低浓度CO和甲苯催化燃烧消除催化剂制备及反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油化工企业的一些催化反应过程的尾气排放和机动车的尾气排放已引起了一系列的环境问题,对人类的健康造成了极大的危害,其中,CO和可挥发性有机废气(VOCs)是污染物之一。发达国家都制定了严格的排放标准来控制CO和VOCs的排放。催化燃烧技术对于改善燃烧过程,降低反应温度,抑制有毒有害物质的形成等方面有着明显的优势,成为废气处理的重要手段。介孔材料SBA-15具有较大的比表面积、规则的孔道结构,有望成为催化燃烧高效催化剂的新型载体。与传统的颗粒状催化剂相比,整体式催化剂具有床层压降低、反应物径向分布均匀和传递特性好等特点,对于具有较大空速和强吸热、放热的反应具有很好的应用前景。
     本文以低浓度CO和甲苯催化消除为研究对象,制备了多个系列的新型催化剂,研究了催化剂的结构和性能。对于CO催化氧化反应,以Cu、Ce为活性组分,SiO2和SBA-15为载体制备了CuxCe1-xO2-x/SiO2和CuxCe1-xO2-x/SBA-15负载型催化剂;同时以CuxCe1-xO2-x/SBA-15为活性浆料,FeCrAl金属薄片和堇青石蜂窝陶瓷为基体,制备了CuxCe1-xO2-x/SBA-15/FeCrAl和CuxCe1-xO2-x/SBA-15/堇青石新型整体式催化剂,评价了催化剂的性能,测定了催化剂的反应活化能。对于甲苯催化燃烧消除,制备了CuxCo1-x/SBA-15负载型催化剂和CuxCo1-x/Al2O3/FeCrAl、CuxCo1-x/Al2O3/堇青石新型整体式催化剂,评价了催化剂的性能。并且利用XRD、N2-吸脱附、HRTEM、XPS、SEM和H2-TPR等表征手段,对所有催化剂的结构进行了表征,深入研究了催化剂的结构和性能的关系。主要研究结果如下:
     在CuxCe1-xO2-x/SiO2系列催化剂中,25%Cu0.5Ce0.501.5/SiO2催化剂具有最好的CO催化氧化活性,当空速为34,000h-1时,在169℃时CO可以完全氧化;对于Cu、Ce摩尔比为1:1的催化剂,当Cu0.5Ce0.5O1.5含量较低时,催化剂的物相主要是CuO-CeO2固溶体,含量比较大时还出现了CuO物相;对于不同Cu、Ce摩尔比的催化剂,Cu摩尔含量较高时主要是CuO物相,Cu摩尔含量较低时主要是CuO-CeO2固溶体和CeO2物相。
     在CuxCe1-xO2-x/SBA-15系列催化剂中,30%Cu0.5Ce0.5O1.5/SBA-15催化剂活性最好,在48,000h-1空速下,在156℃时CO可以实现完全氧化,其活化能为70.6 kJ/mol;对于Cu、Ce摩尔比为1:1的催化剂,当Cuo.5Ce0.5O1.5含量≤10%时,催化剂的物相主要是CuO-CeO2固溶体,含量高时还出现了CuO物相;对于不同Cu、Ce摩尔比的催化剂,Cu摩尔含量比较高时,主要是CuO物相,Cu摩尔含量较低时主要是CuO-CeO2固溶体和CeO2物相。
     在CuxCe1-xO2-x/SBA-15/FeCrAl整体式催化剂中,50%Cu0.5Ce0.501.5/SBA-15/FeCrAl催化剂表现出最好的活性,在空速为36,000ml/(g·h)时,在142℃时CO可以完全消除;当Cu、Ce摩尔比例为1:1,Cu0.5Ce0.5O1.5含量≥40%时,整体式催化剂上可以测到CuO物相;50%Cu0.7Ce0.3O1.3/SBA-15/FeCrAl催化剂具有很好的稳定性,在经过1306h的稳定性测试后,仍然表现出很好的CO催化氧化活性。
     在CuxCe1-xO2-x/SBA-15/堇青石整体式催化剂中,50%Cu0.5Ce0.5O1.5/SBA-15/堇青石催化剂具有最好的催化活性,当气体空速为33,000ml/(g·h)时,CO可以在120℃完全转化;当Cu、Ce摩尔比例为1:1,Cu0.5Ce0.5O1.5含量≥40%时,整体式催化剂上可以测到CuO物相。
     在CuxCo1-x/SBA-15系列催化剂中,40%Cu0.25Co0.75/SBA-15催化剂活性最好,甲苯在285℃可完全转化;结构研究表明,催化剂仍然具有SBA-15的介孔结构,但其比表面积、孔容和孔径相对于SBA-15都有所下降;催化剂中Cu含量较低时存在Cu-Co-O固溶体,Cu含量较高时会形成CuO物相。
     在CuxCo1-x/Al2O3/FeCrAl整体式催化剂中,Cu0.5Co0.5/A12O3/FeCrAl具有最好的活性,在56,380ml/g·h空速下,可以在357℃完全燃烧消除甲苯。XPS结果表明,整体式催化剂表面同时存在着Co2+和Co3+,而Cu主要以Cu2+物种存在;Cu的含量可以改变Co的氧化还原性,对催化剂的活性有一定的影响。
     在CuxCo1-x/Al2O3/堇青石整体式催化剂中,活性最好的Cu0.5Co0.5/Al2O3/堇青石催化剂在56,380ml/g·h空速下,可以在315℃使甲苯完全燃烧。当x=0-0.5时,催化剂上只能测到堇青石的特征峰;在x>0.5时,催化剂上出现了CuO的特征峰。
Lots of exhausts coming from the petrol-chemical plants and automobiles have induced many troublesome environmental problems. CO and VOCs are the main exhausts. The developed countries have made many strict effluent standards to control the discharge of CO and VOCs. Catalytic combustion has been recognized as one of the most important technologies to destroy CO and VOCs at low temperature. This method has many advantages such as low temperature required for combustion ignition, high energy efficiency, and avoiding the formation of toxic byproducts. The mesoporous silica material SBA-15 may be a promising new type of porous support for catalytic combustion, due to its high surface area, highly ordered pore structure and uniform pore size distribution. Comparing to the conventional catalyst, the monolithic catalyst has distinct advantages, such as low-pressure drop, favorable heat and mass transfer properties and minimum axial dispersion. Thus for the reactions with high space velocity and heat exchange, the monolithic catalysts have a promising application.
