钴基低温氧化催化剂和钾基稀燃NOx储存还原催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化净化是消除汽车尾气污染同时提高空气质量的最有效方法。随着各国汽车尾气排放法规的日益严格,传统的三效催化剂已经不能解决汽车尾气净化所面临的两大新的难题,即冷启动污染和稀燃氮氧化物(NOx)污染,因为传统三效催化剂对机动车冷启动时排放的CO和烃类,以及稀燃发动机排放的NOx的净化效率很低。虽然丰田公司早在上世纪90年代中期就提出了NOx储存还原的概念(NSR),并开发了Pt/Ba/Al_2O_3体系的NSR催化剂,但是这类NSR催化剂因抗硫性能差,很难推广使用。本论文针对冷启动和稀燃氮氧化物污染问题,开展相关应用基础研究,研发高性能的低温氧化型催化剂和同时具有优良储存性能和抗硫性能的NSR催化剂具有重要意义。本文选取氧化性能优越的Co基氧化物催化剂为研究对象,从催化剂的组成、结构、制备方法、组分间的相互作用以及反应机理等方面开展了较系统的研究;对于稀燃NSR催化剂,则以酸性复合载体负载的K基NSR催化剂为研究对象,考察了助剂Co和Ce对NSR催化剂Pt/K/TiO_2-ZrO_2结构和性能的影响,包括储存和抗硫性能,同时还考察了载体中掺杂Al_2O_3的影响,对Al_2O_3的含量进行了优化,并对储存介质K物种的存在形式进行了深入研究和讨论,提出了催化剂的构效关系及K物种的分布模型。
     采用双表面活性剂辅助合成法制备了系列Co基混合氧化物La-Co-Zr-O、Co-Ce-Zr-O和La-Ce-Co-Zr-O等,BET和孔径分布测试结果表明,该系列催化剂具有较高的比表面积和均一的介孔孔径,较传统共沉淀法有明显优势。程序升温还原结果(H2-TPR)表明,催化剂中Co-O键的活动度与其氧化性能密切相关。助剂Ce的加入能够显著提高Co-O键的活动度,从而增强活性。当La和Ce以合适的比例共存于混合氧化物中,催化剂的活性和热稳定性进一步增强,同时该催化剂La-Ce-Co-Zr-O还具有良好的抗硫性能。在Co-Ce-Zr-O体系中引入微量贵金属Pd(0.044%)后,催化剂对CO的氧化活性大大提高,但对C_3H_8氧化却没有促进作用。程序升温氧化(TPO)结果显示,贵金属促进作用的本质主要为氧溢流,即Pd解离吸附气相氧为反应提供活性氧物种。对于CO氧化,氧气的吸附活化是关键步骤;而对于C_3H_8氧化,反应速率可能更取决于C-H键的活化。
     为进一步提高Co基混合氧化物的热稳定性,采用非离子表面活性剂三嵌段共聚物P123辅助合成了系列Co-Ce-M(M=Cu、Fe、Ni和La)混合氧化物催化剂,高分辨电镜(HR-TEM)和BET结果表明,该系列催化剂具有蠕虫状孔道结构和高比表面积。采用原位红外(DRIFTS)对含不同助剂的样品上CO的氧化机理进行了研究。发现Cu掺杂的催化剂形成了对CO氧化的双活性位,CuO和Co_3O_4都参与了反应,在该催化剂上不但有碳酸盐中间物种,还有羰基Cu物种。H2-TPR和O_2-TPD结果表明,这些催化剂的表面晶格氧的活动度与其CO氧化活性密切相关。Cu的掺杂使得催化剂在500℃和650℃焙烧后,活性大大提高,而La的掺杂在高温焙烧时能有效抑制催化剂的烧结,维持催化剂的氧化活性。Fe的掺杂降低了催化剂表面晶格氧的活动度从而降低了催化剂的活性。Ni的掺杂改变了催化剂上CO氧化反应的路径,此时表面吸附氧取代表面晶格氧成为反应的主要活性物种,该催化剂的活性较不掺杂的催化剂明显降低。
     对于NSR催化剂Pt/K/TiO_2-ZrO_2,考察了助剂Co或Ce的加入对其储存和抗硫性能的影响。结果表明,Co或Ce的引入能够大大增强催化剂的氧化能力从而显著提高了催化剂对NOx的储存能力。但是催化剂经过硫化和再生后,采用助剂改性的催化剂的储存量比未改性的Pt/K/TiO_2-ZrO_2催化剂反而略有下降,循环TPR测试结果表明,在改性的催化剂上形成了难以脱除的硫酸盐,尤其是含Co的催化剂最为明显,该催化剂具有最强的氧化能力从而促进了硫酸盐的生成。助剂Ce对催化剂Pt/K/TiO_2-ZrO_2性能的影响更取决于Ce的添加方法。采用机械混合法添加Ce的催化剂具有较高的氧化能力和表面K/Ti比,硫化再生后的储存能力仍高达142μmol/g。随着未来燃油中硫含量不断减少,助剂Ce改性的NSR催化剂Pt/K/TiO_2-ZrO_2具有一定的应用前景。
     为了改进Pt/K/TiO_2-ZrO_2催化剂的抗硫性能,对载体进行了改性,发现载体中添加Al_2O_3可以显著提高催化剂Pt/K/Al_2O_3-TiO_2-ZrO_2的储存和抗硫能力,Al_2O_3的最佳掺杂量为Al/(Ti+Zr)原子比为3/1。当载体在较低温度焙烧时,K物种的主要存在形式是-OK基,NOx储存后,主要以单齿或双齿硝酸盐形式存在;当载体在高温焙烧时表面羟基大大减少直至基本消失,此时储存组分主要以K_2CO_3形式存在,这种K_2CO_3较-OK基能更有效地与NOx反应,生成自由硝酸钾,因此催化剂的储存能力显著提高,然而K_2CO_3物种同样易与SO_2作用,生成相当稳定的硫酸盐物种,从而降低了催化剂的抗硫与再生性能。催化剂中K负载量的提高,使K_2CO_3逐渐取代-OK基成为NOx储存的主要物种,虽然储存量迅速增加,但抗硫性能也显著下降。结合原位红外和载体的表面酸性表征结果(NH3-TPD和吡啶吸附),提出了不同K负载量和不同焙烧温度时催化剂表面K物种的分布模型。
Catalytic purification is the most effective method to eliminate pollutants in vehicle exhaust. The conventional TWC is not efficient enough to remove CO and hydrocarbons released during cold-start period and NOx from lean-burn engines. For NOx reduction, the NOx storage-reduction (NSR) catalyst Pt/Ba/Al_2O_3 was proposed by Toyota, but the low sulfur-resisting ability limits its application. In order to solve these problems, Co-based mixed oxides are selected as the catalysts for low-temperature oxidation of CO and hydrocarbons. The compositions, structures, preparation methods of the catalysts, and reaction mechanisms are investigated. The acidic mixed oxides supported K-based NSR catalysts were prepared. The effect of additive Co or Ce on the catalyst Pt/K/TiO_2-ZrO_2 is studied. In addition, the support TiO_2-ZrO_2 was modified by Al_2O_3 doping. The existing state of the storage medium K was investigated and the distribution modes of K are proposed.
     A series of Co-based mixed oxides with high specific surface area were synthesized by dual surfactants-assisted method. The activities for CO and C_3H_8 oxidation are related to the mobility of Co-O bond. The dopant CeO_2 can promote the mobility of Co-O bond and then improve the activity. When La and Ce coexist in the catalyst, the activity and thermal stability can be further enhanced. The ultra-low content of noble metal Pd can promote the CO oxidation, but can hardly influence C_3H_8 oxidation. This promotion derives from oxygen spillover. The oxygen activation is the crucial step for CO oxidation while C_3H_8 oxidation depends on C-H bond activation.
     A series of Co-Ce-M (M=Cu, Fe, Ni or La) mixed oxides were prepared by surfactant-assisted method using co-polymer P123. The different CO oxidation mechanisms were revealed by DRIFTS. Dual active sites have formed on the Cu doped catalyst. The mobility of surface lattice oxygen is relevant with the CO oxidation activity. Cu doping improves CO oxidation activity of the catalyst calcined at 500oC or 650oC, while La doping effectively suppresses the sintering of the catalyst when it is calcined at a high temperature. Fe doping always decreases the mobility of surface lattice oxygen and then decreases the activity. Ni doping has altered CO oxidation mechanism and the weakly bound active oxygen replaces surface lattice oxygen to act as the main active oxygen species.
     The effect of additive Co or Ce on the storage and sulfur-resistance performance of the catalyst Pt/K/TiO_2-ZrO_2 was investigated. The results show that the Co or Ce addition can improve the storage performance. However, after sulfation and regeneration, the NOx storage capacity (NSC) of the modified catalyst is more or less lower than that of the unmodified one due to more stable sulfates are formed on the modified catalysts. The effect of Ce addition on Pt/K/TiO_2-ZrO_2 largely depends on the addition mode. The mechanically prepared Ce-promoted catalyst possesses considerable NOx storage capacity of 142μmol/g after sulfation and regeneration.
