电纺法制备定向纳米材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米科学和技术已经引起遍及世界的广泛兴趣,预期其将带来全面的技术和工业革命。在不同的纳米制备技术中,静电纺丝是一种工艺简单功能多变的制备连续纳米纤维的方法。但是,由于电纺法制备的纤维定向性差以及现有定向技术产量低的缺陷而限制了这项技术的商业化进程。目前,电纺技术的研究仍处于起步阶段,仍有大量阻碍电纺技术应用的迫切问题需要进一步研究解决,其中尤为突出的就是纳米纤维的定向技术。显而易见,定向纤维在其应用方面具有极其重要的意义,但是,到目前为止,定向纤维的电纺工艺仍然没有很好地建立。另一方面,迄今为止对电纺工艺的研究大部分集中在溶液的高浓度范围内,由于溶液的高粘度在这个浓度范围得到的电纺产物一般为纳米纤维。低浓度溶液的电纺产物是纳米颗粒,在很多领域都有潜在的应用。然而,人们对于低浓度溶液的电纺行为研究很少,知识很有限。本研究旨在解决电纺领域存在的上述问题。
     本论文建立了一种非常简单的电纺定向技术,利用这种技术我们制备了长达25厘米,横向覆盖宽度高达63厘米的高定向聚合物纳米纤维。这项技术基于一种改进的电纺设备、点电极收集器的采用以及纤维的侧向喷射。这种电纺过程的显著特征在于纤维的喷出是单根不连续的,这个现象已经由高速像机拍摄的实时图像所证实。制备过程中纤维的定向是借助于点电极产生的汇聚电场的诱导作用实现的。为了提高定向纤维的产量,我们将这种技术从单喷头进一步扩展到多喷头(3个纺丝喷口)。通过对如上定向技术的改进我们还开发了一种制备定向螺旋纳米纤维的方法,其中螺旋纤维的收集是通过一个倾斜的玻璃片进行的。利用这种方法我们成功制备了定向的聚己内酯(PCL)螺旋纤维,其形貌结构和螺旋直径依赖于溶液浓度,在4.7%-10%的浓度范围内获得的螺旋纤维的螺旋直径在6.9-14.9μm,其中在溶液浓度10%时获得了三维的螺旋纤维。这种螺旋纤维的形成是由于高速液流撞击基材表面时会产生机械不稳定性,这种机械不稳定性导致液流的弯曲折叠,使液流沿螺旋路径沉积在基材表面。同样,螺旋纤维的定向也是通过尖端电极所产生的汇聚电场的作用实现的。通过适当控制收集基材的位置和倾斜度利用这种方法可以直接在基材表面制备由纳米纤维组成的图案。
     利用上述方法我们制备了定向的PAN原纤维,通过随后的碳化反应制备了平均直径为80nm的高定向纳米碳纤维(CNFs)。同时,我们利用传统的电纺装置制备了平均直径为60nm的非定向碳纳米管纤维(CNFs)。研究了稳定化温度、碳化温度、升温速率以及衬底对纳米碳纤维形貌和结构的影响。利用多种分析手段如XRD、Raman、SEM、TEM、FTIR和TG/DTA等对样品进行了分析表征。
     另一方面,本论文研究了低浓度范围的电纺行为,通过电纺荷电粒子的自组装获得了蜂窝状多孔结构。通过控制溶液浓度与纺丝电压可以在某种程度上控制这种结构的形貌。我们利用浓度范围在8到13% (w/v)的聚氧乙烯(PEO)水溶液制备了这种蜂巢状多孔结构,通过变化溶液浓度可以实现对其孔壁结构的控制,获得密实和多孔的壁结构。微孔倾向于呈现多边形尤其是六边形,微孔直径的尺寸在15到80μm,组成蜂巢结构的纳米颗粒尺寸范围为50到200nm,组成蜂巢结构的纳米纤维的直径分布为50到100nm。形成此种微观结构的纳米粒子和纳米纤维的形貌取决于溶液浓度和纺丝电压。我们研究了衬底的性质对于自组装微观结构形态的影响,结果表明在铝箔和玻璃衬底上的多孔结构形貌明显不同,与铝上的样品相比玻璃上样品的孔径更大,孔壁更直。这可能是因为由于玻璃不导电而铝是导体,因而在沉积过程中玻璃上的电荷积累更多的缘故。同时发现在铝箔表面沉积时一般要先形成一层连续的聚合物薄膜,而后才开始自组装过程,而在玻璃表面沉积时自组装可以在基材表面直接进行。其原因可能同样是由于这两种基材导电性的差异。我们进一步研究了基材的放置位置对自组装行为的影响,发现大颗粒倾向于落在距离注射器喷口近的位置,组装成垂直于表面的柱状物,而小的颗粒则落在距离远的位置,自组装成蜂巢状多孔结构。电纺过程中产生的液滴的表面张力以及彼此之间的静电排斥力在蜂窝结构的形成中起主要作用。基于以上两种作用力的竞争行为,我们建立了一个生长模型并成功解释了这种荷电液滴的自组装行为。
Nanoscience and nanotechnology have attracted worldwide interest in recent years with the expectation that it will bring about a global technological and industrial revolution. Amongst different nano fabrication techniques, electrospinning is a very simple and versatile method for the fabrication of continuous nanofibers. However, the lack of orientation and low throughput of electrospinning aligned nanofibers has hindered the commercialization of this technology. The research on electrospinning technology is still in its infancy and further work is urgent to solve the numerous problems obstructing its applications especially the techniques of preparing aligned nanofibers. Alignment of the nanofibers is obviously important for their applications but the techniques of electrospinning aligned nanofibers are not well established so far. On the other hand, up to now, the research on the electrospinning is mostly in the range of high solution concentration, where the electrospun products are nanofibers due to the high solution viscosity. The electrospun products in the low concentration range are nanoparticles, which have many potential applications in various fields. However, the understanding on electrospinning in the low solution concentration range is limited. The present study aims at solving the above problems existing in the area of electrospinning.