     In this paper, A series of new type catalysts were prepared for the oxidation of low concentration CO and toluene. The structure and the catalytic activity of the catalysts were investigated. The CuxCe1-xO2-x/SiO2, CuxCe1-x/SBA-15 supported catalysts and CuxCe1-xO2-x/SBA-15/FeCrAl, CuxCe1-xO2-x/SBA-15/cordierite monolithic catalysts were prepared. Their catalytic performances for the catalytic combustion of CO were tested and the activation energies were calculated. CuxCo1-x/SBA-15 supported catalysts and CuxCo1-x/Al2O3/FeCrAl、CuxCo1-x/Al2O3/cordierite monolithic catalysts were prepared and their catalytic performances for the catalytic combustion of toluene were tested. The structure of the catalysts was characterized by XRD, N2 adsorption-desorption, HRTEM, XPS, SEM and H2-TPR. The relationship between the catalytic performance and the structure of the catalysts was studied. The main results are listed as follows:
     For the CuxCe1-xO2-x/SiO2 series catalysts,25%Cu0.5Ceo.5O1.5/SiO2 catalyst showed the best activity and CO could be totally oxidized at 169℃when GHSV=34,000h-1. For the catalysts with the same Cu/Ce molar ratios, the main phase was CuO-CeO2 solid solution when the content of Cuo.5Ceo.501.5 was low, while the CuO phase could be found at higher Cuo.5Ceo.5O1.5 content. For the catalysts with different Cu/Ce molar ratios, CuO was the main phase when the content of Cu is high, while the main phases were CuO-CeO2 solid solution and CeO2 when the content of Cu is low.
     For the CuxCe1-xO2-x/SBA-15 catalysts,30%Cuo.5Ceo.5O1.5/SBA-15 catalyst with the lowest activation energy 70.6 kJ/mol showed the best activity and CO could be totally oxidized at 156℃when GHSV=48,000h-1. For the catalysts with the same Cu/Ce molar ratios, the main phase was CuO-CeO2 solid solution when the content of Cu0.5Ce0.5O1.5 was less than 10%, while the CuO phase could be found at higher Cu0.5Ce0.5O1.5 content. For the catalysts with different Cu/Ce molar ratios, CuO was the main phase when the content of Cu is high, while the main phases were CuO-CeO2 solid solution and CeO2 when the content of Cu is low.
     For the CuxCe1-xO2-x/SBA-15/FeCrAl monolithic catalysts, 50%Cu0.5Ce0.5O1.5/SBA-15/FeCrAl catalyst showed the best activity and CO could be totally oxidized at 142℃when GHSV=36,000ml/g·h. For the catalysts with the same Cu/Ce molar ratios, the CuO phase only could be found when the content of Cu0.5Ce0.5O1.5 was more than 40%. The 50%Cu0.7Ce0.301.3/SBA-15/FeCrAl catalyst showed an excellent stabile performance, the activity remained the same 97% CO conversion during the 1306 h of stability reaction,
     For the CuxCe1-xO2-x/SBA-15/cordierite series catalysts, 50%Cu0.5Ce0.501.5/SBA-15/cordierite catalyst showed the best activity and CO could be totally oxidized at 120℃when GHSV=33,00Oml/g·h. For the catalysts with the same Cu/Ce molar ratios, the CuO phase only could be found when the content of Cu0.5Ce0.5O1.5 was more than 40%.
     For the CuxCo1-x/SBA-15 supported catalysts,40%Cu0.25Co0.75/SBA-15 catalyst showed the highest catalytic activity. Toluene can be completely oxidized at 285℃with a GHSV of 34,000 ml/g·h. The loading of Cu, Co affects the surface area, pore volume and average pore diameter of SBA-15, but the mesoporous structure was maintained. The results indicated that Cu-Co-O compound was observed when the Cu content was low. The peaks of CuO were observed when the Cu content was high.
     For the CuxCo1-x/Al2O3/FeCrAl series catalysts, Cuo.5Coo.5/Al203/FeCrAl catalyst showed the best activity and toluene could be totally oxidized at 357℃when GHSV=56,380ml/g-h. The XPS results showed that both Co2+ and Co3+existed in the obtained monolithic catalysts, and Cu existed mainly as Cu2+species. When x<0.5, the introduction of copper oxide improved the reducibility of the cobalt oxide and enhanced the catalytic activity of the catalysts.
     For the CuxCo1-x/Al2O3/cordierite series catalysts, Cu0.5Co0.5/Al203/cordierite catalyst showed the best activity and toluene could be totally oxidized at 315℃when GHSV=56,380ml/g·h. When x was more than 0.5, the CuO phase could be found.
引文
[1]Blasin-Aube V, Belkouch J, Monceaux L. General study of catalytic oxidation of various VOCs over La0.8Sr0.2Mn03+x perovskite catalyst-influence of mixture[J]. Appl. Catal. B:Environ., 2003,43:175-186
    [2]Wyrwalski F, Lamonier J F, Siffert S, et al. Additional effects of cobalt precursor and zirconia support modifications for the design of efficient VOC oxidation catalysts[J]. Appl. Catal. B: Environ.,2007,70:393-399
    [3]何毅,王华,李光明,等.有机废气催化燃烧技术[J].江苏环境科技,2004,17(1):35-38
    [4]Fernandez-Garcia M, Martinez-Arias A, Salamanca L N, et al. Influence of Ceria on Pd activity for the CO+O2 reaction[J]. J. Catal.,1999,187:474-485
    [5]Monteiro R S, Dieguez L C, Schmal M. The role of Pd precursors in the oxidation of carbon monoxide over Pd/Al2O3 and Pd/CeO2/Al2O3 catalysts[J]. Catal. Taday,2001,65:77-89
    [6]Bourane A, Bianchi D. Oxidation of CO on a Pt/Al2O3 catalyst:from the surface elementary steps to light-off tests[J]. J, Catal.,2001,202:34-44
    [7]Liu H, Kozlov A I, Kozlova A P, et al. Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated titanium hydroxide[J]. J. Catal.,1999,185:252-264
    [8]Qian K, Huang W, Fang J. Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts:Some mechanism insights[J]. J. Catal.,2008,255:269-278
    [9]Hodge N A, Kiely C J, Whyman R, et al. Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation[J]. Catal. Taday,2002,72:133-144
    [10]Laberty C, Marquez-Alvarez C, Drouet C, et al. CO oxidation over nonstoichiometric nickel manganite spinels[J]. J. Catal.,2001,198:266-276
    [11]王永钊,赵永祥,刘滇生.低温CO催化氧化催化剂研究进展[J].环境污染治理技术与设备,2003,4(8):8-12
    [12]Jernigan G G, Somorjai G A. Carbon monoxide oxidation over three different oxidation states of copper:metallic copper, copper (Ⅰ) oxide, and copper (Ⅱ) oxide-a surface science and kinetic study[J]. J. Catal,1994,147(2):567-577
    [13]Jansson J. Low temperature CO oxidation over Co3O4/Al2O3[J]. J. Catal,2000,194:55-60
    [14]Bunluesin T, Putna E S, Gorte R J. A comparison of CO oxidation on ceria-supported Pt, Pd, and Rh[J]. Catal. Lett.,1996,41:1-5
    [15]Dow W P, Huang T J. Yttria-stabilized zirconia supported copper oxide catalyst Ⅱ. Effect of oxygen vacancy of support on catalytic activity for CO oxidation[J]. J. Catal,1996,160: 171-182
    [16]Fernandez-Garcia M, Martinez-Arias A, Salamanca L N, et al. Influence of ceria on Pd activity for the CO+O2 reaction[J]. J. Catal.,1999,187:474-485
    [17]吴碧君,刘晓勤.挥发性有机物污染控制技术研究进展[J].电力环境保护,2005,21(4):39-42
    [18]林西平.石油化工催化概论[M].北京:石油工业出版社,2008,281-282
    [19]Oh G Y, Ju Y W, Jung H R, et al. Preparation of the novel manganese-embedded PAN-based activated carbon nanofibers by electrospinning and their toluene adsorption[J]. J. Anal. Appl. Pyrolysis,2008,81:211-217
    [20]Engleman V S. Updates on choices of appropriate technology for control of VOC emissions[J].