     The Al_2O_3 doping can obviously improve both the NOx storage capacity and sulfur-resistance performance of the catalyst Pt/K/Al_2O_3-TiO_2-ZrO_2. When the support is calcined at lower temperatures, K exists mainly in the form of–OK groups. After NOx adsorption, the main storage species are monodentate or bidentate nitrates. When the support is calcined at a higher temperature, K_2CO_3 is the dominating storage medium forming ionic free nitrates, which is more efficient for NOx storage than–OK groups. As a result, the catalyst with its support calcined at higher temperatures possesses higher NSC, however, K_2CO_3 also react with SO_2 more easily to form stable sulfates, determining its worse sulfur-resistance performance. With the increase of K loading, K_2CO_3 becomes the main storage medium with the NSC increasing, but with the sulfur-resistance decreasing.
引文
[1]曹磊,汽车尾气净化催化剂的研究进展,污染防治技术,2008,21(3):70-72
    [2]张远航,李金龙,中国城市光化学烟雾污染研究,北京大学学报:自然科学版,1998,34(2):392-400
    [3]马涛,汽车尾气排放与大气污染,油气田环境保护,2007,17(2):52-53
    [4]张勇,汽车尾气污染及其净化处理技术,民营科技,2008,3:38
    [5]刘叶福,杨芳华,有关汽车尾气排放问答两则,实用汽车技术,2008,1:27
    [6]吴咏,张尚娇,国外的汽车排放法规,汽车科技,2001,1:31-35
    [7]刘咏,第三代储存还原催化剂Pt/K/TiO2-ZrO2对稀燃氮氧化物的储存机理和抗硫性能研究:[博士学位论文],天津:天津大学,2008
    [8]严伯昌,解读“国Ⅲ”标准及汽车尾气排放治理,汽车维修,2007,8:1-3
    [9]杨柳,何洪,汽车尾气的危害及治理,城市问题,2008,8:100-102
    [10] Heck R M, Farrauto R J, Catalytic Air Pollution Control, New York: Van Nostrand Reinhold, 1995, 106
    [11]王建昕,汽车排气污染治理及催化转化器,北京:石油工业出版社,2000,242-244
    [12]周玉明,内燃机废气排放及控制技术,北京:人民交通出版社,2001,152-153
    [13] Day J P, Socha L S, Impact of catalyst support design parameters on automotive emissions, SAE Paper, 1988, 881590
    [14]黎维彬,马红,郝吉明,汽车尾气催化净化技术研究动向,化学通报,2000,63:51
    [15] Skoglundh M, Fridell E, Strategies for enhancing low-temperature acticity, Topics Catal., 2004, 28(1-4): 79-87
    [16]曲格平,我们需要一场变革,长春:吉林人民出版社,1997,110
    [17]王大全,“京都议定书”与“二氧化碳绿色化”,化学工业,2007,25:8-11
    [18]吕建华,生态环境问题:国际政治经济新焦点,中国与世界,2007,9:30-42
    [19]邝生鲁,全球变暖与二氧化碳减排,现代化工,2007,8:1-12
    [20]郑小明,周仁贤,环境保护中的催化治理技术,北京:化学工业出版社,2003,4
    [21] Matsumoto S, Recent advances in automobile exhaust catalysts, Catal. Today, 2004, 90(3-4): 183-190
    [22]贾海亭,满瑞林,稀燃发动机尾气净化催化技术进展,汽车科技,2004,3:8-10
    [23] Matsumoto S, Catalytic reduction of nitrogen oxides in automobile exhaust containing excess oxygen by NOx storage-reduction catalyst, CATTECH, 2000, 4(2): 102-109
    [24]朱振忠,田群,陈宏德,汽车尾气三效催化剂,中国环保产业,2002,7:34-36
    [25]冯长根,王大祥,王亚军,车用三效催化剂的研究进展,安全与环境学报,2003,3(5):21-26
    [26] Heck R M., Farrauto R J, Automobile exhaust catalysts, Appl. Catal. A, 2001, 221(1-2): 443-457
    [27] Jr J B, Duprez D, Steam effects in three-way catalysis, Appl. Catal. B, 1994, 4(2-3): 105-140
    [28] Ohtsuka H, Tabata T, Roles of palladium and platinum in the selective catalyatic reduction of NOx on palladium-platinum-loaded sulfated zirconia, Appl. Catal. B, 2001, 29(3): 177-183
    [29] Liotta L F, Deganello G, Influence of barium and cerium oxides on alumina supported Pd catalysts for hydrocarbon combustion, Appl. Catal. A, 2002, 229(1-2): 217-227
    [30]王道,孟声,叶青等,净化汽车尾气的三效催化剂,环境导报,1999,3:19-21
    [31] Twigg M V, Controlling automotive exhaust emissions: successes and underlying science, Phil. Trans. R. Soc. A, 2005, 363: 1013-1033
    [32]梁飞雪,朱华青,秦张峰等,一氧化碳低温催化氧化,化学进展,2008,20(10):1453-1464
    [33] Schryer D R, Upchurch B T, Van Norman J D, et al. Effect of pretreatment conditions on a Pt/SnO_2 catalyst for the oxidation of CO in CO_2 lasers, J. Catal., 1990, 122(1): 193-197
    [34] Sheintuch M, Schmidt J, Lechtman Y, et al. Modelling catalyst-support interactions in carbon monoxide oxidation catalysed by Pd/SnO_2, Appl. Catal., 1989, 49(1): 55-65
    [35] Thorm?hlen P, Skoglundh M, Fridell E, et al. Low-temperature CO oxidationover platinum and cobalt oxide catalysts, J. Catal., 1999, 188(2): 300-310
    [36] Minemura Y, Kuriyama M, Ito S, et al. Additive effect of alkali metal ions on preferential CO oxidation over Pt/Al2O3, Catal. Commun., 2006, 7(9): 623-626
    [37]周仁贤,郑小明,Pd/Al2O3和Pt/Al2O3催化剂上CO氧化与表面氧脱出—恢复性能,催化学报,1995,16(4):324-327
    [38] Margitfalvi J L, Borbáth I, Hegedús M, et al. Low-temperature CO oxidation over new types of Sn-Pt/SiO_2 catalysts, J. Catal., 2000, 196(1): 200-204
    [39]沈小女,郑勇,CeO_2修饰的Pt/SiC催化剂在CO氧化反应中的性能,第五届全国环境催化与环境材料学术会议,2007,山东烟台
    [40]陈敏,罗孟飞,袁贤鑫,载体对负载钯催化剂的CO氧化活性的影响,环境科学学报,1998,18(4):421-424
    [41] Fernández-García M, Martínez-Arias A, Salamanca L N, et al. Influence of ceria on Pd activity for the CO+O_2 reaction, J. Catal., 1999, 187(2): 474-485
    [42] Zhu H Q, Qin Z F, Shan W J, et al. Pd/CeO_2-TiO_2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, J. Catal., 2004, 225(2): 267-277
    [43] Stampfl C, Scheffler M, Density-functional theory study of the catalytic oxidation of CO over transition metal surfaces, Surf. Sci., 1999, 433-435: 119-126
    [44] Liu H, Kozlov A I, Kozlov A P, et al. Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO_2-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated titanium hydroxide, J. Catal., 1999, 185(2): 252-264
    [45] Bourane A, Bianchi D J, Oxidation of CO on a Pt/Al2O3 catalyst: From the surface elementary steps to light-off tests: I. Kinetic study of the oxidation of the linear CO species, J. Catal., 2001, 202(1): 34-44
    [46] Rainer D R, Koranne M, Veaecky S M, et al. CO plus O_2 and CO plus NO reactions over Pd/Al2O3 catalysts. J. Phys. Chem B, 1997, 101(50): 10769-10774
    [47] Kulshreshtha S K, Gadgil M M, Physico-chemical characteristics and CO oxidation studies over Pd/(Mn2O3+SnO_2) catalyst, Appl. Catal. B, 1997, 11(3-4): 291-305
    [48]毕玉水,吕功煊,一氧化碳低温催化氧化研究进展,分子催化,2003,17(4):313-320
    [49] Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared bycoprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 1989, 115(2): 301-309
    [50] Molina L M, Hammer B, Some recent theoretical advances in the understanding of the catalytic activity of Au, Appl. Catal. A, 2005, 291(1-2): 21-31
    [51]侯凯军,掺杂La3+和Ce3+对纳米Au/TiO_2催化剂结构和性能的影响:[硕士学位论文],天津:天津大学,2007
    [52]吕倩,孟明,查宇清,高热稳定性纳米Au/TiO_2催化剂的制备与表征,催化学报,2006,27(12):1111-1116
    [53]侯凯军,孟明,邹志强等,掺杂La3+对纳米Au/TiO_2催化剂结构和性能的影响,无机化学学报,2007,23(9):1538-1544
    [54] Gluhoi A C, Nieuwenhuys B E, Structural and chemical promoter effects of alkali (earth) and cerium oxides in CO oxidation on supported gold, Catal. Today, 2007, 122(3-4): 226-232
    [55]吴世华,黄唯平,张守民等,溶剂化金属原子浸渍法制备高分散Au/TiO_2低温氧化催化剂,催化学报,2000,21(5):419-422
    [56]王东辉,程代云,郝郑平等,纳米金催化剂上CO低(常)温氧化的研究,化学进展,2002,14(5):360-367
    [57] Song K S, Kang S K, Kim S D, Preparation and characterization of Ag/MnOx/perovskite catalysts for CO oxidation, Catal. Lett., 1997, 49(1/2): 65-68
    [58] Tanaka H, Ito S I, Kameoka S, et al. Promoting effect of potassium in selective oxidation of CO in hydrogen-rich stream on Rh catalysts, Catal. Commun., 2003, 4(1): 1-4
    [59] Okumura M, Masuyama N, Konishi E, et al. CO oxidation below room temperature over Ir/TiO_2 catalyst prepared by deposition precipitation method, J. Catal., 2002, 208(2): 485-489
