薄板冲压回弹仿真计算及应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回弹现象是冷冲压成型过程中不可避免的物理现象。回弹问题的存在造成零件的形状及尺寸与设计要求不符,直接影响冲压件的品质,包括外观质量、装配性能和使用可靠性等。如何准确的预测回弹后零件的形状、设计出准确的型面以补偿回弹,在目前还是模具工业中的实际难题。采用数值方法准确的预测零件的回弹量对最终解决回弹问题至关重要。有限元方法是一种广泛应用于冲压成型仿真的数值方法,该方法已经被证实可用于回弹仿真计算,但由于回弹计算结果受到很多因素的影响,目前有限元方法对回弹预测精度还不理想,回弹问题有待进一步的研究。
     本文针对影响回弹预测精度的三个主要因素:仿真模型中的单元尺寸、材料参数和等效拉延筋模型,开展了薄板冲压回弹仿真计算及其应用技术的研究,研究的目的在于提高回弹预测的精度。主要研究工作如下:
     (1) 研究了翻边回弹仿真中板料过模具圆角时的单元尺寸问题,证实了在翻边仿真中板料过模具圆角时采用较小的单元尺寸是取得合理的回弹预测结果的必要条件之一。通常认为板料过模具圆角时采用的单元数目在模具圆角大的情况下可以采用较大的单元尺寸,本文研究中发现该观点并不能应用于翻边回弹仿真。本文建立了凹模圆角半径不同的三个翻边试验的仿真模型,比较了在模型中采用不同单元尺寸时的回弹仿真与试验结果。研究表明,不论模具圆角半径大小,板料在过圆角的部分采用较小的单元尺寸时,回弹的预测结果才能够与试验结果较为一致。
     (2) 研究了在U型冲压仿真中单元尺寸对回弹的影响机理,解释了令许多研究者困惑的回弹预测结果偏小问题。本文进行了U型冲压的试验,并把U型冲压仿真分为成型中期与成型术期两个阶段,分别研究了两个阶段中单元尺寸对回弹的影响机理。研究表明,在成型仿真过程中期,板料弯曲部分出现“应力松弛”现象,即板料中的应力逐渐下降。在不同单元尺寸下,“应力松弛”程度不同,导致了板料在回弹计算前的应力不同,最后导致了在回弹仿真中预测结果不同。在这种情况下,单元尺寸越大,“应力松弛”越严重,回弹预测结果越小。在成型仿真过程术期,由于板料和模具之间的间隙小,板料和模具之间不可避免的发生“穿透现象”,这种“穿透现象”导致的接触力对回弹值所起的效果与有底凹模弯曲中的“校正力”所起的效果相同。有底凹模弯曲中的“校正力”大小不同,零件的回弹量就有较大差异。仿真中不同单元尺寸下该“校正力”大小不同,导致了回
Springback is a common physical phenomenon in the metal sheet forming. The springback problem, which make the shape and dimension diverge from design requirements, direct affects the quality of forming product, including the appearance quality, the assembly quality and the final product performance. How to predict the shape of products after forming, and design the required die/punch surface to compensate springback is a difficult problem in the metal sheet forming industry. It is essential to use numerical methods to predict the springback of complex products. Finite element method (FEM) is a widely used numerical method in sheet forming simulation, and is approved to predict springback successfully, but the springback prediction result is affected by many factors, and the accuracy of springback prediction is not satisfactory, deep research on the springback is still necessary.Element sizes, material parameters in simulation model and equivalent drawbead model are three main factors influencing the accuracy of the springback prediction. Focusing on these factors, methods to improve the accuracy of springback prediction in the metal sheet forming are studied. The main work is listed as follows:(1) The size of elements of blank passing through the die/punch shoulder in flanging process is studied, and it is verified that the element size should be enough small when the element passing the die/punch shoulder to get reasonable springback prediction of flanging process. Many researchers haven't reached an agreement on the number of element passing throng the shoulder, but it is generally accepted the element size can be larger if the radius of the shoulder is larger. Author has found this opinion is not suitable when it is used on the flanging springback simulation. In this paper, models of three flanging process are built, and springback predicted by models with different element size are compared with the experimental results. It is shown that springback predicted by the models using small element size of blank in simulation of flanging processes with different die radius are consistent with the experimental results.(2) The influence of element size on springback in U-shape forming is investigated, and why the springback is always under predicted by FEM is explained, which is a problem many researchers have been puzzled with. Experiments of U