    Metal Finishing,2000,98:433-445
    [21]王红娟,李忠.半导体多相光催化氧化技术[J].现代化工,2002,22(2):56-60.
    [22]Chang J. Recent development of plasma pollution control technology:a critical review[J]. Sci. Technol. Adv. Mater.,2001,2:571-576.
    [23]Yan K, Heesch E J M, Pemen A J M, et al. Elements of pulsed corona induced non-thermal plasmas for pollution control and sustainable development[J]. J. Electrostatics,2001,51-52: 218-224.
    [24]林云琴,林和健,王德汉.低温等离子体技术及其在VOCs处理中的应用[J].城市环境与城市生态,2005,18(5):26-29
    [25]Pires J, Carvalho A, Carvalho M B. Adsorption of volatile organic compounds in Y zeolites and pillared clays[J]. Microporous Mesoporous Mater.,2001,43(3):277-287
    [26]Yeom C K, Lee S H, Song H Y, et al. A characterization of concentration polarization in a boundary layer in the permeation of VOCs/N2 mixtures through PDMS membrane[J]. J. Membr. Sci.,2002,205:155-174
    [27]张敬超,张玉军,谭砂砾,等.CO在纳米CeO2负载的Pd-Cu催化剂上的低温催化氧化[J].化学通报,2005,(1):66-69
    [28]毕玉水,刘建福,吕功煊.Pd/NaZSM-5负载型催化剂上CO完全氧化研究[J].化学学报,2002,60(9):1624-1629
    [29]Knell A, Barnickel P, Baiker A, et al. CO oxidation over Au/ZrO2 catalysts:Activity, deactivation behavior, and reaction mechanism[J]. J. Catal.,1992,137(2):306-321
    [30]Schwank J. Catalytic gold[J]. Gold Bull,1983,16(4):103-110
    [31]Haruta M, Tsubota S, Kobayashi T, et al. Low-Temperature Oxidation of CO over Gold Supported on TiO2,α-Fe2O3, and Co3O4[J]. J. Catal.,1993,144(1):175-192
    [32]Chen Y, Yeh C. Deposition of highly dispersed gold on alumina support[J]. J. Catal.,2001,200: 59-68
    [33]齐世学,邹旭华,徐秀峰,等.制备条件对Au/TiO2催化CO氧化性能的影响[J].分子催化,2002,16(2):139-143
    [34]Gasior M, Grzybowska B, Samson K, et al. Oxidation of CO and C3 hydrocarbons on gold dispersed on oxide supports[J]. Catal. Today,2004,91-92:131-135
    [35]Solsona B E, Garcia T, Jones C, et al. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide[J]. Appl. Catal. A:Gen.,2006,312:67-76
    [36]Moreau F, Bond G C. Influence of the surface area of the support on the activity of gold catalysts for CO oxidation[J]. Catal. Today,2007,122:215-221
    [37]王桂英,张文祥,蒋大振,等.常温常湿条件下Au/MeOx催化剂上CO氧化性能[J].化学学报,2000,58(12):1557-1562
    [38]Gluhoi A C, Nieuwenhuys B E. Structural and chemical promoter effects of alkali (earth) and cerium oxides in CO oxidation on supported gold[J]. Catal. Today,2007,122:226-232
    [39]Margifalvi J L, Borbath I, Hegedus M, et al. Low temperature oxidation of CO over tin-modified Pt/SiO2 catalysts[J]. Catal. Today,2002,73(3-4):343-353
    [40]Okumura M, Masuyama N, Konishi E, et al. CO oxidation below room temperature over Ir/TiO2 catalyst prepared by deposition precipitation method[J]. J. Catal.,2002,208:485-489
    [41]Cheng T, Fang Z, Hu Q, et al. Low-temperature CO oxidation over CuO/Fe2O3 catalysts [J]. Catal. Commun.,2007,8:1167-1171
    [42]Zhang-Steenwinkel Y, Beckers J, Bliek A. Surface properties and catalytic performance in CO
    oxidation of cerium substituted lanthanum-manganese oxides[J]. Appl. Catal. A:Gen.,2002, 235:79-92
    [43]张继军,刘英骏,李能,等.CO催化氧化中氧化铜对CeO2的调变作用[J].物理化学学报,1999,15(1):15-21
    [44]Craciun R, Nentwick B, Hadjiivanov K. Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation[J]. Appl. Catal. A:Gen.,2003,243:67-79
    [45]Yang X, Luo L, Zhong H. Structure of La2-xSr1-xCoO4±λ(x=0.0-1.0) and their catalytic properties in the oxidation of CO and C3H8[J]. Appl. Catal. A:Gen.,2004,272:299-303
    [46]Shetkar R G, Salker A V. Solid state and catalytic CO oxidation studies on Zn1-xNixMnO3 system[J]. Mater. Chem. Phys.,2008,108:435-439
    [47]Hasegawa Y, Sotowa K I, Kusakabe K. Permeation behavior during the catalytic oxidation of CO in a Pt-loaded Y-type zeolite membrane[J]. Chem. Eng. Sci.,2003,58:2797-2803
    [48]Hasegawa Y, Kusakabe K, Morooka S. Selective oxidation of carbon monoxide in hydrogen-rich mixtures by permeation through a platinum-loaded Y-type zeolite membrane[J]. J. Membr. Sci., 2001,190:1-8
    [49]Bi Y, Lu G. Catalytic CO oxidation over palladium supported NaZSM-5 catalysts[J]. Appl. Catal. B:Environ.,2003,41:279-286
    [50]Gac W, Derylo-Marczewska A, Pasieczna-Patkowska S, et al. The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts[J]. J. Mol. Catal. A:Chem.,2007,268:15-23
    [51]Petrov L, Soria J, Dimitrov L, et al. Cu exchanged microporous titanium silicalite (TS-1) coated on polycrystalline mullite fibres as catalyst for the CO and NO conversion[J]. Appl. Catal. B: Environ.,1996,8:9-31
    [52]Liu Z M, Wang J L, Zhong, J B, et al. Catalytic combustion of toluene over platinum supported on Ce-Zr-O solid solution modified by Y and Mn[J]. J. Hazard. Mater.,2007,149:742-746
    [53]Minico S, Scire S, Crisafulli C, et al. Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts[J]. Appl. Catal. B:Environ.,2000,28:245-251
    [54]Minico S, Scire S, Crisafulli C, et al. Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide[J]. Appl. Catal. B:Environ.,2001,34:277-285