    [60] Burch R, Crittle D J, Hayes M J, C-H bond activation in hydrocarbon oxidation on heterogeneous catalysts, Catal. Today, 1999, 47(1-4): 229-234
    [61] Persson K, Jansson K, J?r?s S G, Characterisation and microstructure of Pd and bimetallic Pd-Pt catalysts during methane oxidation, J. Catal., 2007, 245(2): 401-414
    [62] Gélin P, Primet M, Complete oxidation of methane at low temperature over noble metal based catalysts: a review, Appl. Catal. B, 2002, 39(1): 1-37
    [63] Hoyos L J, Praliaud H, Primet M, Catalytic combustion of methane overpalladium supported on aluminia and silica in presence of hydrogen sulfide, Appl. Catal. A, 1993, 98(2): 125-138
    [64] Lampert J K, Shahjahan Kazi M, Farrauto R J, Palladium catalyst performance for methane emissions abatement form lean burn natural gas vehicles, Appl. Catal. B, 1997, 14(3-4): 211-223
    [65] Fujimoto K, Ribeiro F H, Avalos-Borja M, et al. Structure and reactivity of PdOx/ZrO_2 catalysts for methane oxidation at low temperatures, J. Catal., 1998, 179(2): 431-442
    [66] Müller C A, Maciejewski M, Koeppel R A, et al. Combustion of methane over palladium/zirconia: effect of Pd-particles size and role of lattice oxygen, Catal. Today, 1999, 47(1-4): 245-252
    [67] Müller C A, Maciejewski M, Koeppel R A, et al. Combustion of methane over palladium/zirconia derived from a glassy Pd-Zr alloy: effect of Pd particle size on catalytic behavior, J. Catal., 1997, 166(1): 36-43
    [68] Schmal M, Souza M M V M, Alegre V V, et al. César D V, Perez C A C, Methane oxidation-effect of support, precursor and pretreatment conditions-in situ reaction XPS and DRIFT, Catal. Today, 2006, 118(3-4): 392-401
    [69] Kiwi-Minsker L, Yuranov I, Slavinskaia E, et al. Pt and Pd supported on glass fibers as effective combustion catalysts, Catal. Today, 2000, 59(1-2): 61-68
    [70] Yazawa Y, Kagi N, Komai S, et al. Kinetic study of support effect in the propane combustion over platinum catalyst, Catal. Lett., 2001, 72(3-4): 157-160
    [71] Yazawa Y, Yoshida H, Hattori T, The support effect on platinum catalyst under oxidizing atmosphere: improvement in the oxidation-resistance of platinum by the electrophilic property of support materials, Appl. Catal. A, 2002, 237(1-2): 139-148
    [72] Hubbard C P, Otto K, Ganhdi H S, et al. Effects of support material and sulfation on propane oxidation activity over platinum, J. Catal., 1993, 144(2): 484-494
    [73] Burch R, Halpin E, Hayes M, et al. The nature of activity enhancement for propane oxidation over supported Pt catalysts exposed to sulphur dioxide, Appl. Catal. B, 1998, 19(3-4): 199-207
    [74] Garetto T F, Rincón, Apesteguía C R, Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports, Appl. Catal. B, 2004, 48(3): 167-174
    [75] Garetto T F, Rincón, Apesteguía C R, The origin of the enhanced activity ofPt/zeolites for combustion of C2-C4 alkanes, Appl. Catal. B, 2007, 73(1-2): 65-72
    [76] Arnby K, Assiks J, Carlsson P A, et al. The effect of platinum distribution in monolithic catalysts on the oxidation of CO and hydrocarbons, J. Catal., 2005, 233(1): 176-185
    [77] Lee A F, Wilson K, Lambert R M, et al. The origin of SO_2 promotion of propane oxidation over Pt/Al2O3 catalysts, J. Catal., 1999, 184(2): 491-498
    [78] Corro G, Fierro J L G, Odilon V C, An XPS evidence of Pt4+ present on sulfated Pt/Al2O3 and its effect on propane combustion, Catal. Commun., 2003, 4(8): 371-376
    [79] Hinz A, Skoglundh M, Fridell E, et al. An investigation of the reaction mechanism for the promotion of prapane oxidation over Pt/Al2O3 by SO_2, J. Catal., 2001, 201(2): 247-257
    [80] Dow W P, Wang Y P, Huang T J, Yttria-stabilized zirconia supported copper oxide catalyst:Ⅰ.effect of oxygen vacancy of support on copper oxide reduction, J. Catal., 1996, 160(2): 155-170
    [81] Dow W P, Huang T J, Yttria-stabilized zirconia supported copper oxide catalyst:Ⅱ.effect of oxygen vacancy of support on catalytic activity for CO oxidation, J. Catal., 1996, 160(2): 171-182
    [82] Martínez-Arias A, Fernández-García, Gálvez O, et al. Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO_2 and CuO/ZrCeO4 catalyst, J. Catal., 2000, 195(1): 207-216
    [83] Luo M F, Song P Y, Lu J Q, et al. Identification of CuO species in high surface area CuO-CeO_2 catalysts and their catalytic activities for CO oxidation, J. Phys. Chem. C, 2007, 111(34): 12686-12692
    [84] Luo M F, Ma J M, Lu J Q, et al. High-surface area CuO-CeO_2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation, J. Catal., 2007, 246(1): 52-59
    [85] Shen W H, Dong X P, Zhu Y F, et al. Mesoporous CeO_2 and CuO-loaded mesoporous CeO_2: Synthesis, characterization, and CO catalytic oxidation property, Micro. Meso. Mater., 2005, 85(1-2): 157-162
    [86] Wang S P, Zheng X C, Wang X Y, et al. Comparison of CuO/Ce0.8Zr0.2O_2 and CuO/CeO_2 catalyst for low-temperature CO oxidation, Catal. Lett., 2005, 105(3-4): 163-168
    [87] Cao J L, Wang Y, Zhang T Y, et al. Preparation, characterization and catalyticbehavior of nanostructured mesoporous CuO/Ce0.8Zr0.2O_2 catalysts for low-temperature CO oxidation, Appl. Catal. B, 2008, 78(1-2):120-128
    [88] Lin R, Luo M F, Zhong Y J, et al. Comparative study of CuO/Ce0.7Sn0.3O_2, CuO/CeO_2 and CuO/SnO_2 catalysts for low-temperature CO oxidation, Appl. Catal. A, 2003, 255(2): 331-336
    [89] Zhang T Y, Wang S P, Yu Y, et al. Synthesis, characterization of CuO/Ce0.8Sn0.2O_2 catalysts for low-temperature CO oxidation, Catal. Commun., 2008, 9(6): 1259-1264
    [90] Su Y, Wang S P, Zhang T Y, et al. Comparative study on catalytic performances for low-temperature CO oxidation of Cu-Ce-O and Cu-Co-Ce-O catalysts, Catal. Lett., 2008, 124(3-4): 405-412
    [91]águila G, Gracia F, Araya P, CuO and CeO_2 catalysts supported on Al2O3, ZrO_2, and SiO_2 in the oxidation of CO at low temperature, Appl. Catal. A, 2008, 343(1-2): 16-24
    [92] Chen C S, You J H, Lin J H, et al. Effect of highly dispersed active sites of Cu/TiO_2 catalyst on CO oxidation, Catal. Commun., 2008, 9(14): 2381-2385
    [93] Huang J, Wang S R, Zhao Y Q, et al. Synthesis and characterization of CuO/TiO_2 catalysts for low-temperature CO oxidation, Catal. Commun., 2006, 7(12): 1029-1034
    [94] Huang J, Wang S R, Guo X Z, et al. The preparation and catalytic behavior of CuO/TixSn1-xO_2 catalysts for low-temperature, Catal. Commun., 2008, 9(11-12): 2131-2135
    [95] Cheng T, Fang Z Y, Hu Q X, et al. Low-temperature CO oxidation over CuO/Fe2O3 catalysts, Catal. Commun., 2007, 8(7): 1167-1171
    [96] Cao J L, Wang Y, Yu X L, et al. Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation, Appl. Catal. B, 2008, 79(1): 26-34
    [97] Chen C S, You J H, Lin J H, et al. The effect of a nickel promoter on the reducibility of a commercial Cu/ZnO/Al2O3 catalyst for CO oxidation, Catal. Commun., 2008, 9(6): 1230-1234
    [98] Jansson J, Low-temperature CO oxidation over Co3O4/Al2O3, J. Catal., 2000, 194(1): 55-60