    shape forming are carried out. Simulations of U shape forming are divided into two phases: at the process and at the end of forming process. The influence of element size on springback prediction is discussed individually for these two phases. Results show that at the process of forming simulation, "stress relaxation" ,which low down the stress, incurs at the bending part of the blank, and the "stress relaxation" is more obvious when the element size is larger. The stresses, which determine the springback, are affected by the "stress relaxation", and thus the springback prediction is affected by the element size. In this situation, springback is smaller in models with big element size for more "stress relaxation" incurs. At the end of forming simulation, penetration is unavoidable between the blank and die/punch. The contact force caused by the penetration has same effect of the force in shape correction at the bending process with die bottom, which will reduce the springback. For the force in shape correction is varied with different element size, so as the springback predicted. In this situation, springback is smaller in models with big element size for big force in shape correction is applied. In this paper, the methods to low down the influence of element size on springback prediction are also suggested.(3) A new inverse method to identify parameters in material models is suggested. The accuracy of material model parameters, which is determined by the description accuracy of mechanical properties of sheet, has great influence on the accuracy prediction of springback. The material identification process can be time consuming if simulation model of experiment is complex. An inverse method, which combined FEM software ANSYS LS-DYNA with modified Levenberg Marquart (LM) optimization algorithm, is utilized to identify material parameters based on tensile test with rectangular specimens. It is time efficient and converges fast. Results show that the material parameters in Barlat 1989 and Barlat 1991 identified by this method describe the mechanical properties well. Using the same inverse method, a new approach to identify the true stress-strain curve based on the blank deformation in the necking process in tensile test. This method can get the true stress-strain curve at large strain region and avoid the shortcoming of normal method, which can get the curve at small strain region only.(4) The influence of drawbead on springback is investigated, and a modified equivalent drawbead model is proposed. The influence of using equivalent drawbead model on springback prediction is not clear. Based on drawbead test and flanging test, the influence of drawbead on springback is studied. Results show that after passing
    through the drawbead, the blank become hardened, and thickness of blank is reduced, and stress is left in the blank, which affect the springback of parts. Even the equivalent model used now can describe the drawbead restraint force accurately; it isn't qualified to predict springback accurately. To avoid the shortage of the equivalent drawbead model, a modified equivalent drawbead model is suggested, which can describe the material hardening, thinning, and stress left accurately besides the drawbead restraint force. Theory method, experiment method and simulation method to calculate parameters in the modified equivalent model are suggested, and the application of this model on simple springback problem is also suggested. Results show the modified equivalent model can improve the accuracy of springback prediction.
引文
[1] 罗石念,刘本仁.耐候型汽车用深冲板的研究.中国冶金,2003,70(9):22-26
    [2] Hayashi H. Development of high strength steel sheets and practical application to autobody parts. SAE. Trans. Of Material & manufacture, 1995: 560-570 (NO. 950699)
    [3] Mattiasson K. On finite element simulation of sheet metal forming processes in industry. European congress on computational methods in applied sciences and engineering, 2000, 9: 1-17
    [4] 2005 Numisheet benchmark 1-Springback Prediction of Decknid Inner Panel. www.numisheet2005.org, 2005-7-28
    [5] 2005 Numisheet benchmark 2-Springback Prediction of A Cross Member. www.numisheet2005.org, 2005-7-28
    [6] 2005 Numisheet benchmark 3-Channel draw/cylindrical cup 2-stage test. www.numisheet2005.org, 2005-7-28
    [7] 朱东波,孙琨,李涤尘等.板料成型回弹问题研究新进展.塑性工程学报,2002,7(1):11-17
