弹性开口薄壁截面圆弧钢拱的稳定承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曲梁因其优美的造型被广泛地应用在现代结构工程中。根据荷载作用平面的不同曲梁可分成两类,当荷载只作用在曲率平面内时称为拱,而当荷载作用平面与曲率平面垂直时称为水平曲梁。曲梁不同于直梁之处在于初始曲率的存在,这使得其弯曲、扭转、翘曲的几何方程大都是相互耦合的,其变形常为是弯扭变形,导致了曲梁理论分析的复杂性。目前尚缺乏对曲梁的复杂结构特性进行全面、精确的分析,使其应用仍受到较大限制。
     曲梁的非线性方程与薄壁开口截面拱的稳定承载力是本文探讨的两大主题。本文在评述国内外本课题相关领域研究现状的基础上,从理论推导和数值分析两个方面对这两大主题进行了研究。
     首先进行的是薄壁开口圆弧钢曲梁非线性方程的推导。基于薄壁构件分析的基本假定,采用薄壁圆弧曲梁的精确翘曲位移表达式,根据虚位移原理得到了曲梁的稳定平衡方程,并给出了曲梁考虑几何非线性情况下的总势能。推导中对应变高阶项采用合理的简化处理,使理论推导过程简单明了。本章的理论推导是后续的拱的屈曲荷载分析的理论基础。
     其次介绍了一个经典的拱的弹性弯扭屈曲试验,并采用有限元商业软件ANSYS中的SHELL63单元和BEAM189单元分别进行了模拟。数值分析结果和试验结果都十分吻合,说明SHELL63壳单元、BEAM189梁单元都可较好地模拟弹性拱的整体弯扭屈曲荷载。用BEAM189梁单元分析时所需单元少,计算速度快,但只能模拟荷载作用在形心和截面为双轴对称的情况。拱在均匀受压和均匀受弯作用下的屈曲荷载公式可用有限元方法加以验证。
     随后本文对薄壁开口截面圆弧拱的弹性屈曲荷载进行了理论分析,得出了双轴对称截面简支拱、单轴对称截面简支拱及固支拱在均匀受压和均匀受弯的受力状态下的屈曲荷载,并与其它研究结果、有限元模拟结果进行了比较,证明了本文理论推导的正确性和有效性。把计算公式进行了合理地简化,以便于工程中的应用。两端铰支拱在径向均布荷载作用下,在拱轴线展开长度不变的条件下,弯扭屈曲荷载随着拱圆心角的增大而逐渐减小,当圆心角为180°时,这时拱可绕其两端点连线作刚体自由转动,对平面外屈曲没有抵抗能力,屈曲荷载为零。简支拱在两端等弯矩作用下,当为正弯矩时,弯扭屈曲荷载随圆心
Curved beams have been widely used in structure engineering because of graceful shape. Curved beams can be classified into arch and horizontally curved beams based on the plane on which load is acted. When load is acted on the curvature plane, it is named arch; when load is acted on the plane perpendicular to the curvature plane, it is named horizontally curved beams. Curved beams differ from straight beams simply because of the presence of the initial curvature. The geometrical equations of flexure, torsion and warp of curved beams are coupled, which results in complexity of theoretical analysis. Now it is lack of the all-sided and exact analysis for curved beams, which limits the application of curved beams.
    This dissertation focused on the nonlinear equations and stability capability of open thin-walled circular arches. On the basis of the investigation of the related home and overseas literatures, extensive researches are carried out on the subjects by theoretical and numerical analyses.
    Firstly, the nonlinear equations of open thin-walled curved beams are derived. Based on the basic assumptions of thin-walled members, using the exact expression of warping displacement, the stability equations of curved beams are obtained by the principle of virtual displacements. The total potential energy is given also.
    Secondly, a classical elastic flexural-torsional buckling tests on arch is introduced, which is simulated by shell element SHELL63 and beam element BEAM189 of commercial software ANSYS. Numerical results are consistent with test results, so elastic flexural-torsional buckling load of arches can be analysed by SHELL63 or BEAM189 elements. A fewer elements need be divided with beam element,and calculation speed is more rapid, but only when load acts on centroid of the section the arch of double symmetric section can be simulated by beam element. Succedent buckling load equations of arch under uniform compression or uniform bending can be verified by finite element method.
    Following theoretical investigations on buckling of thin-walled circular arch
引文
[1] 项海帆,拱结构的稳定与振动,人民交通出版社,1991
    [2] Timoshenko, S.P., Theory of elastic stability, 2nd edition, McGraw-Hill, New York, 1961.