    [99] Jansson J, Skoglundh M, Fridell E, et al. A mechanistic study of low temperature CO oxidation over cobalt oxide, Topics. Catal., 2001, 16/17(1-4): 385-389
    [100] Pollard M J, Weinstock B A, Bitterwolf T E, et al. A mechanistic study of thelow-temperature conversion of carbon monoxide to carbon dioxide over a cobalt oxide catalyst, J. Catal., 2008, 254(2): 218-225 [101 Wang Y Z, Zhao Y X, Gao C G, et al. Origin of the high activity and stability of Co3O4 in low-temperature CO oxidation, Catal. Lett., 2008, 125(1-2): 134-138
    [102] Grillo F, Natile M M, Glisenti A, Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface, Appl. Catal. B, 2004, 48(4): 267-274
    [103]邵建军,张平,唐幸福等,CoOx/CeO_2催化剂上的CO低温氧化反应,催化学报,2006,27(11):937-939
    [104]邵建军,张平,唐幸福等,制备方法及焙烧温度对Co3O4/CeO_2催化剂上CO低温氧化反应的影响,催化学报,2007,28(2):163-169
    [105] Hou X D, Wang Y Z, Zhao Y X, Effect of CeO_2 doping on structure and catalytic performance of Co3O4 catalyst for low-temperature CO oxidation, Catal. Lett., 2008, 123(3-4): 321-326
    [106] Tang C W, Kuo C C, Kuo M C, et al. Influence of pretreatment conditions on low-temperature carbon monoxide oxidation over CeO_2/Co3O4 catalysts, Appl. Catal. A, 2006, 309(1): 37-43
    [107] Kang M, Song M W, Lee C H, Catalytic carbon monoxide oxidation over CoOx/CeO_2 composite catalysts, Appl. Catal. A, 2003, 251(1): 143-156
    [108] Wang C B, Tang C W, Tsai H C, et al. Characterization and catalytic oxidation of carbon monoxide over supported cobalt catalysts, Catal. Lett., 2006, 107(3-4): 223-230
    [109] Yang W H, Kim M H, Ham S W, Effect of calcination temperature on the low-temperature oxidation of CO over CoOx/TiO_2 catalysts, Catal. Today, 2007, 123(1-4): 94-103
    [110] El-shobaky G A, Ghozza A M, Mohamed G M, Effect of Li2O-doping on surface and catalytic properties of Co3O4-MoO3/Al2O3 system, Appl. Catal. A, 2003, 241(1-2): 235-245
    [111] El-shobaky G A, Shouman M A, El-khouly, Effect of silver oxide doping on surface and catalytic properties of Co3O4/Al2O3 system, Mater. Lett., 2003, 58(1-2): 184-190 [112 Mokhtar M, El-Shobaky H G, Ahmed A S, Surface and catalytic properties of Co3O4/Al2O3 as influenced by ZnO, Colloids Surf. A, 2002, 203(1-3): 87-95
    [113] Ramesh K, Chen L W, Chen F X, et al. Re-investigating the CO oxidationmechanism over unsupported MnO, Mn2O3 and MnO_2 catalysts, Catal. Today, 2008, 131(1-4): 477-482
    [114]姚金松,孟明,査宇清等,高分散锰氧化物催化剂的结构、性能及载体效应,分子催化,2006,20(4):300-305
    [115]刘咏,孟明,姚金松等,多元介孔混合氧化物La-Mn-Ce-O催化剂的制备与表征,物理化学学报,2007,23(5):641-646
    [116] Li P, Miser D E, Rabiei S, et al. The removal of carbon monoxide by iron oxide nanoparticles, Appl. Catal. B, 2003, 43(2): 151-162
    [117] Lin H Y, Chen Y W, Wang W J, Preparation of nanosized iron oxide and its application in low temperature CO oxidation, J. Nanopart. Res., 2005, 7(2-3): 249-263
    [118] Wang D S, Xu R, Wang X, et al. NiO nanorings and their unexpected catalytic properties for CO oxidation, Nanotechnology, 2006, 17: 979-983
    [119] Solsona B, Vázquez I, Garcia T, et al. Complete oxidation of short chain alkanes using a nanocrystalline cobalt oxide catalyst, Catal. Lett., 2007, 116(3-4): 116-121
    [120] Solsona B, Davies T E, Garcia T, et al. Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts, Appl. Catal. B, 2008, 84(1-2): 176-184
    [121] Xiao T C, Ji S F, Wang H T, et al. Methane combustion over supported cobalt catalysts, J. Mol. Catal. A, 2001, 175(1-2): 111-123
    [122] Liotta L F, Carlo G D, Longo A, et al. Structural and morphological properties of Co-La catalysts supported on alumina/lanthana for hydrocarbon oxidation, J. Non-Cryst. Solids, 2004, 345-346: 620-623
    [123] Liotta L F, Carlo G D, Pantaleo G, et al. Co3O4/CeO_2 and Co3O4/CeO_2-ZrO_2 composite catalysts for methane combustion: correlation between morphology reduction properties and catalytic activity, Catal. Commun., 2005, 6(5): 329-336
    [124] Liotta L F, Di Carlo G, Pantaleo G, et al. Catalytic performance of Co3O4/CeO_2 and Co3O4/CeO_2-ZrO_2 composite oxides for methane oxidation: influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture, Appl. Catal. B, 2007, 70(1-4): 314-322
    [125] Liotta L F, Di Carlo G, Pantaleo G, et al. Co3O4/CeO_2 composite oxides for methane emissions abatement: relationship between Co3O4-CeO_2 interaction and catalytic activity, Appl. Catal. B, 2006, 66(3-4): 217-227
    [126] Liotta L F, Ousmane M, Di Carlo G, et al. Total oxidation of propane at low temperature over Co3O4-CeO_2 mixed oxides: role of surface oxygen vacancies and oxygen bulk mobility in the catalytic activity, Appl. Catal. A, 2008, 347(1): 81-88
    [127] Baldi M, Finocchio E, Milella F, et al. Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4, Appl. Catal. B, 1998, 16(1): 43-51
    [128] Baldi M, Escribano V S, Amores J M G, et al. Characterization of manganese and iron oxides as combustion catalysts for propane and propene, Appl. Catal. B, 1998, 17(3): L175-L182
    [129] D?bber D, Kieβling D, Schmitz W, et al. MnOx/ZrO_2 catalysts for the total oxidation of methane and chloromethane, Appl. Catal. B, 2004, 52(2): 135-143
    [130]王翔,马军,段连运等,甲烷的催化燃烧—La,Ce和Y粒子对高比表面MnO_2的改性作用,催化学报,1998,19(4):325-328
    [131] Merino N A, Barbero B P, Grange P, et al. La1-xCaxCoO3 perovskite-type oxides: preparation, characterization, stability, and catalytic potentiality for the total oxidation of propane, J. Catal., 2005, 231(1): 232-244
    [132] Cimino S, Colonna S, De Rossi S, et al. Methane combustion and CO oxidation on zirconia-supported La, Mn oxides and LaMnO3 perovskite, J. Catal., 2002, 205(2): 309-317
    [133]águila G, Gracia F, Cortés J, et al. Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts, Appl. Catal. B, 2008, 77(3-4): 325-338
    [134] Pakulska M M, Grgicak C M, Giorgi J B, The effect of metal and support particle size on NiO/CeO_2 and NiO/ZrO_2 catalyst activity in complete methane oxidation, Appl. Catal. A, 2007, 332(1): 124-129
    [135] Wu R J, Chou T Y, Yeh C T, Enhancement effect of gold and silver on nitric oxide decomposition over Pd/Al2O3 catalysts, Appl. Catal. B, 1995, 6(2):105-116
    [136] Iwamoto M, Hamada H, Removal of nitrogen monoxide from exhaust gases through novel catalytic processes, Catal. Today, 1991, 10(1): 57-71
    [137] Iwamoto M, Yahiro H, Mine Y, Excessively copper ion-exchanged ZSM-5 zeolites as highly-active catalysts for direct decomposition of nitrogen monoxide, Chem. Lett., 1989, 2: 213-216
    [138] Iwamoto M, Yahiro H, Torikai Y, Novel preparation method of highly copper ion-exchanged ZSM-5 zeolites and their catalytic activities for NOdecomposition, Chem. Lett., 1990, 11: 1967-1970
    [139]伍斌,童志权,NO分解催化剂的研究进展,工业催化,2005,13(7):52-55
    [140]胡晓宏,刘艳华,董淑萍,氮氧化物选择性催化还原催化剂研究综述,环境科学与技术,2007,30(11):107-111
    [141] Iwamoto M, Proc of symposiumon catalytic technology for the removal of nitrogen oxides, Catal. Soc. Japan, 1990, 17
    [142] Li Y J, Armor J N, Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen, Appl. Catal. B, 1992, 1(4): L31-L40