     In this dissertation, a very simple alignment technique is presented, by which highly aligned polymer nanofibers of more than 25 cm in length were electrospun over a lateral range as large as 63 cm. This technique is based on a modified configuration, application of a tip collector, and sideward ejection. The salient feature of the electrospinning process is the production of single nanofibers one by one, which was confirmed by real-time images taken by a high-speed camera. The alignment of the nanofibers is realized with the aid of a converging electric field generated by the tip collector. This technique was further employed with multi jets (3 spinning nozzles) to scale up the production rate of highly aligned nanofibers. Based on the above modified electrospinning technique, a new and simple electrospinning method has been developed for producing aligned helical polymer nanofibers. The helical fibers were collected by a tilted glass slide. By this method the aligned helical PCL nanofibers were prepared successfully. The morphology and loop diameters of the helical structures depend on the PCL solution concentration and the loop diameters are in the range of 6.9-14.9μm for the concentration range of 4.7%-10%. The three-dimensional helical structures were obtained at the high solution concentration of 10%. These helical structures were formed by jet buckling due to mechanical instability when hitting collector surface. Similarly, the converging electrical field generated by the tip collector plays an important role in the alignment of the helical structures. This technique was also utilized to prepare nanofiber patterns directly on different substrates by appropriately selecting the substrate position and obliquity.
     Highly aligned carbon nanofibers (CNFs) with average diameter of about 80 nm were prepared from polyacrylonitrile (PAN) nanofibers. The alignment of the precursor nanofibers was achieved by using the above mentioned electrospinning technique. Random CNFs with average diameter of about 60 nm were also prepared by conventional electrospinning setup. The effects of the stabilization and carbonization temperature, temperature-increasing rates, and substrate on the morphology and structure of the CNFs were investigated. Different techniques such as XRD, Raman, SEM, TEM, FTIR, and TG/DTA were used to characterize the structure and morphology of the PAN, stabilized, and carbonized nanofibers.
     This study also includes the self-assembly of honeycomb microporous structures from electrospun charged polymeric nanoparticles during electrospinning at low solution concentration. Certain control on the morphology of the honeycomb structures was achieved through solution concentration and applied electrospinning voltage. The honeycomb microporous structures were prepared with polyethylene oxide (PEO) aqueous solutions in the concentration range from 8 to 13% (w/v) with solid to porous walls. The micro holes tend to be polygonal especially hexagonal in shape. The size of the micropores was in the range from 15 to 80μm and the size of the nanoparticles forming the honeycombed structures was from 50 to 200nm. The diameter of the nanofibers forming the honeycomb structure was from 50 to 100nm. It was found that morphology and structure of the nanoparticles and nanofibers forming the honeycomb structures depend upon the solution concentration and applied electrospinning voltage. The effects of substrate nature on the morphology of self assembled honeycomb micrporous structures was studied and obvious difference was observed with the hole larger and hole walls straighter for the films on glass than that on aluminum,which is because the charge density accumulated on the insulating glass is higher than that on the conducting alluminum. It was also found that on aluminum substrate an insulating layer of nanoparticles is formed initially before the self-assembly phenomenon starts, while on the glass substrate the self-assembly starts directly on the substrate surface. This is possibly due to the difference in conductivity for the two substrates also. Further the effects of the substrate positions on the self-assembly phenomenon was studied. It was observed that the large particles tends to land on the positions close to the needle nozzle and self-assemble into vertical rods while the small particles tend to land on the positions far from the needle nozzle and self-assemble into honeycomb microporous film. The surface tension of the solution droplets and electrostatic repelling forces between them play key roles in the formation of the honeycomb structures. Based on the competitive actions of the above two forces we established a model for explaining the self-assembling behavior of the solution droplets.
引文
1. M. Nelson, C. Shipbaugh. The potential of nanotechnology for molecular manufacturing. MR-615-RC,Santa Monica, CA, Rand, 1995.