    [8] Kuwabara T, Takahashi S, Akiyama K, et al. 2-D Springback Analysis for Stretch-Bending Process Based on Total Strain Theory. SAE. Trans. Of Material & manufacture, 1995: 504-513 ( No. 950691)
    [9] Lee M G, Kim D, Kim C, et al. Spring-back evaluation of automotive sheets based on isotropic kinematic hardening laws and non-quadratic anisotropic yield functions. Part Ⅲ: Applications. International Journal of Plasticity, 2005, 21 (5): 915-953
    [10] 宋黎,杨坚,黄天泽.板料弯曲成型的回弹分析与工程控制综述.锻压技术,1996,21(1):18-22
    [11] Bohn M L, Xu S G, Weinmann K J, et al. Improving Formability in Sheet Metal Stamping With Active Drawbead Technology. Transactions of the ASME, 2003, 123(10): 504-510
    [12] YEH T K. Modeling and Management of Process-Induced Shape Distorition of Sheet Metal Products. [dissertation] The Faculty of the Graduate School of University of Missouri-Columbia. 2001: 45-64
    [13] 姜海峰,赵军,刘玉峰等.变压边力拉深的原理及试验系统.塑性工程学报,1999,6(1):30-33
    [14] 李少平,郑静风,何丹农.利用神经网络及数值模拟获取变压边力控制曲线.金属成型工艺,2003,20(3):43-45
    [15] 张立力,曹飞,齐恬等.基于回弹补偿的模具设计的研究.机电产品开发与创新,2003(1):41-44
    [16] Park D W, Oh S I. A four-node shell element with enhanced bending performance for springback analysis. Methods Appl. Mech. Engrg, 2004, 193 (23-26): 2105-2138
    [17] Bui Q V, Papeleux L, Ponthot J P. Numerical simulation of springback using enhanced assumed strain elements. Journal of Materials Processing Technology, 2004, 153-154: 314-318
    [18] Pourboghrat F, Michael E K, Richard C, et al. A hybrid membrane/shell method for calculating springback of anisotropic sheet metals undergoing axisymmetric loading. International Journal of Plasticity 2000, 16(6): 677-700
    [19] Li K P, Carden W P, Wagoner R H; Simulation of springback. International Journal of Mechanical Sciences 2002, 44(1): 103-122
    [20] Xu W L, Ma C H, Li C H, et al. Sensitive factors in springback simulation for sheet metal forming. Journal of Materials Processing Technology, 2004, 151(1-3): 217-222
    [21] Lee S W, Yang D Y. An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process. Journal of Materials Processing Technology, 1998, 80-81: 60-67
    [22] 张立力,齐恬,戴映荣.数值模拟参数和工艺参数对板材成型回弹影响的研究.锻压技术,2002,27(6):18-21
    [23] Esat V, Darendeliler H, Gokler M I. Finite element analysis of springback in bending of aluminium sheets. Materials and Design, 2002, 23(2): 223-229
    [24] Chun B K. Study on hardening models and numerical implementation for springback prediction. [dissertation] School of the Ohio State University. 2001: 123-136
    [25] Li X C, Yang Y Y, Wang Y Z, et al. Effect of the material hardening mode on the springback simulation accuracy of V-free bending. Journal of Materials Processing Technology 2002, 123: 209-211
    [26] Zhang Z T, Lee D. Development of a new model for plane strain bending and springback analysis. Journal of Materials Engineering and Performance, 1995, 7(4): 291-300
    [27] 谢晖.基于CAE仿真的冲压回弹影响因素研究.湖南大学学报,2003,30(5):29-34
    [28] Zhang Z L, Hauge M, (?)degard C, et al. Determining material true stress-strain curve from tensile specimens with rectangular cross-section. International Joural of solids and structures, 1999, 36(23): 3497-3516
    [29] Zhang Z L, (?)degard C, S(?)vik, O P, et al. A study on determining true-strain curve for anisotropic materials with rectangular tensile bars. International Joural of solids and structures, 2001, 38(26-27): 4489-4505
    [30] Zhang Z L, (?)degard C, S(?)vik, O P, et al. Determining true stress-strain curve for isotropic and anisotropic materials with rectangular tensile bars: method and verifications. Computational materials science 2001, 20(1): 77-85
    [31] Kajberg J, Lindkvist G. Characterisation of materials subjiected to large strains by inverse modeling based on in-plane displacement fields. International Joural of solids and structures, 2004, 41(13): 3439-3459
    [32] Yoshida F, Uemori T, Fujiwara K. Elastic-plastic of steel sheets under in-plane cyclic tension-compression at large strain. International Journal of Plasticity 2002, 18(5-6): 633-659