    [143] Campa M C, Rossi S D, Ferraris G, et al. Catalytic activity of Co-ZSM-5 for the abatement of NOx with methane in the presence of oxygen, Appl. Catal. B, 1996, 8(3): 315-331
    [144] Li Y J, Armor J N, Selective catalytic reduction of NO with methane on gallium catalysts, J. Catal., 1994, 145(1): 1-9
    [145] Nishizaka Y, Misono M, Catalytic reduction of nitrogen monoxide by methane over palladium-loaded zeolites in the presence of oxygen, Chem. Lett., 1993, 1295
    [146] Wang X P, Yu Sh Sh, Yang H L, et al. Selective catalytic reduction of NO by C2H2 over MoO3/HZSM-5, Appl. Catal. B, 2007, 71(3-4): 246-253
    [147] Sato S, Yu Y, Yahiro H, et al. Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines, Appl. Catal., 1991, 70(1): L1-L5
    [148] Li Y J, Armor J N, Selective catalytic reduction of NOx with methane over metal exchange zeolite, Appl. Catal. B, 1993, 2(2-3): 239-256
    [149] Tabata M, Tsuchida H, Miyamoto K, et al. Reduction of NOx in diesel exhaust with methanol over alumina catalyst. Appl. Catal. B, 1995, 6(2): 169-183
    [150] Ohno T, Hatayama F, Toda Y, et al. Fourier transform infrared studies of reduction of nitric oxide by ethylene over V2O5 layered on ZrO_2, Appl. Catal. B, 1994, 5(1-2): 89-101
    [151] Zhang X K, Walters A B, Vannice M A, NOx decomposition and reduction by methane over La2O3, Appl. Catal. B, 1994, 4(2-3): 237-256
    [152] Zhang X K, Walters A B, Vannice M A, NO adsorption, decomposition, and reduction by methane over rare earth oxides, J. Catal., 1995, 155(2): 290-302
    [153] Fokema M D, Ying J Y, The selective catalytic reduction of nitric oxide with methane over scandium oxide, yttrium oxide and lanthanum oxide, Appl. Catal.B, 1998, 18(1-2): 71-77
    [154] Bethke K A, Alt D, Kung M C, NO reduction by hydrocarbons in an oxidizing atmosphere over transition metal-zirconium mixed oxides, Catal. Lett., 1994, 25(1-2): 37-48
    [155] Kintaichi Y, Hamada H, Tabata M, et al. Selective reduction of nitrogen oxides with hydrocarbons over solid acid catalysts in oxygen-rich atmospheres, Catal. Lett., 1990, 6(2): 239-244
    [156] Hamada H, Kintaichi Y, Sasaki M, et al. Transition metal-promoted silica and alumina catalysts for the selective reduction of nitrogen monoxide with propane, Appl. Catal., 1991, 75(1): L1-L8
    [157] Burch R, Millington P J, Selective reduction of NOx by hydrocarbons in excess oxygen by alumina- and silica-supported catalysts, Catal. Today, 1996, 29(1-4): 37-42
    [158] Inaba M, Kintaichi Y, Hamada H, Cooperative effect of platinum and alumina for the selective reduction of nitrogen monoxide with propane, Catal. Lett., 1996, 36(3-4): 223-227
    [159] Nakatsuji T, Studies on the structural evolution of highly active Ir-based catalysts for the selective reduction of NO with reductants in oxidizing conditions, Appl. Catal. B, 2000, 25(2-3): 163-179
    [160] W?gerbauer C, Maciejewski M, Baiker A, et al. Structural properties and catalytic behaviour of iridium black in the selective reduction of NO by hydrocarbons, J. Catal., 2001, 201(1): 113-127
    [161] Skoglundh M, L?wendahl L, Jansson K, et al. Characterization and catalytic properties of perovskites with nominal compositions La1-xSrxAl1-2yCuyRuyO3, Appl. Catal. B, 1994, 3(4): 259-274
    [162] Teraoka Y, Nakano K, Kagawa S, et al. Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides, Appl. Catal. B, 1995, 5(3): L181-185
    [163] Bradow R, Jovanovi? D, Petrovi? S, et al. Ruthenium perovskite catalysts for lean NOx automotive emission control, Ind. Eng. Chem. Res., 1995, 34(6): 1929-1932
    [164] Feeley J S, Deeba M, Farrauto R J, et al. Lean NOx reduction with hydrocarbons over Ga/S-ZrOx and S-GaZr/Zeolite catalysts, Appl. Catal. B, 1995, 6(1):79-96
    [165] Meunier F C, Breen J P, Zuzaniuk V, et al. Mechanistic aspects of the selective reduction of NO by propene over alumina and silver-alumina catalysts, J. Catal., 1999, 187(2): 493-505
    [166] He H, Zhang X L, Wu Q, et al. Review of Ag/Al2O3-reductant system in the selective catalytic reduction of NOx, Catal. Surv. Asia, 2008, 12: 38-55
    [167] He H, Yu Y B, Selective catalytic reduction of NOx over Ag/Al2O3 catalyst: from reaction mechanism to diesel engine test, Catal. Today, 2005, 100(1-2): 37-47
    [168] Yu Y B, He H, Feng Q C, et al. Mechanism of the selective catalytic reduction of NOx by C2H5OH over Ag/Al2O3, Appl. Catal. B, 2004, 49(3): 159-171
    [169] Zhang X L, He H, Ma Z C, Hydrogen promotes the selective catalytic reduction of NOx by ethanol over Ag/Al2O3, Catal. Commun., 2007, 8(2): 187-192
    [170] Wu Q, He H, Yu Y B, In situ DRIFTS study of the selective reduction of NOx with alcohols over Ag/Al2O3 catalyst: Role of surface enolic species, Appl. Catal. B, 2005, 61(1-2): 107-113
    [171] Wu Q, Feng Q C, He H, Disparate effects of SO_2 on the selective catalytic reduction of NO by C2H5OH and IPA over Ag/Al2O3, Catal. Commun., 2006, 7(9): 657-661
    [172] Wang J, He H, Xie S X, et al. Novel Ag-Pd/Al2O3-SiO_2 for lean NOx reduction by C3H6 with high tolerance of SO_2, Catal. Commun., 2005, 6(3): 195-200
    [173] Zhang X L, Yu Y B, He H, Effect of hydrogen on reaction intermediates in the selective catalytic reduction of NOx by C3H6, Appl. Catal. B, 2007, 76(3-4): 241-247
    [174] Yu Y B, He H, Feng Q C, Novel enolic surface species formed during partial oxidation of CH3CHO, C2H5OH, and C3H6 on Ag/Al2O3: an in situ DRIFTS study, J. Phys. Chem. B, 2003, 107(47): 13090-13092
    [175] Wu Q, Gao H W, He H, Conformational analysis of sulfate species on Ag/Al2O3 by means of theoretical and experimental vibration spectra, J. Phys. Chem. B, 2006, 110(16): 8320-8324
    [176] Yoshida K, Makino S, Sumiya S, Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust, SAE paper, 1989, 892046
    [177] Shangguan W F, Teraoka Y, Kagawa S, Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB2O4 spinel-type oxides, Appl. Catal. B, 1996, 8(2): 217-227
    [178] Shangguan W F, Teraoka Y, Kagawa S, Kinetics of soot-O_2, soot-NO and soot-O_2-NO reactions over spinel-type CuFe2O4 catalyst, Appl. Catal. B, 1997, 12(2-3): 237-247
    [179] Shangguan W F, Teraoka Y, Kagawa S, Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particle, Appl. Catal. B, 1998, 16(2): 149-154
    [180] Liu J, Zhao Z, Xu C M, et al. Simultaneous removal of NOx and diesel soot particles over nanometric La2-xKxCuO4 complex oxide catalysts, Catal. Today, 2007(1-4), 119: 267-272
    [181] Liu J, Zhao Z, Xu C M, et al. The structures, adsorption characteristics of La-Rb-Cu-O perovskite-like complex oxides, and their catalytic performances for the simultaneous removal of Nitrogen oxides and diesel soot, J. Phys. Chem. C, 2008, 112(15): 5930-5941
    [182] Liu J, Zhao Z, Xu C M, et al. Simultaneous removal of NOx and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts, Appl. Catal. B, 2008, 78(1-2): 61-72