    2. N. Taniguchi. On basic concept of nanotechnology. Proc. Int. conf. Prod. Eng., JSPE, Tokyo. 18-23 Part 2, 1974.
    3. R. W. Chan. Materials Science - Nanostructured Materials. Nature, 348:389-390, 1990.
    4. P. Rai-choudhury. Handbook of Microlithography, Micromachining and Microfabrication. Optical engineering press; London, UK: Institute of Electrical Engineers 1997.
    5. B. C. Crandall and J., Eds. Lewis. Nanotechnology: Research and Perspectives. The MIT press, 251-267, 1992.
    6. P. M. Ajayan. Smallest Carbon Nanotube. Nature, 358:23-23, 1992.
    7. D. S. Bethune. C.H. Kiang, M.S.Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature. 363:605-607, 1993.
    8. D.H. Reneker, A.L. Yarin, H. Fong and S. Koombhongse. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys; 87:4531-47, 2000.
    9. M.M. Demir, I. Yilgor, E.Yilgor, and B. Erman. Electrospinning of Polyurethane Fibers. Polymer, 43:3303-3309, 2002.
    10. F. S. Alexandre. PhD thesis“Electrohydrodynamics of electrospinning process.”University of Nebraska, 2000.
    11. G. Taylor. Disintegration of water drops in electric field. Proceedings of the Royal Society of London series a-Mathematics and physical sciences. 280(138), 1964.
    12. G. Joffre, B. Prunet-Poch, S.Berthomme and M.Clopeau. Deformation of liquid menisci under the action of an electric field. Journal of Electrostatics.13:655-658, 1982.
    13. A. Formhals. US Pat. Process and Apparatus for preparing artificial threads. 1975, 504, 1934.
    14. A. Formhals. US Pat. Production of artificial fibers. 2077, 373, 1937.
    15. A. Formhals. US Pat. Apparatus for producing artificial filaments from material such as cellulose acetate. 2158, 416, 1939.
    16. A. Formhals. US Pat., Method and apparatus for spinning. 2160, 962, 1939.
    17. A. Formhals. US Pat. Artificial thread and method of producing same. 2187, 306, 1940.
    18. A. Formhals. US Pat. Production of artificial fibers from fiber forming liquids. 2323, 025, 1940.
    19. A. Formhals. US Pat. Method and apparatus for spinning. 2349, 950, 1944.
    20. E. K. Gladding. US Pat. Apparatus for the production of filaments, threads, and the like. 2168, 027, 1939.
    21. H. L. Simsons. US Pat. Process and apparatus for producing patterned non-woven fabrics. 3280, 229, 1966.
    22. A. Bornat. US Pat. Electrostatic spinning of tubular products. 4323, 525, 1982.
    23. A. Bornat. US Pat. Production of electrostatically spun products, 4689, 186, 1987.
    24. P. K. Baumgarten. Electrostatic spinning of acrylic microfibers. Journal of colloid and interface science, 36:71-79, 1971.
    25. L. Larrondo, R. S. J. Manley. Electrostatic Fiber Spinning From Polymer Melts .1. Experimental-observations on fiber formation and properties. Journal of polymer science, polymer physics edition. 19:909-920, 1981.
    26. L. Larrondo and R. St. J. Manley. Electrostatic Fiber Spinning From Polymer Melts .2. Examination of the flow field in an electrically driven jet. Journal of polymer science, polymer physics edition. 19:921-932, 1981.
    27. L. Larrondo and R. St. J. Manley. Electrostatic Fiber Spinning From Polymer Melts .3. Electrostatic Deformation Of A Pendant Drop Of Polymer Melt. Journal of Polymer Science, polymer physics edition. 19:933-940, 1981.
    28. Scopelianos. US Pat. Process for making a piezoelectric biomedical device. 5311, 884, 1994.
    29. Scopelianos. US Pat. Piezoelectric biomedical device. 5522, 879, 1996.
    30. J. Doshi and D. H. Reneker. Electrospinning process and applications of electrospun fibers. Journal of electrostatics. 35:151-160, 1995.
    31. X. Fang and D. H. Reneker. DNA fibers by electrospinning. J. Macromoi. Sci., Phys. B36 (2):169-173, 1997.
    32. J. Kim and D. H. Reneker. Polybenzimidazole nanofiber produced by electrospinning. Polym. Eng. Sci. 39:849-854 1999.
    33. J. Kim and D. H. Reneker. Mechanical properties of composites using ultrafine electrospun fibers. S. Korea Polym. Comps. 20:124-131 1999.
    34. H. Fong, I. Chun and D. H. Reneker. Beaded nanofibers formed during electrospinning. Polymer, 40:4585-4592, 1999.
    35. H. Fong and D. H. Reneker. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. Journal of polymer science part B-polymer physics, 37:3488-3493 1999.