    [55]Scire S, Minico S, Crisafulli C, et al. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts[J]. Appl. Catal. B:Environ.,2003,40:43-49
    [56]Maldonado-Hodar F J, Moreno-Castilla C, Perez-Cadenas A F. Catalytic combustion of toluene on platinum-containing monolithic carbon aerogels[J]. Appl. Catal. B:Environ.,2004,54: 217-224
    [57]Paulis M, Peyrard H, Montes M. Influence of chlorine on the activity and stability of Pt/Al2O3 catalysts in the complete oxidation of toluene[J]. J. Catal.,2001,199:30-40
    [58]Mitsui T, Tsutsui K, Matsui T, et al. Support effect on complete oxidation of volatile organic compounds over Ru catalysts[J]. Appl. Catal. B:Environ.,2008,81:56-63
    [59]Kim K J, Ahn H G. Complete oxidation of toluene over bimetallic Pt-Au catalysts supported on ZnO/Al2O3[J]. Appl. Catal. B:Environ.,2009,91:308-318
    [60]Tidahy H L, Siffert S, Wyrwalski F, et al. Catalytic activity of copper and palladium based catalysts for toluene total oxidation[J]. Catal. Today,2007,119:317-320
    [61]Kim K J, Boo S I, Ahn H G. Preparation and characterization of the bimetallic
    Pt-Au/ZnO/Al2O3 catalysts:Influence of Pt-Au molar ratio on the catalytic activity for toluene oxidation[J]. J. Ind. Eng. Chem.,2009,15:92-97
    [62]Masui T, Imadzu H, Matsuyama N, et al. Total oxidation of toluene on Pt/CeO2-ZrO2-Bi2O3/y-Al2O3 catalysts prepared in the presence of polyvinyl pyrrolidone[J]. J. Hazard. Mater.,2010,176:1106-1109
    [63]Alifanti M, Florea M, Parvulescu V I. Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC[J]. Appl. Catal. B:Environ.,2007,70:400-405
    [64]Yu D, Liu Y, Wu Z. Low-temperature catalytic oxidation of toluene over mesoporous MnOx-CeO2/TiO2 prepared by sol-gel method[J]. Catal. Commun.,2010,11:788-791
    [65]Palacio L A, Velasquez J, Echavarria A, et al. Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts[J]. J. Hazard. Mater.,2010,177:407-413
    [66]Choudhary V R, Deshmukh G M, Pataskar S G. Low temperature complete combustion of dilute toluene and methyl ethyl ketone over transition metal-doped ZrO2 (cubic) catalysts[J]. Catal. Commun.,2004,5:115-119
    [67]Dula R, Janik R, Machej T, et al. Mn-containing catalytic materials for the total combustion of toluene:the role of Mn localisation in the structure of LDH precursor[J]. Catal. Today,2007, 119:327-331
    [68]Angel G D, Padilla J M, Cuauhtemoc I, et al. Toluene combustion on y-Al2O3-CeO2 catalysts prepared from boehmite and cerium nitrate[J]. J. Mol. Catal. A:Chem.,2008,281:173-178
    [69]姚杰,张鹏,尤宏,等.掺铈负载型氧化铜催化剂催化氧化甲苯研究[J].哈尔滨商业大学学报(自然科学版),2009,25(2):150-153
    [70]Fang J, Chen X, Xia Q, et al. Effect of relative humidity on catalytic combustion of toluene over copper based catalysts with different supports[J]. Chin. J. Chem. Eng.,2009,17(5):767-772
    [71]卢晗锋,黄海凤,刘华彦,等.Cu-Mn-O制备条件对其催化燃烧甲苯性能的影响[J].环境污染与防治,2008,30(5):26-37
    [72]Wang C H. Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene[J]. Chemosphere,2004,55:11-17
    [73]Alifanti M, Florea M, Somacescu S, et al. Supported perovskites for total oxidation of toluene[J]. Appl. Catal. B:Environ.,2005,60:33-39
    [74]Deng J, Zhang L, Dai H, et al. In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts:high activity for the complete oxidation of toluene and ethyl acetate[J]. Appl. Catal. A: Gen.,2009,352:43-49
    [75]Xia Q H, Hidajat K, Kawi S. Adsorption and catalytic combustion of aromatics on platinum-supported MCM-41 materials[J]. Catal. Today,2001,68:255-262
    [76]Ribeiro M F, Silva J M, Brimaud S, et al. Improvement of toluene catalytic combustion by addition of cesium in copper exchanged zeolites[J]. Appl. Catal. B:Environ.,2007,70:384-392
    [77]Tidahy H L, Siffert S, Lamonier J F, et al. Influence of the exchanged cation in Pd/BEA and Pd/FAU zeolites for catalytic oxidation of VOCs[J]. Appl. Catal. B:Environ.,2007,70:377-383
    [78]Tomasic V, Jovic F. State-of-the-art in the monolithic catalysts/reactors[J]. Appl. Catal. A:Gen., 2006,311:112-121
    [79]Kapteijn F, Nijhuis T A, Heiszwolf J J, et al. New non-traditional multiphase catalytic reactors based on monolithic structures [J]. Catal. Today,2001,66:133-144
    [80]Yuranov I, Kiwi-Minsker L, Renken A. Structured combustion catalysts based on sintered metal fibre filters[J]. Appl. Catal. B:Environ.,2003,43:217-227
    [81]Nijhuis T A, Kreutzer M T, Romijn A C J, et al. Monolithic catalysts as efficient three-phase reactors[J]. Chem. Eng. Sci.,2001,56:823-829
    [82]Blanco J, Avila P, Suarez S, et al. Alumina- and titania-based monolithic catalysts for low temperature selective catalytic reduction of nitrogen oxides[J]. Appl. Catal. B:Environ.,2000, 28:235-244
    [83]Roy S, Heibel A K, Liu W, et al. Design of monolithic catalysts for multiphase reactions[J]. Chem. Eng. Sci.,2004,59(5):957-966
    [84]赵阳,郑亚锋,辛峰.整体式催化剂性能及应用的研究进展[J].化学反应工程与工艺,2004,20(4):357-362