    [183] Wang H, Zhao Z, Liang P, et al. Highly active La1-xKxCoO3 perovskite-type complex oxide catalysts for the simultaneous removal of diesel soot and nitrogen oxides under loose contact conditions, Catal. Lett., 2008, 124(1-2): 91-99
    [184] Miyoshi N, Matsumoto S, Katoh K, et al. Development of new concept three-way catalyst for automotive lean-burn engines, SAE Paper, 1995, 950809: 1361-1369
    [185] Takahashi N, Shinjoh H, Iijima T, et al. The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst, Catal. Today, 1996, 27(1-2): 63-69
    [186] Sedlmair C, Seshan K, Jentys A, et al. Elementary steps of NOx adsorption and surface reaction on a commercial storage-reduction catalyst, J. Catal., 2003, 214(2): 308-316
    [187] Mahzoul H, Brilhac J F, Gilot P, Experimental and mechanistic study of NOx adsorption over NOx trap catalysts, Appl. Catal. B, 1999, 20(1): 47-55
    [188] Epling W S, Parks J E, Campbell G C, et al. Further evidence of multiple NOx sorption sites on NOx storage/reduction catalysts, Catal. Today, 2004, 96(1-2): 21-30
    [189] Nova I, Castoldi L, Lietti L, et al. NOx adsorption study over Pt-Ba/aluminacatalysts: FT-IR and pulse experiments, J. Catal., 2004, 222(2): 377-388
    [190] Lietti L, Nova I, Forzatti P, Role of ammonia in the reduction by hydrogen of NOx stored over Pt-Ba/Al2O3 lean NOx trap catalysts, J. Catal., 2008, 257(2): 270-282
    [191] Mulla S S, Chaugule S S, Yezerets A, et al. Regeneration mechanism of Pt/BaO/Al2O3 lean NOx trap catalyst with H2, Catal. Today, 2008, 136(1-2): 136-145
    [192] Clayton R D, Harold M P, Balakotaiah V, NOx storage and reduction with H2 on Pt/BaO/Al2O3 monolith: Spatio-temoral resolution of product distribution, Appl. Catal. B, 2008, 84(3-4): 616-630
    [193] Matsumoto S, Ikeda Y, Suzuki H, et al. NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning, Appl. Catal. B, 2000, 25(2-3): 115-124
    [194] Sedlmair C, Seshan K, Jentys A, et al. Studies on the deactivation of NOx storage-reduction catalysts by sulfur dioxide, Catal. Today, 2002, 75(1-4): 413-419
    [195] Amberntsson A, Skoglundh M, Ljungstr?m, et al. Sulfur deactivation of NOx storage catalysts: influence of exposure conditions and noble metal, J. Catal., 2003, 217(2): 253-263
    [196] Hachisuka I, Hirata H, Ikeda Y, et al. Deactivation mechanism of NOx storage-reduction catalyst and improvement of its performance, SAE Paper, 2000, 1196(1): 791-797
    [197] Yamamoto K, Kikuchi R, Takeguchi T,et al. Development of NO sorbents tolerant to sulfur oxides, J. Catal., 2006, 238(2): 449-457
    [198] Miyoshi N, Matsumoto S, NOx storage-reduction catalyst (NSR catalyst) for automotive engines: sulfur poisoning mechanism and improvement of catalyst performance, Stud. Surf. Sci. Catal., 1999, 121: 245-250
    [199] Yamazaki K, Suzuki T, Takahashi N, et al. Effect of the addition of transition metals to Pt/Ba/Al2O3 catalyst on the NOx storage-reduction catalysis under oxidizing conditions in the presence of SO_2, Appl. Catal. B, 2001, 30(3-4): 459-468
    [200] Luo J Y, Meng M, Zha Y Q, et al. A comparative study of Pt/Ba/Al2O3 and Pt/Fe-Ba/Al2O3 NSR catalysts: New insights into the interaction of Pt-Ba and the function of Fe, Appl. Catal. B, 2008, 78(1-2): 38-52
    [201] Hammache S, Evans L R, Coker E N, et al. Impact of copper on the performance and sulfur tolerance of barium-based NOx storage-reduction catalysts, Appl. Catal. B, 2008, 78(3-4): 315-323
    [202] Xiao J H, Li X H, Deng S, et al. NOx storage-reduction over combined catalyst Mn/Ba/Al2O3-Pt/Ba/Al2O3, Catal. Commun., 2008, 9(5): 563-567
    [203] Vijay R, Hendershot R J, Rivera-Jiménez S M, et al. Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation, Catal. Commun., 2005, 6(2): 167-171
    [204] Vijay R, Snively C M, Lauterbach J, Performance of Co-containing NOx storage and reduction catalysts as a function of cycling condition, J. Catal., 2006, 243(2): 368-375
    [205] Park J H, Cho H J, Park S J, et al. Role of cobalt onγ-Al2O3 based NOx storage catalyst, Topics Catal., 2007, 42-43: 61-64
    [206] Ji Y Y, Toops T J, Crocker M, Effect of ceria on the storage and regeneration behavior of a model lean NOx trap catalyst, Catal. Lett., 2007, 119(3-4): 257-264
    [207] Ji Y Y, Choi J S, Toops T J, et al. Influence of ceria on the NOx storage/reduction behavior of lean NOx trap catalysts, Catal. Today, 2008, 136(1-2): 146-155
    [208] Rohr F, Peter S D, Lox E, et al. On the mechanism of sulphur poisoning and regeneration of a commercial gasoline NOx-storage catalyst, Appl. Catal. B, 2005, 56(3): 201-212
    [209] Kwak J H, Kim D H, Szanyi J, et al. Excellent sulfur resistance of Pt/BaO/CeO_2 lean NOx trap catalysts, Appl. Catal. B, 2008, 84(3-4): 545-551
    [210] Casapu M, Grunwaldt J D, Maciejewski M, et al. Comparative study of structural properties and NOx storage-reduction behavior of Pt/Ba/CeO_2 and Pt/Ba/Al2O3, Appl. Catal. B, 2008, 78(3-4): 288-300
    [211] Casapu M, Grunwaldt J D, Maciejewski M, et al. The fate of platinum in Pt/Ba/CeO_2 and Pt/Ba/Al2O3 catalysts during thermal aging, J. Catal., 2007, 251(1): 28-38
    [212] Iwachido K, Tanada H, Watanabe T, et al. Development of the NOx adsorber catalyst for use with high-temperature condition, SAE Paper, 2001, 1298(1): 953-964
    [213] Toops T J, Smith D B, Partridge W P, NOx adsorption on Pt/K/Al2O3, Catal. Today, 2006, 114(1): 112-124
    [214] Toops T J, Pihl J, Sulfation of potassium-based lean NOx trap while cycling between lean and rich conditions I. Microreactor study, Catal. Today, 2008, 136(1-2): 164-172
    [215] Choi J S, Partridge W P, Daw C S, Spatially resolved in situ measurements of transient species breakthrough during cyclic, low-temperature regeneration of a monolithic Pt/K/Al2O3 NOx storage-reduction catalyst, Appl. Catal. A, 2005, 293: 24-40
    [216] Toops T J, Smith D B, Epling W S, et al. Quantified NOx adsorption on Pt/K/gamma-Al2O3 and the effects of CO_2 and H2O, Appl. Catal. B, 2005, 58(3-4): 255-264
    [217] Toops T J, Smith D B, Partridge W P, Quantification of the in situ DRIFT spectra of Pt/K/γ-Al2O3 NOx adsorber catalysts, Appl. Catal. B, 2005, 58(3-4): 245-254
    [218] Choi J S, Partridge W P, Epling W S, et al. Intra-channel evolution of carbon monoxide and its implication on the regeneration of a monolithic Pt/K/Al2O3 NOx storage-reduction catalyst, Catal. Today, 2006, 114(1): 102-111
    [219] Takahashi N, Suda A, Hachisuka I, et al. Sulfur durability of NOx storage and reduction catalyst with supports of TiO_2, ZrO_2 and ZrO_2-TiO_2 mixed oxides, Appl. Catal. B, 2007, 72(1-2): 187-195
    [220] Sakamoto Y, Matsunaga S, Okumura K, et al. Comparison between the NOx release-reduction reaction for Pt/Ba/Al2O3 and Pt/K/Al2O3 on a millisecond time scale, Chem. Eng. Sci., 2008, 63(20): 5028-5034
    [221] Liu Y, Meng M, Li X G, et al. NOx storage behavior and sulfur-resisting performance of the third-generation NSR catalysts Pt/K/TiO_2-ZrO_2, Chem. Eng. Res. Des., 2008, 86(8): 932-940