    36. I. Chun and D. H. Reneker. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. Journal of polymer science, 37:3488-3493, 1999.
    37. H. Fong, I. Chun and D. H. Reneker. The 24th Biennial conference on carbon, 380 1999.
    38. I. D. Norris, M. M. Shaker, F. K. Ko, A. G. Macdiarmid. Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth. Met. 114:109-114, 2000.
    39. D. H. Reneker, A. L. Yarin, H. Fong and S. J. Koombhongse. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Appl. Phys. Lett. 87:4531-4547, 2000.
    40. S. G. Heidi, S. K. Sennett, M. Samuelson, L. Huang, Z. G. Wen, J. G. Li., W. Z. Ti, Y. W. Dezhi. Proceedings of the 197th meeting of the electrochemical society, Fullerenes 2000: Chemistry and physics of fullerenes and carbon nanomaterials. 210–21, 2000.
    41. F. K. Ko, W. B. Han, , O. Zhou. Carbon nanotube reinforced nanocomposites by electrospinning, Proceedings of the American Society for Composites. 16th Technical Conference, 388-397, 2001.
    42. L. Huang, R. P. Apkarian, E. L. Chaikof. High-resolution analysis of engineered type I collagen nanofibers by electron microscopy. Scanning, 23:372-375, 2001.
    43. L. Huang, K. Nagapudi, R. P. Apkarian, E. L. Chaikof. Engineered collagen-PEO nanofibers and fabrics. Journal of biomaterials science, polymer edition, 12:979-993, 2001.
    44. L. Huang, K. Nagapudi, R. A. McMillan, V. P. Conticello, B. Pourdeyhimi, E. L. Chaikof, Production of synthetic elastin-mimetic nano-fibers and its application as biomaterials. Abstracts of papers- American chemical society, 221st PP: U-447-U447, 2001.
    45. J. D. Stitzel, G. L. Bowlin, M. Kevin, E. Gary, D. G. Simpson. Electro-blowing technology for fabrication of fibrous articles and its applications of Hyaluronan. International SAMPE technical conference, 32:205-211, 2000.
    46. K. S. Yun, B. W. Cho, S. M. Jo, W. S. Lee, W. Cho, K.Y Park., H. S. Kim, U. S. Kim, S. K. Ko, S. W. Chun, S. W. Choi. A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method. WO 089023, 2001.
    47. K. S. Yun., B. W. Cho, S. M. Jo, W. S. Lee, W. Cho, K. Y. Park, H. S. Kim, U. S. Kim, S. K. Ko, S. W. Chun, S. W. Choi, A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method. WO 089022, 2001.
    48. D. Smith, D. H. Reneker, W. Kataphinan, S. Dabney. Fibrous mat material for medical dressings. WO 01026610, 2001.
    49. K. J. Senecal, D. Ziegler, M. Auerbach, H. Schreuder-gibson, L. A. Samuelson. Nanofibrous composite membranes of semi-conducting and photoelectric materials. Abstracts of papers– American chemical society, 221st IEC-358, PP: U-622-U623, 2001.
    50. A. Suthar, G. Chase. Augmented Meltblown Filter. Media Fluid/particleseparation journal, 14:58-64, 2002.
    51. H. Dai, J. Gong, H. Kim, D. Lee. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology, 13:674-677, 2002.
    52. D. H. Reneker, W. Kataphinan, A. Theron, E. Zussman, A. L. Yarin. Nanofiber garlands of polycaprolactone by electrospinning, Polymer, 43:6785-6794, 2002.
    53. C. Park, Z. Ounaies, K. A. Watson, K. Pawlowski, S. E. Lowther, J. W. Connell, E. J. Siochi, J. S. Harrison, T. L. Clair. Making functional materials with nanotubes. Materials research society symposium proceedings, 91-96, 2002.
    54. Y. Wang, S. Serrano, J. J. Santiago-Aviles. Conductivity measurement of electrospun PAN-based carbon nanofiber. Journal of materials science letters, 21:1055-1057, 2002.
    55. A. Dubson, E. Bar. Non-woven fibrous web production, WO 0249678, 2002.
    56. M. D. Temple, E. Bashari, J. Lu, W. X. Zhong, C. B. Thompson, N. J. Pinto, S. K. Manohar, R. C. Y. King, A. G. MacDIarmid. Electrostatic transportation of living cells through air, Abstracts of papers, 223rd ACS national meeting, Orland, FL, CHED-325, 2002.
    57. G. M. McKee, T. E. Long, G. L. Wilkes Polym. Prepr. (Am Chem. Soc, Div Polym. Chem.), 44(1):792-793, 2003.
    58. Y. Hong, Z. Yang, Q. Yang, Z. G. Li, C. Wang. Polymer Prepr. 44(1):1101-1108, 2003.
    59. D. Y. Lin, D. C. Martin. Orientation development in electrospun liquid crystalline polymer nanofibers, Abstracts of papers, 226th ACS national meeting, new York, NY, united states, POLY-490, PP: U429-U429, 2003
    60. S. Zhao, X. Wu, L. Wang, Y. Huang, Electrostatically generated fibers of ethyl-cyanoethyl cellulose. Cellulose, 10:405-409, 2003.