    [3] Vlasov, V.,Z., Thin walled elastic beams. National science foundation, Washington, D.C. 1961
    [4] Ojalvo,M., Memuts, E., Tokarz, F., Out of Plane Buckling of Curved Members. J. Structural Division, ASCE, 95, 10, 1969:2305-2316
    [5] Cheney, J. A., Bending and buckling of thin-walled open-section rings, Journal of Engineering Mechanics, ASCE, 89, 5, 1963:17-44
    [6] 陈骥,钢结构稳定理论与设计,科学出版社,2000
    [7] Yoo,C.H., Flexural-torsional stability of curved beams. J. Engrg. Mech, Div., ASCE, 108, 6, 1982:1351-1369
    [8] Yoo,C.H., Pfeiffer, P.A., Elastic stability of curved beams. Journal of Structural Engineering, ASCE, 109, 12, 1983:2922-2940
    [9] Yoo,C.H., Pfeiffer, P.A., Buckling of curved beams with in-plane deformation. Journal of Structural Engineering, ASCE, 110, 2, 1984:291-300
    [10] Papangelis, T.P., Trahalr, N.S., Flexural-torsional stability of Arch. Journal of Structural Engineering, ASCE, 113, 4, 1987:889-906.
    [11] Trahair, NS, Papangelis,JP. Flexural-torsional buckling of monosymmetric arches. Journal of Structural Engineering, 113, 10, 1987:2271-2289.
    [12] Yang, Y.B., Kou, S.R., Static stability for curved thin walled beams. Journal of Engineering Mechanics, ASCE, 112, 8, 1986:821-841
    [13] Yang, Y.B., Kou, S.R., Effect of curvature on stability of curved beams. Journal of Structural Engineering, ASCE, 113, 6, 1987:1185-1202
    [14] Usami, T., Koh, S., Large displacement theory of thin-wallled curved menmbers and its application to lateral-torsional buckling analysis of circular arches. Int. J. Solids Structures, 1980, 16, pp: 71-95
    [15] Rajasekaran, S., Padmanabhan, S., Equations of beams. Journal of Engineering Mechanics, ASCE, 115, 5, 1989: 1094—1111.
    [16] Kang, Y.J., Yoo,C.H., Thin walled curved beams: Ⅰ: Formulation of nonlinear equations. Journal of Engineering Mechanics, ASCE, 1994, 120,10, pp.. 2072-2101.
    [17] Kang, Y.J., Yoo,C.H., Thin walled curved beams: Ⅱ: Analytical solution for buckling of arches. Journal of Engineering Mechanics, ASCE, 1994, 120,10, pp: 2102-2125
    [18] Lim, N.H., Kang,Y.,J., Out of plane stability of circular arches, International Journal of Mechanical Sciences, 46, 2004:1115-1137
    [19] Kim, M.Y., Min,B.C., Suh, M.W., Spacial stability of nonsymmetric thin-walled curved beam I: Analytic approach. Journal of Engineering Mechanics ,ASCE, 126 ,5, 2000, 497-505.
    [20] Kim, M.Y., Min,B.C, Suh, M.W., Spacial stability of nonsymmetric thin-walled curved beam II: Numerical approach. Journal of Engineering Mechanics, ASCE, 126, 5, 2000,506-514.
    [21] Kim,Y.K., Kim,Y.Y., Analysis of thin-walled curved box beam under in-Plane Flexure. I.J.Solids and Structures, 40,2003, pp: 6111-6123
    [22] Qaqish, S.S., Buckling behavior of elastic circular arches, Journal of Engineering Mechanics, ASCE, 117,11,1991: 2659-2680
    [23] Pi,Y.-L., Trahair,N.S., In-plane Inelastic buckling and strength of steel arches, Journal of Structural Engineering, ASCE, 122,7, 1996:734-747.
    [24] Pi,Y.-L., Bradford,M.A., In-Plane Buckling and Design Of Steel Arches, Journal of Structural Engineering, ASCE, 125, 11,1999:1291-1298.
    [25] Pi,Y.-L., and Bradford,M.A., In-plane stability of arches, Int. J. Solids Struct., 39,1, 2002:105-125.
    [26] Pi,Y.-L., Bradford,M.A., Inelastic buckling and strengths of steel I-section arches with central torsional restraints, Thin-Walled Structures ,41, 2003:663-689.