    [222] Idakiev V, Tabakova T, Yuan Z Y, et al. Gold catalysts supported on mesoporous titania for low-temperature water-gas shift reaction, Appl. Catal. A, 2004, 270(1-2): 135-141
    [223] Rezaei M, Alavi S M, Sahebdelfar S, et al. CO_2-CH4 reforming over nickel catalysts supported on mesoporous nanocrystalline zirconia with high surface area, Energy fuels, 2007, 21(2): 581-589
    [224] Laosiripojana N, Chadwick D, Assabumrungrat S, Effect of high surface area CeO_2 and Ce-ZrO_2 supports over Ni catalyst on CH4 reforming with H2O in the presence of O_2, H2 and CO_2, Chem. Eng. J., 2008, 138(1-3): 264-273
    [225] Wyrwalski F, Lamonier J F, Siffert S, et al. Modified Co3O4/ZrO_2 catalysts for VOC emissions abatement, Catal. Today, 2007, 119(1-4): 332-337
    [226] Gunasekaran N, Saddawi S, Carberry J J, Effect of surface area on the oxidation of methane over solid oxide solution catalyst La0.8Sr0.2MnO3 , J. Catal., 1996, 159(1): 107-111
    [227] Takahashi R, Sato S, Sodesawa, et al. High surface-area silica with controlled pore size prepared from nanocomposite silica and citric acid, J. Phys. Chem. B, 2000, 104(51): 12184-12191
    [228]陈杨英,韩秀文,包信和,W-SBA-15介孔分子筛的直接合成及其对环己烯环氧化反应的催化性能,催化学报,2005, 26(5):412-416
    [229]翟尚儒,蒲敏,巩雁军等,用双表面活性剂为共模板合成中孔分子筛MCM-48,物理化学学报,2002,18(10):911-915
    [230] Kosslick H, Lishcke G, Landmesser H, et al. Acidity and catalytic behavior of substituted MCM-48, J. Catal., 1998, 176(1): 102-114
    [231] Zhang Z R, Suo J S, Zhang X M, et al. Synthesis, characterization and catalytic testing of W-MCM-41 mesoporous molecular sieves, Appl. Catal. A, 1999, 179(1-2): 11-19
    [232]蔡强,魏长平,许永宜等,过渡金属(Ti, Zr, Mn, Cu, Mo, Cr, Co)离子掺杂的MCM-48的合成、表征与催化性能研究,高等学校化学学报,1999,20(3):344-349
    [233] Graham G W, Jen H W, McCabe R W, et al. Characterization of model automotive exhaust catalysts: Pd on Zr-rich ceria-zirconia supports, Catal. Lett., 2000, 67(2-4): 99-105
    [234] Imagawa H, Tanaka T, Takahashi N, et al. Synthesis and characterization of Al2O3 and ZrO_2-TiO_2 nano-composite as a support for NOx storage-reduction catalyst, J. Catal., 2007, 251(2): 315-320
    [235] Imagawa H, Tanaka T, Takahashi N, et al. Titanium-doped nanocomposite of Al2O3 and ZrO_2-TiO_2 as a support with high sulfur durability for NOx storage-reduction catalyst, Appl. Catal. B, 2009, 86(1-2): 63-68
    [236] Liu Y, Meng M, Zou Z Q, et al. In situ DRIFTS investigation on the NOx storage mechanisms over Pt/K/TiO_2-ZrO_2 catalyst, Catal. Commun., 2008, 10(2): 173-177
    [237] Tejuca L G, Fierro J L G, Properties and Application of Perovskite-Type Oxides, New York: Marcel Dekker Incorporation, 1995, 101
    [238] Szabo V, Bassir M, Van Neste A, et al. Perovskite-type oxides synthesized by reactive grinding: PartⅢ. Kinetics of n-hexane oxidation over LaCo(1-x)FexO3, Appl. Catal. B, 2003, 42(3): 265-277
    [239] Kaliaguine S, Van Neste A, Szabo V, et al. Perovskite-type oxides synthesized by reactive grinding: PartⅠ. Preparation and characterization, Appl. Catal. A, 2001, 209(1-2): 345-358
    [240] Trong On D, Nguyen S V, Kaliaguine S, New SO_2 resistant mesoporous La-Co-Zr mixed oxide catalysts for hydrocarbon oxidation, Phys. Chem. Chem. Phys., 2003, 5, 2724-2729.
    [241] Song M G, Kim J Y, Cho S H, et al. Mixed cationic-nonionic surfactant templating approach for the synthesis of mesoporous silica, Langmuir, 2002, 18(16): 6110-6115
    [242] Meng M, Lin P Y, Fu Y L, The catalytic removal of CO and NO over Co-Pt(Pd, Rh)/γ-Al2O3 catalysts and their structural characterizations, Catal Lett, 1997, 48(3-4): 213-222
    [243] Huffman G P, Shan N, Zhao J M, et al. In-situ XAFS investigation of K-promoted Co catalysts, J. Catal., 1995, 151(1): 17-25
    [244]孟明,林培琰,俞寿明,Ba、Sr、Ca在Co/γ-Al2O3催化剂上CO氧化的作用机制(I),化学物理学报,1995,8(1):66-74
    [245]俞铁铭,周仁贤,唐中民等,Co/ZrO_2催化剂的结构及TPR性能研究,高等学校化学学报,1999,20(1):123-126
    [246] Sanchez M G., Gazquez J L, Oxygen vacancy model in strong metal-support interaction, J. Catal., 1987, 104(1): 120-135
    [247] Sing K S W, Everett D H, Haul R A, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1985, 57(4): 603-619
    [248] Prouzet E, Pinnavaia T J, Assembly of mesoporous molecular sieves Containing wormhole motifs by a nonionic surfactant pathway: Control of pore size by synthesis temperature, Angew. Chem., Int. Ed. Engl., 1997, 36:516-518
    [249] Jansson J, Palmqvist A E C, Fridell E, et al. On the catalytic activity of Co3O4 in low-temperature CO oxidation, J. Catal., 2002, 211(2): 387-397
    [250] Busca G, Finocchio E, Lorenzelli V, et al. IR studies on the activation of C-H hydrocarbon bonds on oxidation catalysts, Catal. Today, 1999, 49(4): 453-465
    [251] Martínez A, López C, Márquez F, et al. Fischer-Tropsch synthesis ofhydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters, J. Catal., 2003, 220(2): 486-499
    [252] Ernst B, Hilaire L, Kiennemann A, Effect of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO_2 Fischer-Tropsch catalyst, Catal. Today, 1999, 50 (2): 413-427
    [253] Meng M, Zha Y Q, Luo J Y, et al. A study on the catalytic synergy effect between noble metals and cobalt phases in Ce-Al-O supported catalysts, Appl. Catal. A, 2006, 301(2): 145-151
    [254] Vargas J C, Libs S, Roger A C, et al. Study of Ce-Zr-Co fluorite-type oxide as catalysts for hydrogen production by steam reforming of bioethanol, Catal. Today, 2005, 107-108: 417-425
    [255] Kim M H, Ebner J R, Friedman R M, et al. Determination of metal dispersion and surface composition in supported Cu-Pt catalysts, J. Catal., 2002, 208(2): 381-392
    [256] Ferrandon M, Carn? J, J?r?s S, et al. Total oxidation catalysts based on manganese or copper oxides and platinum or palladiumⅡ: Activity, hydrothermal stability and sulphur resistance, Appl. Catal. A, 1999, 180(1-2): 153-161
    [257] Schanke D, Vada S, Blekkan E A, et al. Study of Pt-promoted cobalt CO hydrogenation catalysts, J. Catal., 1995, 156 (1): 85-95
    [258] Panayotov D, Khristova M, Velikova M, Interactions NO-CO and O_2-NO-CO on CuCo2O4/γ-Al2O3 and onγ-Al2O3- and CuCo2O4/γ-Al2O3-supported Pt. Rh and Pt-Rh catalysts, a transient response study, Appl. Catal. B, 1996, 9(1-4): 107-132
    [259] Lin P Y, Skoglundh M, Lowendahl L, et al. Catalytic purification of car exhaust over cobalt- and copper-based metal oxides promoted with platinum and rhodium, Appl. Catal. B, 1995, 6(3): 237-254
    [260] Skoglundh M, Johansson H, Lowendahl L, et al. Cobalt-promoted palladium as a three-way catalyst, Appl. Catal. B, 1996, 7(3-4) 299-319
    [261] Luo J Y, Meng M, Li X, et al. Mesoporous Co3O4-CeO_2 and Pd/Co3O4-CeO_2 catalysts: Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation, J. Catal., 2008, 254(2): 310-324
    [262] Tanaka H, Mizuno N, Misono M, Catalytic activity and structural stability of La0.9Ce0.1Co1-xFexO3 perovskite catalysts for automotive emissions control,Appl. Catal. A, 2003, 244 (2): 371-382
    [263] Blin J L, Léonard A, Su B L, Well-ordered spherical mesoporous materials CMI-1 synthesized via an assembly of decaoxyethylene cetylether and TMOS, Chem. Mater., 2001, 13(10): 3542-3553