    [33] Chun B K, Kim H Y, Lee J K. Modeling the Bauschinger effect for sheet. metals, part Ⅰ: theory. International Journal of Plasticity, 2002, 18(5-6): 575-595
    [34] Chun B K, Kim H Y, Lee J K. Modeling the Bauschinger effect for sheet. metals, part Ⅱ: applications. International Journal of Plasticity, 2002, 18(5-6): 597-616
    [35] Chung K, Lee M G, Kim D, et al. Spring-back evaluation of automotive sheets based on isotropic kinematic hardening laws and non-quadratic anisotropic yield functions. Part Ⅰ: theory and formulation. International Journal of Plasticity, 2005, 21(5): 861-882
    [36] Lee M G, Kim D, Kim C, et al. Spring-back evaluation of automotive sheets based on isotropic kinematic hardening laws and non-quadratic anisotropic yield functions. Part Ⅱ: characterization of material properties. International Journal of Plasticity 2005, 21(5): 883-914
    [37] Aretz H. Applications of a new plane stress yield function to orthotropic steel and aluminum sheet metals. Modelling and simulation in materials science and engineering. 2004, 12: 491-509
    [38] Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. 1948, 193: 281-297
    [39] Hill R. Theoretical plasticity of textured aggregates. Math. Proc. Cambridge Phil. Soc 1979, 85: 179-191
    [40] Hill R. A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci. 1993, 15: 19-25
    [41] Hosford W F. A generalized isotropic yield criterion. J. Appl. Mech. 1972, (39): 607-609
    [42] Hosford W F. The mechanics of crystals and textured polycrytals. Oxford: Oxford science, 1993: 317-323
    [43] Barlat F, Lian J. Plastic behaviour and stretchability of sheet metals. Part Ⅰ: A yield function for orthotropic sheets under plane stress condition. Int. J. Plasticity 1989: 551-566
    [44] Barlat F, Lege D J, Brem J C. A six-component yield function for anisotropic materials. Int. J. Plasticity, 1991: 7693-7712
    [45] Barlat F. Yield functiondevelopment for aluminium alloy sheets. J. Mech phys solids, 1997, 45(11-12): 1727-1763
    [46] Barlat F, Brem J C, Yoon J W, et al. Plane stress yield function for aluminium alloy sheets-Part 1: theory. Int. J. plasticity. 2003, 19(9): 1297-1319
    [47] Susumu S, Source Y M. Study of accuracy in an intelligent V-bending process for sheet metals change in Young's modulus due to plastic deformation and its effect on springback. Journal of the Society of Materials Science, Japan, 1995, 44: 578-583
    [48] Cleveland R M, Ghosh A K. Inelastic effects on springback in metals. International Journal of Plasticity 2002, 18(5-6): 769-785
    [49] Kulkarm P, Prabhaker S. Influnce of the effect of strain rates on springback in Aluminum. 4th European LS-Dyna users conference, Metal forming Ⅱ. 2004
    [50] Wang J F, Wagoner R H, Matlock D K, et al. Anticlastie curvature in draw-bend springback. International Journal of Solids and Structures, 2005 42(5-6): 1287-1307
    [51] Thibaud S, Gelin J C. Influence of initial and induced hardening on the formability in sheet metal forming. Metal forming 2000. 2000: 353-368.
    [52] Zhao K M, Lee J K. Inverse estimation of material properties for sheet metals. Communications in numerical methods in engineering. 2004, 20: 105-118
    [53] Lindkvist G, Lindback T. Estimate of material parameters using inverse modeling and their application to sheet metal forming simulations. AIP Conf. Proc. 2004, http://procedings.aip.org/proceedings/cpcr.jcp, 2004-11-10
    [54] Schnur D S, Zabaras M. An inverse method for determining elastic material properties and a material interface. International Journal of Numerical Method in Engineering. 1992, 33: 2039-2057
    [55] Yoshida F, Urabe M, Hino R, et al. Inverse approach to identification of material parameters of syclic elasto-plasticity for component layers of a bimetallic sheet. International journal of plasticity 2003, 19(12): 2149-2170.