    61. M. W. Frey, H. Song. Cellulose fibers formed by electrospinning from solution, Abstarcts of papers, 225th ACS national meeting, New Orleans, LA, USA, , CELL-130, PP: U228-U228, 2003.
    62. M. Frey, Y. Joo, C. Kim, New solvents for cellulose. electrospinning andpreliminary nanofiber spinning results. Polymer, 44:168-169, 2003.
    63. G. E. Wnek, M. E. Carr, D. G. Simpson, G. L. Bowlin. Electrospinning of nanofiber fibrinogen structures. Nano Letters, 3:213-216, 2003.
    64. D. K. Heldt, S. Stachelek, R. Levy, F. K. Ko. Electrospinning of segmented polyurethane urea for use as a tissue engineered scaffold. Abstracts of papers, 226th ACS national meeting, New York, USA, PP: U401-U401, 2003.
    65. H. J. Jin, J. Chen, U. Karageorgiou, G. H. Altman, D. L. Kaplan. Human bone marrow stem cell responses on electrospun Bombyx mori silk fibroin. Materials research society symposium proceedings, 129-133, 2003.
    66. X. Zong, H. Bien, C. Chung, L. Yin, K. Kim, D. Fang, B. Chu, B. S. Hsiao, E. Entcheva. Electrospun non-woven membranes as scaffolds for heart tissue constructs. Abstracts of papers, 226th ACS national meeting, new york, USA, POLY-535, PP:U437-U437, 2003.
    67. J. Kameoka, S. S. Verbridge, H. Q. Liu, D. A. Czaplewski, H. G. Craighead. Fabrication of suspended silica glass nanofibers from polymeric materials using a scanned electrospinning source. Nano Lett. 4:2105-2108, 2004.
    68. D. Li and Y. N. Xia. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett., 4:933-938, 2004.
    69. H. Q. Liu, J. Kameoka, D. A. Czaplewski, H. G. Craighead. Polymeric nanowire chemical sensor, Nano Lett., 4:671-675, 2004.
    70. A. D. Czaplewski, S. S. Verbridge, K. Jun, and H. G. Craighead, Nanomechanical oscillators fabricated using polymeric nanofiber templates. Nano Letters, 4:437-439, 2004.
    71. X. Wang, Y. Kim, C. Drew, B. C. Ku, J. Kumar, A. L. Samuelson. Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett., 4:331-334, 2004.
    72. J. H. Yu, S. V. Fridrikh, G. C. Rutledge. Production of submicrometer diameter fibers by two-fluid electrospinning. Adv. Mater., 16:1562-1565, 2004.
    73. D. Li, O. Gong, T. Jesse, Y. N. Xia. Collecting Electrospun nanofibers with patterned electrodes. Nano Lett., 5:913 -916, 2005.
    74. H. Q. Liu, C. H. Reccius, H. G. Craighead. Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor. Appl. Phys. Lett. 87:253106, 2005.
    75. X. M. Sui, C. L. Shao, Y. C. Liu, White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning. Appl. Phys. Lett., 87:113115, 2005.
    76. J. T. McCann, M. Marquez, Y. N. Xia. Melt coaxial electrospinning: A versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett., 6:2868 -2872, 2006.
    77. D. H. Sun, C. Chang, S. Li, L. W. Lin, Near-Field Electrospinning. Nano Lett., 6:839 -842, 2006.
    78. M. R. Abidian, D. H. Kim, D. C. Martin, Conducting-Polymer nanotubes for controlled drug release. Nano Lett. 18:405-409, 2006.
    79. M. Wang, N. Jing, C. B. Su. Electrospinning of silica nanochannels for single molecule detection. Appl. Phys. Lett., 88: 033106, 2006.
    80. H. Wu, D. D. Lin, W. Pan, Fabrication, assembly, and electrical characterization of CuO nanofibers. Appl. Phy. Lett., 89:133125, 2006.
    81. B. Sundaray, V. Subramanian, T. S. Natarajan. Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl. Phys. Lett., 88:143114, 2006.
    82. Z. Y. Liu, D. D. Sun, P. Guo, J. O. Leckie, An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett., 7:1081-1085, 2007.
    83. D. D. Lin, H. Wu, W. Pan. Photoswitches and memories Assembled by electrospinning aluminum-doped Zinc oxide single nanowires. Adv. Mater., 19:3968–3972, 2007.
    84. X. Y. Sun, R. Shankar, H. B?rner, T. K. Ghosh, R. J. Spontak. Field-driven biofunctionalization of polymer fiber surfaces during electrospinning. Adv. Mater., 19:87–91, 2007.