    [85]Roberts G W, Chin P, Sun X, et al. Preferential oxidation of carbon monoxide with Pt/Fe monolithic catalysts:interactions between external transport and the reverse water-gas-shift reaction[J]. Appl. Catal. B:Environ.,2003,46:601-611
    [86]张益群,余立挺,马建新.构件化催化剂的研究现状与应用[J].工业催化,2003,11(1):1-7
    [87]Avila P, Montes M, Miro E E. Monolithic reactors for environmental applications A review on preparation technologies[J]. Chem. Eng. J.,2005,109:11-36
    [88]王亚军,曾庆轩,冯长根.汽车尾气净化催化剂载体[J].工业催化,1999,6:3-7
    [89]Martinez T L M, Frias D M, Centeno M A, et al. Preparation of Au-CeO2 and Au-Al2O3/AISI 304 austenitic stainless steel monoliths and their performance in the catalytic oxidation of CO[J]. Chem. Eng. J.,2008,136:390-397
    [90]翟彦青.催化燃烧用金属载体整体型催化剂的制备及表征[D].天津:天津大学化工学院,2004
    [91]Bialas A, Osuch W, Lasocha W, et al. The influence of the Cr-Al foil texture on morphology of adhesive Al2O3 layers in monolithic environmental catalysts[J]. Catal. Today,2008,137: 489-492
    [92]Kucharczyk B, Tylus W. Effect of washcoat modification with metal oxides on the activity of a monolithic Pd-based catalyst for methane combustion [J]. Catal. Today,2008,137:324-328
    [93]Selvaraj M, Narayanan V, Kawi S. A new approach for synthesis of CSA-SBA-15:its characterization and superior catalytic activity[J]. Microporous Mesoporous Mater.,2010,132: 494-500
    [94]Stein A. Advances in microporous and mesoprous solids-highlights of recent progress[J]. Adv. Mater.,2003,15(10):763-775
    [95]季生福,李成岳,雷志刚,等.用尿素燃烧法制备系列金属氧化物固溶体的方法[P].中国专利,200310117394.0.2003-12-12
    [96]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Sci.,1998,279(5350):548-552
    [97]Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036
    [98]杨立英,李成岳,刘辉.金属基体上铝溶胶涂层的制备[J].催化学报,2004,25(4):283-288
    [99]Min K, Song M W, Lee C H. Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts[J]. Appl. Catal. A:Gen.,2003,251(1):143-156
    [100]Avgouropoulos G, Papavasiliou J, Tabakova T, et al. A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction[J]. Chem. Eng. J.,2006, 124 (1-3):41-45
    [101]毕玉水,吕功煊.一氧化碳低温催化氧化研究进展[J].分子催化,2003,17(4):313-320
    [102]Larsson P O, Andersson A. Oxides of copper, ceria promoted copper, manganese and copper manganese on Al2O3 for the combustion of CO, ethyl acetate and ethanol[J]. Appl. Catal. B: Environ.,2000,24(3-4):175-192
    [103]Papavasiliou J, Avgouropoulos G, Ioannides T. In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen [J]. Appl. Catal. B:Environ.,2006,66(3-4):168-174
    [104]Ayastuy J L, Gonzalez-Marcos M P, Gil-Rodriguez A. Selective CO oxidation over CexZr1-xO2 supported Pt catalysts[J]. Catal. Today,2006,116:391-399
    [105]Zheng X C, Wu S H, Wang S P, et al. The preparation and catalytic behavior of copper-cerium oxide catalysts for low-temperature carbon monoxide oxidation[J]. Appl. Catal. A:Gen.,2005, 283(1-2):217-223
    [106]Zou H B, Dong X F, Lin W M. Selective CO oxidation in hydrogen-rich gas over CuO/CeO2 catalysts[J]. Appl. Surf. Sci.,2006,253:2893-2898
    [107]Jiang X Y, Lou L P, Chen Y X. et al. Effects of CuO/CeO2 and CuO/γ-Al2O3 catalystson NO+ CO reaction[J]. J. Mol. Catal A:Chem.,2003,197:193-205
    [108]海锋,李彦锋,白风荣,等.Au/CeO2催化剂的制备及其对CO催化氧化性能的研究[J].分子催化,2007,21(4):329-332
    [109]Pillai U R, Deevi S. Room temperature oxidation of carbon monoxide over copper oxide catalyst[J]. Appl. Catal. B:Environ.,2006,64:146-151
    [110]Lee H C, Kim D H. Kinetics of CO and H2 oxidation over CuO-CeO2 catalyst in H2 mixtures with CO2 and H2O[J]. Catal. Today,2008,132:109-116
    [111]Liu W, Flytzani-Stephanopoulos M. Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composition catalysts Ⅰ. Catalyst composition and activity[J]. J. Catal.,1995,153:304-316
    [112]Fornes V, Lopez C, Lopez H H, et al. Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde[J]. Appl. Catal. A:Gen.,2003, 249:345-354
    [113]Nava R, Pawelec B, Morales J, et al. Comparison of the morphology and reactivity in HDS of CoMo/HMS, CoMo/P/HMS and CoMo/SBA-15 catalysts[J]. Microporous Mesoporous Mater., 2009,118:189-201
    [114]Kumar M S, Chen D, Holmen A, et al. Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15:effect of Sn on the dispersion of Pt and catalytic behavior[J]. Catal. Today,2009, 142:17-23
    [115]Tu C H, Wang A Q, Zheng M Y, et al. Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation[J]. Appl. Catal. A:Gen.,2006,297: 40-47
    [116]Avgouropoulos G, Ioannides T. Effect of synthesis parameters on catalytic properties of CuO-CeO2[J]. Appl. Catal. B:Environ.,2006,67:1-11
    [117]Roy S, Marimuthu A, Hegde M S, et al. High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2-δ:catalytic and kinetic studies[J]. Appl. Catal. B:Environ.,2007,71:23-31
    [118]Pillai U R, Deevi S. Room temperature oxidation of carbon monoxide over copper oxide catalyst[J]. Appl. Catal. B:Environ.,2006,64:146-151