    [27] Pi,Y.-L., Trahair,N.S., Three-dimensional nonlinear analysis of elastic arches. Engineering structures, 18,1, 1996:49-63.
    [28] Pi,Y.-L., Trahair,N.,S., Out-of-plan inelastic buckling and strength of steel arches. Journal of Structural Engineering, ASCE, 124, 2,1998:174-183.
    [29] Pi, Y.-L., and Trahair, N. S, Non-linear buckling and postbuckling of elastic arches, Eng. Struct., 20,7,1998:571-579.
    [30] Bradford, M.A.,Pi,Y.-L., Elastic Flexural-Torsional Buckling of Discretely Restrained Arches, Journal of Structural Engineering, ASCE, 128,6,2002: 719-727.
    [31] Pi,Y.-L., Trahair,N.S., Prebuckling deformations and flexural-torsional buckling of arches, Journal of Structural Engineering, 121,9, 1995: 1313-1322.
    [32] Pi,Y.-L., Bradford,M.A., Effects of prebuckling deformations on the elastic flexural-torsional buckling of laterally fixed arches, International Journal of Mechanical Sciences, 46,2004: 321 - 342.
    [33] Pi, Y.-L., and Bradford, M.A. , Elastic flexural-torsional buckling of fixed arches, Q. J. Mech. Appl. Math., 57,4,2004: 551-569.
    [34] Pi,Y.-L., and Bradford, M.A. , Out-of-Plane Strength Design of Fixed Steel I-Section Arches, Journal of Structural Engineering ASCE, 131,4,2005: 560-568.
    [35] Bradford,M.A., Pi,Y.-L., In-Plane Elastic Stability of Arches under a Central Concentrated Load, Journal of Engineering Mechanics, ASCE, 128, 7,2002: 710-719.
    [36] Pi,Y.-L., and Bradford,M.A., Elastoplastic buckling and postbuckling of arches subjected to a central load, Comput. Struct., 81,8,2003:1811-1825.
    [37] Pi, Y.-L., Trahair, N.S., nonlinear elastic behavior of I-beams curved in plan. Journal of Structural Engineering, ASCE, 123, 9, 1997:1201-1209.
    [38] Pi, Y.-L., Bradford, M.A., Trahalr, N.,S., Inelastic analysis and behavior of steel I-Beams curved in plan. Journal of Structural Engineering, ASCE, 126, 7, 2000: 772-779.
    [39] Rajasekaran, S., Ramm,E., Discussion of flexural-torsional stability of curved beams by Yoo,C.H., Journal of Engineering Mechanics, ASCE, 110, 1984:144-148
    [40] Yang, Y.B., Kou, S.R., Use of straight-beam approach to study buckling of curved beams, Journal of Structural Engineering,ASCE, 117,7, 1991:1963-1978
    [41] Kou, S.R., Yang,Y.B., New theory on buckling of curved beams. Journal of Engineering Mechanics, ASCE, 1991, 117, 8, pp:1698-1717.
    [42] Yang, Y.B., Rencent researches on buckling of framed structures and curved beams, Journal of constructure steel research,26,2,1993: 193-209
    [43] 李国豪,桥梁与结构理论研究,上海科学技术文献出版社,1983
    [44] 李国豪,桥梁结构稳定与振动,中国铁道出版社,1992
    [45] 李明昭,断面可变形的矩形箱式薄壁圆弧曲杆静力分析法,同济大学学报,2,1982
    [46] 李国豪,大曲率薄壁箱梁的扭转和弯曲,土木工程学报,21,1,1987
    [47] 夏淦,变曲率曲梁挠曲扭转分析,土木工程学报,5,1991:68-74
    [48] 段炼,曲梁弯扭屈曲分析,工程力学,8,1989:41-54
    [49] 王金明,顾海涛,Ⅰ型截面薄壁圆弧曲梁的稳定分析,哈尔滨工程大学学报,2000:57-63
    [50] 童根树,姚谏,折线形开口薄壁截面圆弧曲梁弯扭理论,工程力学,14,4,1997:112-120
    [51] 许钧陶,童根树,任意开口薄壁截面圆弧曲梁弯扭精确分析,建筑结构学报,18,3,1997:22-28
    [52] 许强,童根树,任意开口薄壁截面圆弧曲梁的通用线性理论,工程力学,19,6,2002:141-14
    [53] 童根树,许强,工字形截面圆弧曲梁的非线性理论,土木工程学报,37,4,2004:1-7
    [54] 程鹏,童根树,圆弧拱平面内弯曲失稳一般理论,建筑结构增刊,2004.