    85. L. Yao, T. W. Haas, A. Guiseppi-Elie, G. L. Bowlin, D. G. Simpson, G. E. Wnek.Electrospinning and stabilization of fully hydrolyzed Poly(Vinyl Alcohol) fibers. Chem. Mater., 15:1860-1864, 2003.
    86. J. A. Matthews, G. E. Wnek, D. G. Simpson, G. L. Bowlin, Electrospinning of collagen nanofibers. Biomacromolecules, 3:232-238, 2002.
    87. P. Katta, M. Alessandro, R. D. Ramsier, G. C. Chase. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett., 4:2215-2218, 2004.
    88. W. E. Teo, M. Kotaki, X. M. Mo, S. Ramakrishna, Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology, 16:918-924, 2005.
    89. B. Sundaray, V. Subramanian, T. S. Natarajan, R. Z. Xiang, C. C. Chang, W. S. Fann, Electrospinning of continuous aligned polymer fibers, Appl. Phys. Lett., 84:1222-1224, 2004.
    90. E. Smit, U. Buttner, R.D. Sanderson. Continuous yarns from electrospun fibers. Polymer, 46:2419-2423, 2005.
    91. H. Pan, L. M. Li, L. Hu, X. J. Cui. Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer, 47:4901–4904, 2006.
    92. A. Theron, E. Zussman, A. Y. Yarin. Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology, 12:384-390, 2001.
    93. C. Y. Xu, R. Inaic, M. Kotakib, S. Ramakrishna. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 25:877–886, 2004.
    94. J. M. Deitzel, J. D. Kleinmeyer, J. K. N. Hirvonen, C. B. Tan. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer, 42:8163-8170, 2001.
    95. D. Li, Y. L. Wang, Y. N. Xia, Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater.,16,361-366, 2004.
    96. W. E. Teo, S. Ramakrishna. Electrospun fiber bundle made of aligned nanofibers over two fixed points, Nanotechnology, 16:1878-1884, 2005.
    97. R. Dersch, T. Q. Liu, A. K. Schaper, A. Greiner, J. H. Wendorff. ElectrospunNanofibers: Internal Structure and Intrinsic Orientation. J. Polym. Sci.Part. A, 41:545-553, 2003.
    98. P. D. Dalton, D. Klee, M. Moller. Electrospinning with dual collection rings. Polymer, 46:611-614, 2005.
    99. D. Y. Yang, B. Lu, Y. Zhao, X. Y. Jiang. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv. Mater., 19:702–3706, 2007.
    100. W. P. Zhou, Z. F. Li, D. Zhang, Y. P. Liu, F. Wei, G. H. Luo. Gas flow-assisted alignment of super long electrospun nanofibers. Journal of Nanoscience and Nanotechnology, 7:2667-2673, 2007.
    101. D. Li, Y. N. Xia. Electrospinning of nanofibers: Reinventing the wheel. Adv. Mater., 16:1151-1170, 2004.
    102. W. E. Teo, and S. Ramakrishna. A Review on electrospinning design and nanofibre assemblies. Nanotechnology, 17:R89-R106, 2006.
    103. A. Greiner and J. H. Wendorff. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed., 46:5670-5703, 2007.
    104. C. H. Lee, H. J. Shin, I. H. Cho, Y. M. Kang, I. A. Kim., K. D. Park, J. W. Shin. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials , 26:1261-1270, 2005.
    105. S. C. Baker, N. Atkin, P. A. Gunning, N. Granville, K. Wilson, D. Wilson, J.Southgate. Characterization of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials, 27:3136-3146, 2006.
    106. Y. Dzenis. Spinning continuous fibers for nanotechnology. Science, 304:1917-1919, 2004.
    107. O. O. Dosunmu, G. C. Chase, W. Kataphinan, D. H. Reneker. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology, 17:1123-27, 2006.
    108. S. A. Theron, A. Yarin, E, Zussman, E, Kroll. Multiple jets in electrospinning: experiment and modeling. Polymer, 46:2889-99, 2005.
    109. W. Tomaszewski, M. Szadkowski. Investigation of electrospinning with the use of a multi-jet electrospinning head. Fibers & textiles in eastern Europe 13:22-26,2005.
    110. B. Ding, E. Kimura, T. Sato, S. Fujita, S. Shiratori. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer, 45:1895-1902, 2004.
    111. Y. Srivastava, M. Marquez, T. Thorsen. Multijet electrospinning of conducting nanofibers from microfluidic manifolds. J. App. Poly. Sci., 106:3171–78, 2007.
    112. V. Bajpai, L. Dai, T. Ohashi. Large-scale synthesis of perpendicularly aligned helical carbon nanotubes. J. Am. Chem. Soc., 126:5070-5071, 2004.