    [119]Pillai U R., Deevi S. Copper-zinc oxide and ceria promoted copper-zinc oxide as highly active catalysts for low temperature oxidation of carbon monoxide[J]. Appl. Catal. B:Environ.,2006, 65:110-117
    [120]Venezia A M, Liotta L F, Pantaleo G, et al. Activity of SiO2 supported gold-palladium catalysts in CO oxidation[J]. Appl. Catal A:Gen.,2003,251:359-368
    [121]Roy S, Marimuthu A, Hegde M S, et al. High rates of CO and hydrocarbon oxidation and NO reduction by CO over Ti0.99Pd0.01O1.99[J]. Appl. Catal. B:Environ.,2007,73:300-310
    [122]Tang X L, Zhang B C, Li Y, et al. Carbon monoxide oxidation over CuO/CeO2 catalysts[J]. Catal. Today,2004,93-95:191-198
    [123]Avgouropoulos G., Ioannides T, Matralis H. Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO[J]. Appl. Catal. B: Environ.,2005,56(1-2):87-93
    [124]胡涛,杨建,赵军,等.尿素燃烧法制备Cu-Ce-O催化剂用于消除CO[J].催化学报,2007,28(10):844-846
    [125]Jung C R, Han J, Nam S W, et al. Selective oxidation of CO over CuO-CeO2 catalyst:effect of calcination temperature[J]. Catal. Today,2004,93-95:183-190
    [126]Lamonier C, Ponchel A, D'Huysser A, et al. Studies of the cerium-metal-oxygen-hydrogen system (metal.Cu, Ni)[J]. Catal. Today,1999; 50(2):247-259
    [127]Jiang X Y, Lu G L, Zhou R X, et al. Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts[J]. Appl. Surf. Sci.,2001, 173(3-4):208-220
    [128]Bera P, Priolkar K R, Sarode P R, et al. Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques:formation of a Ce1-xCuxO2-δ solid solution[J]. Chem. Mater.,2002,14(8):3591-3601
    [129]Bae C M, Ko J B, Kim D H. Selective catalytic oxidation of carbon monoxide with carbon dioxide, water vapor and excess hydrogen on CuO-CeO2 mixed oxide catalysts[J]. Catal. Commun.,2005,6:507-511
    [130]Liu Y, Fu Q, Stephanopoulos M F. Preferential oxidation of CO in H2 over CuO-CeO2 catalysts[J]. Catal. Today,2004,93-95:241-246
    [131]Quiney A S, Schuurman Y. Kinetic modelling of CO conversion over a Cu/ceria catalyst[J]. Chem. Eng. Sci.,2007,62:5026-5032
    [132]Sedmak G, Hocevar S, Levee J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.902-y catalyst[J]. J. Catal.,2003,213:135-150
    [133]Sundaramurthy V, Eswaramoorthi I, Dalai A K, et al. Hydrotreating of gas oil on SBA-15 supported NiMo catalysts[J]. Microporous Mesoporous Mater.,2008,111(1-3):560-568
    [134]Zheng X, Zhang X, Wang X, et al. Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation[J]. Appl. Catal. A:Gen.,2005,295:142-149
    [135]Zhu P, Li J, Zuo S, et al. Preferential oxidation properties of CO in excess hydrogen over CuO-CeO2 catalyst prepared by hydrothermal method[J]. Appl. Surf. Sci.,2008,255:2903-2909
    [136]Shan W, Feng Z, Li Z, et al. Oxidative steam reforming of methanol on Ce0.9Cu0.1Oγ catalysts prepared by deposition-precipitation, coprecipitation, and complexation-combustion methods[J]. J. Catal.,2004,228:206-217
    [137]Hu Y, Dong L, Shen M, et al. Influence of supports on the activities of copper oxide species in the low-temperature NO+CO reaction[J]. Appl. Catal. B:Environ.,2001,31:61-69
    [138]Zhu H, Shen M, Kong Y, et al. Characterization of copper oxide supported on ceria-modified anatase[J]. J. Mol. Catal. A:Chem.,2004,219:155-164
    [139]Jung C R, Kundu A, Nam S W, et al. Doping effect of precious metal on the activity of CuO-CeO2 catalyst for selective oxidation of CO[J]. Appl. Catal. A:Gen.,2007,331:112-120
    [140]Hocevar S, Krasovec U O, Orel B, et al. CWO of phenol on two differently prepared CuO-CeO2 catalysts[J]. Appl. Catal. B:Environ.,2000,28:113-125
    [141]Luo M F, Song Y P, Wang X Y, et al. Preparation and characterization of nanostructured Ceo.9Cu0.1O2-δ solid solution with high surface area and its application for low temperature CO oxidation[J]. Catal. Commun.,2007,8:834-838
    [142]Luo J Y, Meng M, Zha Y Q, et al. Identification of the active sites for CO and C3H8 total oxidation over nanostructured CuO-CeO2 and Co3O4-CeO2.catalysts[J]. J. Phys. Chem. C,2008, 112:869-8701
    [143]Rao G R, Sahu H R, Mishra B G. Surface and catalytic properties of Cu-Ce-O composite oxides prepared by combustion method[J]. Colloids Surf. A:Physicochem. Eng. Aspects,2003,220: 261-269
    [144]Luo M F, Ma J M, Lu J Q, et al. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation[J]. J. Catal.,2007,246:52-59
    [145]Avgouropoulos G, Ioannides T. Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method[J]. Appl. Catal. A:Gen.,2003,244:155-167
    [146]Boaro M, Vicario M, Leitenburg C d, et al. The use of temperature-programmed and dynamic/transient methods in catalysis:characterization of ceria-based, model three-way catalysts[J]. Catal. Today,2003,77:407-417
    [147]Aguila G, Gracia F, Araya P. CuO and CeO2 catalysts supported on A12O3, ZrO2, and SiO2 in the oxidation of CO at low temperature[J]. Appl. Catal. A:Gen.,2008,343:16-24
    [148]Liu Z, Amiridis M D, Chen Y. Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decomposition to N2[J]. J. Phys. Chem. B,2005,109:1251-1255.