    [55] 童根树,程鹏,两铰圆拱在径向均布荷载作用下的屈曲,建筑结构增刊,2004.
    [56] 许强,童根树,单轴对称工字形截面圆弧拱的屈曲分析,建筑结构学报,22,3,2001:64-68
    [57] 童根树,张磊,薄壁钢梁稳定性计算的争议及其解决,建筑结构学报,23,3,2002:44-51
    [58] 童根树,许强,薄壁截曲梁线性和非线性分析理论,科学出版社,2004
    [59] Rajasekaran, S., Sundararajan. T. Rao,K.S., Discussion of static stability for curved thin walled beams by Yang, Y.B., Journal of Engineering Mechanics, ASCE, 114, 1988: 915-918
    [60] Kang, Y.J., Yoo,C.H., Closure to the discussion of Thin walled curved beams: Ⅰ: Formulation of nonlinear equations by Yang,Y.B, Journal of Engineering Mechanics, ASCE, 122,5, 1996: 483-484
     [61] Kang,Y.J., Yoo,C.H., Closure to the discussion of Thin walled curved beams: II: Analytical solution for buckling of arches by Yang,Y.B, Journal of Engineering Mechanics, ASCE, 122,5,1996: 486-486
    [62] Yang,Y.B, Discussion of Thin walled curved beams: I: Formulation of nonlinear equations by Kang, Y.J., Yoo,C.H., Journal of Engineering Mechanics, ASCE, 122, 1996: 482-483
    [63] Yang,Y.B, Discussion of Thin walled curved beams: II: Analytical solution for buckling of arches by Kang, Y.J., Yoo,C.H., Journal of Engineering Mechanics, ASCE, 122,1996: 484-485
    [64] Fukumoto,Y., Nishida,S., Ultimate load behavior of curved I-beams, Journal of Engineering Mechanics Division, ASCE, 107,2,1981,pp:367-385.
    [65] Wen,R.K., Lange,J., Curved beam element for arch buckling analysis. Journal of the Structural Division, ASCE, 107,11, 1981: 2053-2069.
    [66] Wen,R.K., Lange,J., Nonlinear Curved-beam element for arch structures. Journal of the Structural engineering, ASCE, 117,11, 1991: 3496-3515
    
    [67] Dvorkin,E.N., Onate,E., Oliver,J. On a non-linear formulation for curved Timeshenko beam elements considering large displacement/rotation increments. International Journal for Numerical Methods in Engineering, 26, 7, 1988: 1597-1613.\
    [68] EI-Amin,F.M., Brotton,D.M., Horizontally curved beam finite element including warping. International Journal for Numerical Methods in Engineering, 10,6, 1976
    [69] EI-Amin,F.M., Kasem,M.A., Higher-order Horizontally curved beam finite element including warping for steel bridge. International Journal for Numerical Methods in Engineering, 12,1,1978
    [70] Yoo,C.H., Matrix formulation for curved girders. Engrg. Mech. Div., ASCE, 1979, 105, 6, pp: 971-988
    [71] Yang,Y.B., Kou,S.R., Cherng,Y.D., Curved beam elements for nonlinear analysis , Journal of Engineering Mechanics ASCE, 115,4, 1989:840-855
    [72] Pi,Y.-L., Bradford,M.A., Elastic flexural - torsional buckling of continuously restrained arches. International Journal of Solids and Structures, 39, 8, 2002:2299 - 2322.
    [73] Pi,Y.-L., Bradford,M.A., A spatially curved-beam element with warpingand Wagner effects, International Journal For Numerical Methods In Engineering, 63, 2005: 1342-1369
    [74] Yoo,C.H., Kang,Y.J., Buckling analysis of curved beams by finite-element discretization. Journal of Engineering Mechanics ASCE, 122, 8, 1996: 762-770
    [75] Chaudhuri,S.K., Shore,S., Thin-walled curved beam finite element. Journal of Engineering Mechanics, ASCE, 103,5,1977
    [76] Liew,J.Y.R., Thevendran,V., Shanmugam,N.E., Tan,L.O., Behavior and design of horizontally curved steel beams, J. Construct. Steel Research, 32, 1995: 37-67.