    [56] 曹银锋.板料冲压成型仿真过程中的材料参数反求技术研究.[湖南大学硕士学位论文].长沙:湖南大学,2002:1-67
    [57] Ghouati O, Gelin J C. Identification of material parameters directly from metal forming process. Journal of Materials Processing Technology, 1998, 80-81: 560-564
    [58] Scott-Murphy A, Kalyanasundaram S, Gardew-Hall M, et al. A hybrid draw die optimization technique for sheet metal forming. Transactions of the ASME. 2004, 126: 384-390
    [59] Gavrus A, Massoni E, Chenot J L. An inverse analysis using a finite element model for identification of rheological parameters. Journal of Materials Processing Technology, 1996, 60(1-4): 447-454
    [60] Ghouati O, Gelin J C. A finite element-based identification method for complex metallic material behaviors. Computational materials science, 2001 21(1): 57-68
    [61] Mahnken R, Stein E. A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput. Methods app. Mech. Engrg, 1996, 136(3-4): 225-258
    [62] Mahnken R. Aspects on the finite-element implementation of the Gurson model including parameter identification. International Journal of Plasticity, 1999, 15(11): 1111-1137
    [63] Mahnken R. A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification. Computers and Structures, 2000, 74(2): 179-200
    [64] Khalfallah H, Bel Hadj Salah H, Dogui A. Anisotropic parameter identification using inhomogeneous tensile test. European Journal of Mechanics A/Solids 2002, 21 (6): 927-942
    [65] 史刚.拉延筋技术.模具技术,2004(3):31-34
    [66] 李东升,黄小明,胡世光.汽车覆盖件拉延筋的单元模拟试验研究.钢铁研究,1994(5):34-39
    [67] 李东升,黄小明,胡世光.汽车覆盖件成型中的拉延筋约束阻力的模拟计算.塑性工程学报,1994,1(3):59-65
    [68] 朱勇建,那景新,闫亚坤等.应用直接法求解拉延筋约束阻力.吉林大学学报,2003,33(1):92-97
    [69] 李淑慧,林忠钦,包友霞等.改进的等效拉延筋阻力模型及其应用.中国机械工程,2002,13(7):558-561
    [70] 印雄飞,程惊雷等.板料成型有限元分析的等效拉延筋模型.锻压机械,1999,34(5):49-51
    [71] 徐丙坤,施法中.板料冲压成型数值模拟中等效拉延筋模型的建立与实现.锻压技术,2000,25(6):24-27
    [72] Samue M. Influence of drawbead geometry on sheet metal forming. Journal of Materials Processing Technology, 2002, 122(1): 94-103
    [73] Ghoo B Y, Keum Y T. Expert drawbead models for sectional FEM analysis of sheet, metal forming processes. Journal of Materials Processing Technology, 2000, 105(1-2): 7-16
    [74] Courvoisier L, Martiny M, Ferron G. Analytical modeling of drawbeads in sheet metal forming. Journal of material processing technology, 2003, 133(3): 359-370
    [75] Meinders T, Carleer B D, Geijselaers H J M, et al. The implementation of an equivalent drawbead model in a finite element code for sheet metal forming. Journal of Materials Processing Technology. 1998, 83(1-3): 234-244
    [76] 孙德林,曾攀.拉延筋等效模型的标定及其多参数映射神经网络.锻压技术,2004,29(1):21-26
    [77] Lin Z Q, Bao Y X, Chen G L, et al. Study on the drawbead setting of the large deformation area in a trunk lid. Journal of Materials Processing Technology, 2000, 105(3): 264—268
    [78] 印雄飞,蒋镜昱,何丹农等.基于数值模拟拉延筋工艺效果预测系统.锻压机械,1999,34(4):21-22
    [79] 高凯祁,胡世光.遗传算法在覆盖件拉延筋参数优化中的应用.中国机械工程,2002,13(11):937-940
    [80] 包友霞.车身覆盖件冲压成型中拉深筋的优化设计方法研究.[博士学位论文] 上海:上海交通大学,2000:1-90
    [81] Naceur H, Guo Y Q, Batoz JL, et al. Optimization of drawbead restraining forces and drawbead design in sheet metal forming process. International Journal of Mechanical Sciences, 2001, 43(10): 2407-2434
    [82] 王烨,沈启或,王玉国等.结合等效拉延筋的毛坯设计方法的研究.汽车工艺与材料,2000(8):6-8
    [83] Jung D W. Static-explicit finite element method and its application to drawbead process with springback. 2002, 128(1-3): 292-301
    [84] 钟志华,李光耀.薄板冲压成型过程的计算机仿真与应用.北京:北京理工大学出版社,1998,6:88-93
    [85] Ls_dyna theoretical manual. 1998, 5: 34-70
    [86] Mattiassion K, Strange A, Thiderkvist P, et al. Simulation of springback in sheet metal forming, NUMFORM'95, 1995
    [87] 刘克劲.汽车覆盖件回弹分析、控制与补偿技术研究.[硕士学位论文] 长沙:湖南大学,2004:35-41
    [88] 胡世光,陈鹤峥编著.板料冷压成型的工程解析.北京:北京航空航天大学出版社,2004,7:92-99
    [89] Carroll D W. The created response surface technique for optimizing non-linear restrained systems. Operations research, 1961, 9: 169-184
    [90] Ravi V, Jennings A. Penetration model parameters estimation from dynamic permeability measurements. Soil science society of American journal, 1990, 54: 13-19
    [91] 漆安慎,杜蝉英.力学.高等教育出版社,1997,8:342-344
    [92] Chen F K, Tszeng P C. An analysis of drawbead restraining force in the stamping process. International Journal of machine tools & Manufactures, 1998, 38(7): 827-842

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700