    [149]Jiang P, Lu G, Guo Y, et al. Preparation and properties of a y-Al2O3 washcoat deposited on a ceramic honeycomb[J]. Surf. Coat. Technol.,2005,190:314-320
    [150]Zheng X C, Wang S P, Wang S R, et al. Preparation, characterization and catalytic properties of CuO/CeO2 system[J]. Mater. Sci. Eng. C,2005,25:516-520
    [151]Avgouropoulos G, Ioannides T, Matralis H K, et al. CuO-CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen[J]. Catal. Lett.,2001,73(1):33-40
    [152]Derekaya F B, Kutar C, Guldurb C. Selective CO oxidation over ceria supported CuO catalysts[J]. Mater. Chem. Phys.,2009,115:496-501
    [153]Gurbani A, Ayastuy J L, Gonzalez-Marcos M P, et al. Comparative study of CuO-CeO2 catalysts prepared by wet impregnation and deposition-precipitation[J]. Inte. J. Hydrogen Energy,2009, 34:547-553.
    [154]Seijger G B F, Palmaro S G, Krishna K, et al. In situ preparation of ferrierite coatings on structured metal supports[J]. Microporous Mesoporous Mater.,2002,56(1):33-45
    [155]Kucharczyk B, Tylus W, L. Kepinski. Pd-based monolithic catalysts on metal supports for catalytic combustion of methane[J]. Appl. Catal., B:Environ.,2004,49(1):27-37
    [156]Liu H, Zhao J D, Li C Y, et al. Conceptual design and CFD simulation of a novel metal-based monolith reactor with enhanced mass transfer[J]. Catal. Today,2005,105(3-4):401-406
    [157]Mei H, Li C Y, Liu H. Simulation of heat transfer and hydrodynamics for metal structured packed[J]. Catal. Today,2005,105(3-4):689-696
    [158]Kapteijn F, Nijhuis T A, Heiszwolf J J, et al. New non-traditional multiphase catalytic reactors based on monolithic structures [J]. Catal. Today,2001,66:133-144
    [159]Zhang X C, Wang S P, Zhang S M, et al. copper oxide catalysts supported on ceria for low-temperature Co oxidation[J]. Catal. Commun.,2004,5:729-732
    [160]蒋晓原,周仁贤,袁骏,等.CuO/CeO2催化剂的催化氧化性能及其表征[J].中国稀土学报,2002,20(2):111-115
    [161]Wu X D, Weng D, Zhao S, et al. Influence of an aluminized intermediate layer on the adhesion of a y-Al2O3 washcoat on FeCrAl[J]. Surf. Coat. Technol.,2005,190(2-3):434-439
    [162]Yin F X, Ji S F, Chen B H, et al. Catalytic combustion of methane over Ce1-xLaxO2-x/2/Al2O3/FeCrAl catalysts[J]. Appl. Catal. A:Gen.,2006,310:164-173
    [163]Zhao S, Zhang J Z, Weng D, et al. A method to form well-adhered γ-Al2O3 layers on FeCrAl metallic supports[J]. Surf. Coat. Technol.,2003,167(1):97-105
    [164]Aguila G, Gracia F, Cortes J, et al. Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts[J]. Appl. Catal. B:Environ., 2008,77:325-338
    [165]Yin F, Ji S, Wu P, et al. Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane[J]. J. Catal.,2008,257:108-116
    [166]Wei L, M Flytzani-Stephanopoulos. Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composition catalysts Ⅱ. catalyst characterization and reaction kinetics[J]. J. Catal.,1995,153:317-332
    [167]Wang S, Zheng X, Wang X, et al. Comparison of CuO/Ce0.8Zr0.2O2 and CuO/CeO2 catalysts for low-temperature CO oxidation[J]. Catal. Lett.,2005,105:163-168
    [168]Gomez-Cortes A, Marquez Y, Arenas-Alatorre J, et al. Selective CO oxidation in excess of H2 over high-surface area CuO/CeO2 catalysts[J]. Catal. Today,2008,133-135:743-749
    [169]Mariono F, Schonbrod B, Moreno M, et al. CO preferential oxidation over CuO-CeO2 catalysts synthesized by the urea thermal decomposition method[J]. Catal. Today,2008,133-135: 735-742.
    [170]Li L, Xue B, Chen J, Guan N, et al. Direct synthesis of zeolite coatings on cordierite supports by in situ hydrothermal method[J]. Appl. Catal. A:Gen.,2005,292:312-321
    [171]Atanassova E, Tyuliev G, Paskaleva A, et al. XPS study of N2 annealing effect on thermal Ta2O5 layers on Si[J]. Appl. Surf. Sci.,2004,225:86-99.