    113. H. F. Zhang, C.M. Wang, E.C. Buck, L.S. Wang. Synthesis, Characterization, and manipulation of helical SiO2 nanosprings. Nano Lett, 3:577-580, 2003
    114. X. Y. Kong, Z. L. Wang. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett, 3:1625-1631, 2003.
    115. R. Kessick, G. Tepper. Microscale polymeric helical structures produced by electrospinning. Appl Phys Lett, 84:4807-4809. 2004.
    116. M. K. Shin, S. I. Kim, S.J. Kim. Controlled assembly of polymer nanofibers: From helical springs to fully extended. Appl Phys Lett, 88:223109-1-3. 2006
    117. Y. Xin, Z.H. Huang, E.Y. Yan, W. Zhang, Q. Zhao. Controlling poly(p-phenylene vinylene)/poly(vinyl pyrrolidone) composite nanofibers in different morphologies by electrospinning. Appl Phys Lett, 89:053101-1-3, 2006.
    118. T. Lin, H. X. Wang, X. G. Wang. Self-Crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. Adv. Mater., 17:2699-2703, 2005.
    119. D. H. Reneker, T. Han. Electrical bending and mechanical buckling instability in electrospinning jets. Mater Res Soc Symp Proc., 948:0948-B07-01. 2007.
    120. S. F. Fennessey, R. J. Farris. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yams. Polymer, 45:4217-4225, 2004
    121. D. Li, Y.L. Wang, Y. N. Xia. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett., 3:1167-1171, 2003.
    122. Q. B. Yang, Z.Y. Li, Y.L. Hong, Y. Y. Zhao, S. L. Qiu, C. Wang. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J Polym Sci Part B: Polym. Phys, 42:3721-3726, 2004.
    123. N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, F. A. Miranda. Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl. Phys. Lett., 83: 4244-46, 2003.
    124. H. W. Zhu, X. S. Li, L. J. Ci, C. L. Xu, D. H. Wu, Z. Q. Mao. Hydrogen storage in heat-treated carbon nanofibers prepared by the vertical floating catalyst method. Mater Chem Phys., 78:670–5, 2003.
    125. H. Cui, S. V. Kalinin, X. Yang, D. H. Lowndes. Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging. Nano Lett., 4:2157–61, 2004.
    126. M. Endo, Y. A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi. Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers. Nano Lett., 3:723–6, 2003.
    127. A. Yokoyama, Y. Sato, Y. Nodasaka, S. Yamamoto, T. Kawasaki, Shindoh M. Biological behavior of hat-stacked carbon nanofibers in the subcutaneous tissue in rats. Nano Lett., 5:157–61, 2005.
    128. E. Hammel, X. Tang, M. Trampert, T. Schmitt, K, Mauthner, A. Eder. Carbon nanofibers for composite applications. Carbon, 42:1153–8, 2004.
    129. H. J. Li, J. J. Li, C. Z. Gu. Local field emission from individual vertical carbon nanofibers grown on tungsten filament. Carbon, 43:849–53, 2005.
    130. C. Singh, T. Quested, C. B. Boothroyd, P. Thomas, I. A. Kinloch, A. I. Abou-Kandil. Synthesis and characterization of carbon nanofibers produced by the floating catalyst method. J Phys Chem B, 106:10915–22, 2002.
    131. E. Fitzer, L. M. Manocha, , Carbon reinforcement and carbon/carbon composites. Springer-Verlag, New York, Ch. 1. 1998.
    132. M. M. Tang, R. Bacon. Carbonization of cellulose fibers-I. Low temperature pyrolysis. Carbon, 2:211-214, 1964.
    133. C. Kim, Y. J. Cho, W. Y. Yun, B. T. N. Ngoc, K. S. Yang, D. R. Chang.Fabrication and structural characterization of ultra-fine carbon fibers by electrospinning of polymer blends. Solid State Commun., 142:20–23, 2007.
    134. K. S. Yang, D. D. Edie, D. Y .Lim, Y. M. Kim, Y. O. Choi. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution. Carbon, 41:2039–46, 2003.
    135. D. H. Reneker, I. Chun. Nanometre diameter fibers of polymer produced by electrospinning. Nanotechnology, 7:216-23, 1996.
    136. J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42:261-72, 2001.
    137. Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp. sci. and technol., 63:2223-53, 2003.
    138. I. S. Chun, D. H. Reneker, H. Fong, X. Fang, J. Deitzel, N. B. Tan. Carbon nanofibers from polyacrylonitrile and mesophase pitch. J Adv Mater, 31:36–41, 1999.
    139. A. G. MacDiarmid, W. E. Jones, I. D. Norris, J. Gao, A. T. Johnson, N. J Pinto. Electrostatically-generated nanofibers of electronic polymers. Synth. Met, 119:27-30, 2001.
    140. C. Kim, K. S. Yang. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett., 83:1216-8, 2003.
    141. C. Kim, Y. J. Kim, Y. A. Kim. Fabrication and structural characterization of electro-spun polybenzimidazol-derived carbon nanofiber by graphitization. Solid State Commun., 132:567–71, 2004.