    [264] Martinez-Aris A, Fernandez-Garcia M, Galvez O, et al. Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO_2 and CuO/ZrCeO4 catalysts, J. Catal., 2000, 195(1): 207-216
    [265] Fernadez-Garcia M, Rebollo E G, Ruiz A G, et al. Influence of ceria on the dispersion and reduction/oxidation behavior of alumina-supported copper catalysts, J. Catal., 1997, 172(1): 146-159
    [266] Luo J Y, Meng M, Qian Y, et al. A mesoporous oxidation catalyst La-Co-Ce-O prepared by citric acid complexation and organic template decomposition method, Catal. Lett., 2007, 116(1-2): 50-56
    [267] Chen C L, Weng H S, Nanosized CeO_2-supported metal oxide catalysts for catalytic reduction of SO_2 with CO as a reducing agent, Appl. Catal. B, 2005, 55(2): 115-122
    [268] Kim H, Park D W, Woo H C, et al. Reduction of SO_2 by CO to elemental sulfur over Co3O4-TiO_2 catalysts, Appl. Catal. B, 1998, 19(3-4): 233-243
    [269] Paik S C, Kim H, Chung J S, The catalytic reduction of SO_2 to elemental sulfur with H2 or CO, Catal. Today, 1997, 38(2): 193-198
    [270] Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, 1998, 396(11): 152-155
    [271] Avgouropoulos G, Ioannides T, Selective CO oxidation over CuO-CeO_2 catalysts prepared via the urea-nitrate combustion method, Appl. Catal. A, 2003, 244(1): 155-167
    [272] Cimino A, Gazzoli D, Indovina V, et al. High and low surface area NiO-MgO and CoO-MgO solid solutions: a study of XPS surface composition and CO oxidation activity, Top. Catal., 1999, 8(3-4): 171-178
    [273] Zhou R X, Yu T M, Jiang X Y, et al. Temperature-programmed reduction and temperature-programmed desorption studies of CuO/ZrO_2 catalysts, Appl. Sur. Sci., 1999, 148(3-4): 263-270
    [274] Lin H K, Wang C B, Chiu H C, et al. In situ FTIR study of cobalt oxides for the oxidation of carbon monoxide, Catal. Lett., 2003, 86(1-3): 63-68
    [275] Kalinkin A V, Savchenko V I, Pashis A V, Mechanism of low-temperature CO oxidation on a model Pd/Fe2O3 catalyst, Catal. Lett., 1999, 59(2-4): 115-119
    [276] Wang D H, Hao Z P, Chen D Y, et al. Influence of pretreatment conditions on low-temperature CO oxidation over Au/MnOx/Al2O3 catalysts, J. Mol. Catal. A, 2003, 200(1-2):229-238
    [277] El-shobaky H G, Surface and catalytic properties of Co, Ni and Cu binary oxide systems, Appl. Catal. A, 2004, 278(1): 1-9
    [278] Solsona, B E, Garcia T, Jones C, et al. Supported gold catalyst for the total oxidation of alkanes and carbon monoxide, Appl. Catal. A, 2006, 312: 67-76
    [279] Luo J Y, Meng M, Zha Y Q, et al. Identification of the active sites for CO and C3H8 total oxidation over nanostructured CuO-CeO_2 and Co3O4-CeO_2 catalyst, J. Phys. Chem. C, 2008, 112(23): 8694-8701
    [280] Epling W S, Campbell L E, Yezerets A, et al. Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts, Catal. Rev., 2004, 46: 163-245
    [281] Zou Z Q, Meng M, Guo L H, et al. Synthesis and characterization of CuO/Ce1-xTixO_2 catalysts used for low-temperature CO oxidation, J. Hazard. Mater., 2009, 163(2-3): 835-842
    [282] Weng D, Li J, Wu X D, et al. Promotional effect of potassium on soot oxidation activity and SO_2-poisoning resistance of Cu/CeO_2 catalyst, Catal. Commun., 2008, 9(9): 1898-1901
    [283] Fan J, Wu X D, Wu X D, et al. Thermal ageing of Pt on low-surface-area CeO_2-ZrO_2-La2O3 mixed oxides: Effect on the OSC performance, Appl. Catal. B, 2008, 81 (1-2): 38-48
    [284] Philipp S, Drochner A, Kunert J, et al. Investigation of NO adsorption and NO/O_2 co-adsorption on NOx-storage-components by DRIFT-spectroscopy, Top. Catal., 2004, 30-31: 235-238
    [285] Fanson P T, Horton M R, Delgass W N, et al. FTIR analysis of storage behavior and sulfur tolerance in barium-based NOx storage and reduction (NSR) catalysts, Appl. Catal. B, 2003, 46(2): 393-413
    [286] Abdulhamid H, Fridell E, Dawody J, et al. In situ FTIR study of SO_2 interaction with Pt/BaCO3/Al2O3 NOx storage catalysts under lean and rich conditions, J. Catal., 2006, 241(1): 200-210
    [287] Peralta M A, Milt V G, Cornaglia L M, et al. Stability of Ba, K/CeO_2 catalystduring diesel soot combustion: Effect of temperature, water, and sulfur dioxide, J. Catal., 2006, 242(1): 118-130
    [288] Chen J P, Yang R T, Seclective catalytic reduction of NO with NH3 on SO42-/TiO_2 superacid catalyst, J. Catal., 1993, 139(1): 277-288
    [289] Lavalley J C, Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules, Catal. Today, 1996, 27(3-4): 377-401
    [290] Castoldi L, Nova I, Lietti L, et al. Study of the effect of Ba loading for catalytic activity of Pt-Ba/Al2O3 model catalysts, Catal. Today, 2004, 96(1-2): 43-52
    [291] Ito K, Kakino S, Ikeue K, et al. NO adsorption/desorption property of TiO_2-ZrO_2 having tolerance to SO_2 poisoning, Appl. Catal. B, 2007, 74(1-2): 137-143
    [292] Jin F, Li Y D, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule, Catal. Today, 2009, 145(1-2): 101-107
    [293] Maijanen A, Derouane E G, Nagy J B, FT-IR and solid-state NMR investigation of surface hydroxyl groups on dealuminated ZSM-5, Appl. Surf. Sci., 1994, 75(1-4): 204-212
    [294] Li J C, Xiang L, Xu F, et al. Effect of hydrothermal treatment on the acidity distribution ofγ-Al2O3 support, Appl. Surf. Sci., 2006, 253(2): 766-770
    [295] Reddy B M, Khan A, Recent advances on TiO_2-ZrO_2 mixed oxides as catalysts and catalysts supports, Catal. Rev.–Sci. Eng., 2005, 47: 257-296
    [296] Tanabe K, Sumiyoshi T, Shibata K, et al. A new hypothesis regarding the surface acidity of binary metal oxides, Bull. Chem. Soc. Jpn., 1974, 47(5): 1064-1066
    [297] Stork W H J, Pott G T, Studies of compound formation on alkali/gamma-aluminum oxide catalyst systems using chromium, iron, and manganese luminescence, J. Phys. Chem., 1974, 78(24): 2496-2506
    [298] Krupay B W, Ameomiya Y, Alkali-promoted alumina catalysts: I. Chemisorption and oxygen exchange of carbon monoxide and carbon dioxide on potassium-promoted alumina catalysts, J. Catal., 1981, 67(2): 362-370
    [299] Kantschewa M, Albano E V, Etrl G, et al. Infrared and x-ray photoelectron spectroscopy study of K2CO3/γ-Al2O3, Appl. Catal., 1983, 8(1): 71-84
    [300] Amenomiya Y, Pleizier G, Alkali-promoted alumina catalysts: II. Water-gas shiftreaction, J. Catal., 1982, 76(2): 345-353
    [301] Kintaichi Y, Haneda M, Inaba M, et al. Catalytic performance of indium-supported TiO_2-ZrO_2 for the selective reduction of nitrogen monoxide in the presence of oxygen, Catal. Lett., 1997, 48(1-2): 121-127
    [302] Hadjiivanov K, Bushev V, Kantcheva M, et al. Infrared spectroscopy study of the species arising during nitrogen dioxide adsorption on titania (anatase), Langmuir, 1994, 10(2): 464-471
    [303] Dou D, Balland J, Impact of alkali metals on the performance and mechanical properties of NOx adsorber catalysts, SAE Paper, 2002, 734(1): 301-312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700