    [172]Aygun G, Atanassova E, Kostov K, et al. XPS study of pulsed Nd:YAG laser oxidized Si[J]. J. Non-Cryst. Solids,2006,352:3134-3139
    [173]Giordano F, Trovarelli A, Leitenburg C d, et al. A model for the temperature-programmed reduction of low and high surface area ceria[J]. J. Catal.,2000,193:273-282
    [174]Zimmer P, Tschope A, Birringer R, Temperature-programmed reaction spectroscopy of ceria-and Cu/Ceria-supported oxide catalyst[J]. J. Catal.,2002,205:339-345
    [175]Zeng S, Bai X, Wang X, et al. Valence state of active coppr in CuOx/CeO2 catalysts for CO oxidation[J], J. Rare Earths,2006,24:177-181
    [176]Kim S C, Shim W G. Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene[J]. J. Hazard Mater.,2008,154(1-3):310-316
    [177]Rivas B D, Gutierrez-Ortiz J I, Lopez-Fonseca R, et al. Analysis of the simultaneous catalytic combustion of chlorinated aliphatic pollutants and toluene over ceria-zirconia mixed oxides[J]. Appl. Catal. A:Gen.,2006,314(1):54-63
    [178]Chen M, Qi L, Fan L, et al. Zirconium-pillared montmorillonite and their application in supported palladium catalysts for volatile organic compounds purification[J]. Mater. Lett.,2008, 62:3646-3648
    [179]张庆豹,赵雷洪,滕波涛,等.用于甲苯催化燃烧的Pd/Ce0.8Zr0.2O2/基底整体催化剂[J].催化学报,2008,29(4):373-378
    [180]Antunes A P, Ribeiro M F, Silva J M, et al. Catalytic oxidation of toluene over CuNaHY zeolites coke formation and removal[J]. Appl. Catal. B:Environ.,2001,33(2):149-164
    [181]Kovanda F, Jiratova K, Rymes J, et al. Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combustion[J]. Appl. Clay Sci.,2001,18(1-2):71-80
    [182]Lu C Y, Wey M Y, Chen L I. Application of polyol process to prepare AC-supported nanocatalyst for VOC oxidation[J]. Appl. Catal. A:Gen.,2007,325(1):163-174
    [183]Eswaramoorthi I, Dalai A K. A comparative study on the performance of mesoporous SBA-15 supported Pd-Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production[J]. Int. J. Hydrogen Energy,2009,34:2580-2590
    [184]Calles J A, Carrero A, Vizcaino A J. Ce and La modification of mesoporous Cu-Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming[J]. Microporous Mesoporous Mater.,2009,119:200-207
    [185]Liu J L, Zhu L J, Pei Y. Ce-promoted Ru/SBA-15 catalysts prepared by a "two solvents" impregnation method for selective hydrogenation of benzene to cyclohexene[J]. Appl. Catal. A: Gen.,2009,353:282-287
    [186]Li W B, Zhuang M, Xiao T C, et al. MCM-41 supported Cu-Mn catalysts for catalytic oxidation of toluene at low temperatures[J]. J. Phys. Chem. B,2006,110(43):21568-21571
    [187]Rayo P, Rana M S, Ramirez J, et al. Effect of the preparation method on the structural stability and hydrodesulfurization activity of NiMo/SBA-15 catalysts[J]. Catal. Today,2008,130: 283-291
    [188]Li G H, Dai L Z, Lu D S, et al. Characterization of copper cobalt mixed oxide[J]. J. Solid State Chem.,1990,89:167-173
    [189]Radwan N R E, Mokhtar M, El-Shobaky G A. Surface and catalytic properties of CuO and Co3O4 solids as influenced by treatment with Co2+ and Cu2+ species[J]. Appl. Catal. A:Gen., 2003,241:77-90
    [190]Cesar D V, Perez C A, Salim V M M, et al. Stability and selectivity of bimetallic Cu-Co/SiO2 catalysts for cyclohexanol dehydrogenation[J]. Appl. Catal. A:Gen.,1999,176:205-212
    [191]Fenoglio R, Rolandi P, MassaP, et al. Characterization of CuO/Al2O3 catalysts used in the oxidation of phenol solitions[J]. React. Kinet. Catal. Lett.,2004,81(1):83-90
    [192]Khassin A A, Yurieva T M, Kaichev V V, et al. Metal-support interactions in cobalt-aluminum co-precipitated catalysts:XPS and CO adsorption studies[J]. J. Mol. Catal. A,2001,175: 189-204
    [193]Wen Y X, Zhang Ch B, He H, et al. Catalytic oxidation of nitrogen monoxide over La1-xCexCoO3 perovskites[J]. Catal. Today,2007,126:400-405
    [194]Jiang X, Lou L, Chen Y, et al. Preparation and characterization of Ce0.3Ti0.7O2 and supported CuO catalysts for NO+CO reaction[J]. Catal. Lett.,2004,94:49-55
    [195]Jiang X, Lou L, Ding G, et al. The active species and catalytic properties of CuO/CeO2-TiO2 catalysts for NO+CO reaction[J]. J. Mater. Sci.,2004,39:4663-4667
    [196]Zou Z Q, Meng M, Zha Y Q. The effect of dopant Cu, Fe, Ni or La on the structures and properties of mesoporous Co-Ce-O compound catalysts[J]. J. Alloys Compd.,2009,470:96-106
    [197]Tien-Thao N, Zahedi-Niaki M H, Alamdari H, et al. Effect of alkali additives over nanocrystalline Co-Cu-based perovskites as catalysts for higher-alcohol synthesis[J]. J. Catal., 2007,245:348-357
    [198]Liu L, Chen Y, Dong L, et al. Investigation of the NO removal by CO on CuO-CoOx binary metal oxides supported on Ce0.67Zr0.33O2[J]. Appl. Catal. B:Environ.,2009,90:105-114
    [199]Tang C W, Kuo M C, Lin C J, et al. Evaluation of carbon monoxide oxidation over CeO2/Co3O4 catalysts:effect of ceria loading[J]. Catal. Today,2008,131:520-525
    [200]Tien-Thao N, Alamdari H, Zahedi-Niaki M H, et al. LaCo1-xCuxO3-δ perovskite catalysts for higher alcohol synthesis[J]. Appl. Catal. A:Gen.,2006,311:204-212
    [201]Cao J L, Wang Y, Yu X L, et al. Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation[J]. Appl. Catal. B:Environ.,2008,79:26-34
    [202]Jia L, Shen M, Wang J, et al. Dynamic oxygen storage and release over Cu0.1Ce0.9Ox and Cu0.1Ce0.6Zr0.3Oxcomplex compounds and structural characterization[J]. J. Alloys Compd.,2009, 473:293-297
    [203]张广宏,季生福,万会军,等.铜锰基SBA-15催化剂的制备及其甲苯燃烧消除的催化性能[J].北京化工大学学报,2008,23(1):5-10
    [204]Lu C Y, Tseng H H, Weyc M Y, et al. Al2O3-supported Cu-Co bimetallic catalysts prepared with polyol process for removal of BTEX and PAH in the incineration flue gas[J]. Fuel,2009,88: 340-347
    [205]Wang X, Jia J, Mu X, et al. Methanol steam reforming over metal wall-coated PdZn/Al2O3/FeCrAl catalyst for hydrogen production[J]. Chin. J. Catal.,2008,29(2):99-101
    [206]Haned M, Kintaichi Y, Bion N, et al. Alkali metal-doped cobalt oxide catalysts for NO decomposition[J]. Appl. Catal. B:Environ.,2003,46:473-482.
    [207]Tang X, Zhang B, Li Y, et al. CuO/CeO2 catalysts:Redox features and catalytic behaviors[J]. Appl. Catal. A:Gen.,2005,288:116-125
    [208]Moretti E, Lenarda M, Storaro L, et al. One-step synthesis of a structurally organized mesoporous CuO-CeO2-Al2O3 system for the preferential CO oxidation[J]. Appl. Catal. A:Gen., 2008,335:46-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700