    [77] Chang, S.P., Kim, S.B., Kim,M.Y., Stability of shear deformable thin-walled space frames and circular arches, Journal of Engineering Mechanics, ASCE, 122,9, 1996:844-854
    [78] Saleeb, A.F., Gendy, A.S., Shear-flexible mode for spatial buckling of thin-walled curved beams, Int. J. Numer. Methods Engrg.,31,1991:729-757
    [79] Sandhu, J.S., Stevens, K.A., A 3-D co-rotational curved and twisted beam element. Computer and Stuctures,35,1,1990
    [80] 邓可顺,有限元屈曲分析中的曲梁单元,大连理工大学学报,29,2,1987
    [81] 金伟良,赵国藩,箱型曲梁结构分析的广义位移方法,重庆交通学院学报,9,3,1990
    [82] 周文伟,曾庆元,空间曲梁几何非线性有限元法分析,长沙铁道学院学报,16,3,1998:1-5
    [83] 王小岗,凌道盛,徐兴,拱屈曲荷载分析的三维退化曲梁单元有限元方法,力学与实践,22,1998
    [84] 许强,薄壁钢曲梁的稳定极限承载力研究.浙江大学申请博士学位论文,杭州:浙江大学,2002
    [85] 刘磊,大跨度混凝土桥梁的双非线性分析.北方交通大学申请博士学位论文,北京:北方交通大学,2000
    [86] 刘磊,许克宾,结构分析中的曲梁单元,北方交通大学学报,26,4,2002,pp:20-23
    [87] 刘磊,许克宾,曲杆结构非线性分析中的直梁单元和曲梁单元,铁道学报,23,6,2001:72-76
    [88] 李琰,辛克贵,薄壁曲梁的横向弯曲稳定分析,工程力学,22,1,2005:69-74
    [89] 段海娟,周益云,苏国韶,拱结构空间几何非线性分析的曲梁单元,四川建筑科学研究,6,2002:10-14
    [90] 段海娟,张其林,考虑翘曲效应的薄壁曲梁几何非线性分析,工程力学,10,2004:157-160
    [91] Tokarz,F.J., Experimental study of lateral buckling of arches, J. Structural Division, ASCE, 97, 2, 1971:545-559
    [92] Trahair, N.S., Elastic stability of continuous beams. Journal of Structural division, 95, 6, 1969:1295-1312
    [93] Papangelis, T.P., Trahair, N.S., Flexural-torsional buckling test on arches. Journal of Structural Engineering, ASCE, 113, 7, 1987:1433-1443.
    [94] Papangelis, T.P., Trahalr, N.S., Buckling of monosymmetric arches under point loads. Eng.Struct., 10, 10,1988:257-264
    [95] Fukumoto, Y., Itoh, Y., Kubo,M., Strength variation of laterally unsupported beams, Journal of Structural Division, ASCE, 106,1,1980:165-181.
    [96] Fukumoto, Y., Itoh, Y., Statistical study of experiments on welded beam, Journal of Structural Division, ASCE, 107,1,1981:89-103.
    [97] Shanmugan,N.E., Thevendran,V., Liew, J.Y.R., Experimental study on steel beams curved in plan, Journal of Structural Engineering, ASCE, 121, 2, 1995:249-259
    [98] Thevendran, V., Shanmugan, N.E., Liew, J.Y.R., Experimental study on steel-concrete composite beams curved in plan, Engineering strucures, 22, 2000:877-889
    [99] 童根树,许强,焊接工字形钢曲梁的极限承载力试验,钢结构,20,1,2005:14-18.
    [100] Yoshida, H., Maegawa, K., Ultimate strength analysis of curved I-beams, Journal of Engineering Mechanics, ASCE, 109,1,1983:192-214
    [101] Pi,Y.-L., and Bradford,M.A., In-plane strength and design of fixed steel I-section arches, Engineering Structures,26, 2004: 291-301.
    [102] Pi,Y.-L., Trahair, N.S., Inelastic lateral buckling strength and design of steel arches. Engineering structures, 22, 2000: 993-1005.
    [103] Bradford, M. A., and Pi,Y.-L., Strength design of steel I-beams curved in-plan, Journal of Structural Engineering, ASCE, 127, 6, 2001:639-646.
    [104] Bradford, M. A., Pi,Y.-L., Design of steel I-beams curved in plan to BS5950, Structures & Buildings, 152, 1, 2002: 57-65
    [105] ANSYS, ANSYS User's Manual Revision 6.1, ANSYS, Inc., Canonsburg, Pennsylvania, 2002
    [106] 吕烈武等,钢结构构件稳定理论,中国建筑工业出版社,1983
    [107] 钢结构设计规范(GB50017-2003),北京,中国计划出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700