siegbahn P. E. M., et al. Statistical Modeling of Gas-Phase Organometallic Reactions Based on Density Functional Theory: Ni+ + C3H8[J]. TheJournal of Physical Chemistry A, 1998, V102(2): 395-411.
    [169] Harrison J. F. Electronic Structure of Diatomic Molecules Composed of a First-Row Transition Metal and Main-Group Element (H?F)[J]. Chemical Reviews, 2000, V100(2): 679-716.
    [170] Iwamoto M., Hirata J., Matsukami K., et al. Catalytic Oxidation by Oxide Radical Ions. 1. One-Step Hydroxylation of Benzene to Phenol over Group 5 and 6 Oxldes Supported on Silica Gel[J]. The Journal of Physical Chemistry, 1983, V87(6): 903-905.
    [171] Becker H., Schr?der D., Zummack W., et al. Generation, Fragmentation, and Interconversion Processes of [Fe, C6, H6, O]+ Isomers Relevant for the Oxygenation of Aromatic Hydrocarbonst[J]. Journal of the American Chemical Society, 1994, V116(3): 1096-1100.
    [172] Schr?der D., Schwarz H. Benzene Oxidation by Bare FeO+ in the Gas Phase[J]. Helvetica Chimica Acta, 1992, V75(4): 1281-1287.
    [173] Dalleska N. F., Honma K., Sunderlin L. S., et al. Solvation of Transition Metal Ions by Water. Sequential Binding Energies of M+(H2O)x (x = 1-4) for M = Ti to Cu Determined by Collision-Induced Dissociation[J]. Journal of the American Chemical Society, 1994, V116(8): 3519-3528.
    [174] Meyer F., Khan F. A., Armentrout P. B. Thermochemistry of Transition Metal Benzene Complexes: Binding Energies of M(C6H6)x+ (x = 1, 2) for M = Ti to Cu[J]. Journal of the American Chemical Society, 1995, V117(38): 9740-9748.
    [175] Bauschlicher C. W., Partridge H., Langhoff S. R., Theoretical Study of Transition-Metal Ions Bound to Benzene[J]. The Journal of Physical Chemistry, 1992, V96: 3273-3278.
    [176] Ouhlal A., Selmani A., Yelon A. Bonding in (η6-C6H6)M and (η6-C6H6)M+, M = Ti, Cr, Ni, and Cu. A Local Spin Density Study[J]. Chemical Physics Letter, 1995, V243(8): 269-274.
    [177] Jaeger T. D., van Heijnsbergen D., Klippenstein S. J., et al. Vibrational Spectroscopy and Density Functional Theory of Transition-Metal Ion-Benzene and Dibenzene Complexes in the Gas Phase[J]. Journal of the American Chemical Society, 2004, V126(35): 10981-10991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700