    142. C. Kim, S. H. Park, W. J. Lee, K. S. Yang. Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning. Electrochim Acta, 50:877–81, 2004.
    143. G. S. Chung, S. M. Jo, B. C. Kim. Properties of carbon nanofibers prepared from electrospun polyimide. J Appl Polym Sci., 97:165–70, 2005.
    144. J. Sutasinpromprae, S. Jitjaicham, M. Nithitanakul, C. Meechaisue, P. Supaphol. Preparation and characterization of ultra-fine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym. Int., 55:825-33, 2006.
    145. S. L. Rutledge, H. C. Shaw, J. B. Benavides, L. L. Yowell, Q. Chen, B. W. Jacobs. Self assembly and correlated properties of electrospun carbon nanofibers. Diamond Relat. Mater., 15:1070-4, 2006.
    146. P. H. Wang, Z. R.Yue, R. Y. Li, J. J.Liu. Aspects on interaction between multistage stabilization of polyacrylonitrile precursor and mechanical-properties of carbon-fibers. Appl. Polym. Sci. 56:289, 1995.
    147. L. H. Peebles. Oxidation of polyacrylonitrile fibers. J. Polym. Sci. Part A-1, 5:2637, 1966.
    148. W. X. Zhang, Y. Z. Wang, C. F. Sun. Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. J Polym Res, 14:467-474, 2007.
    149. E. Zussman, X. Chen, W. Ding, L. Calabri, D. A. Dikin, J. P. Quintana. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon, 43:2175-85, 2005.
    150. V. S. Babu, M. S. Seehra. Modeling of disorder and X-ray diffrection in coal-based graphitic carbons. Carbon, 34:1259-65, 1996.
    151. D. S. Knight, W. B. White. Characterization of diamond films by Raman spectroscopy. J, Mater Res., 4:385-93, 1989.
    152. A. Winkleman, B. D. Gates, L. S. McCarty, G. M. Whitesides. Directed self-assembly of spherical particles on patterned electrodes by an applied electric field. Adv. Mater., 17:1507-1511, 2005.
    153. A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, B.A. Grzybowski. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science, 312, 420-424,2006.
    154. M. Geissler, Y. N. Xia. Patterning: Principles and Some New Developments. Adv. Mater., 16, 1249-1269, 2004.
    155. J. T. Russell, Y. Lin, A. Boker, L. Su, P Carl, H. Zettl, J. He, K. Sill, R. Tangirala, T. Emrick, K. Littrell, P. Thiyagarajan, D. Cookson, A. Fery, Q. Wang, T. P. Russell. Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces. Angew. Chem. Int. Ed., 44:2420–2426, 2005.
    156. A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Jr. Bruchez, P. G. Schultz. Organization of 'nanocrystal molecules' using DNA. Nature, 382:609-611, 1996.
    157. N. Bowden, F. Arias, T. Deng, G. M. Whitesides. Langmuir, 17:1757-1765, 2001.
    158. H. Liu, S. Li, J. Zhai, H. Li, Q. Zheng, L. Jiang, D. Zhu. Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angew. Chem. Int. Ed., 43:1146–1149, 2004.
    159. C. P. Collier, T. Vossmeyer, J. R. Heath. Nanocrystal superlattices. Annu. Rev. Phys. Chem., 49:371-404, 1998.
    160. M. P. Pileni. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B, 105:3358-3371, 2001.
    161. B. A. Grzybowski, A. Winkleman, J. A. Wiles, Y. Brumer, G. M. Whitesides. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater., 2:241-245, 2003.
    162. M. Trau, D. A. Saville, I. A. Aksay. Field-induced layering of colloidal crystals. Science, 272:706-709, 1996.
    163. S. R. Yeh , M. Seul, B. I. Shraiman. Assembly of ordered colloidal aggregates by electric-field-induced fluid flow. Nature, 386:57-59, 1997.
    164. Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer, 42:9955-9967, 2001.
    165. J. Rafique, J. Yu, J. L. Yu, G. Fang, K. W. Wong, Z. Zheng, C. H Ong, W. M. Lau. Appl. Phys. Lett., 91:063126-1-063126-3, 2007.
    166. S. Thandavamoorthy, N. Gopinath, S.S. Ramkumar. Self-assembled honeycomb polyurethane nanofibers. J. appl. Polym. Sci., 101:3121-3124, 2006.
    167. S. A. Theron, E. Zussman, A. L. Yarin. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45:2017-2030, 2004.
    168. E. K. Veli, K. P. Prabir, Y. K. Kim, C. U. Samuel, B. W. Steven. Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers. Polymer, 46:7191-7200, 2005.
    169. H. C. Luiz, C. George, J. Michael. Evidence for molecular orientation and residual charge in the electrospinning of poly(butylene terephthalate) nanofibers. Macromolecules, 40:1693-1697, 2007.
    170. W. K. Son, J. H. Youk, T. S. Lee, W. H. Park. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 45:2959-2966, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700