圆钢管混凝土结构受力性能与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对常温和高温(火灾)下圆钢管混凝土结构受力性能进行深入的理论分析和试验研究,提出了常温和高温下混凝土多轴强度准则和本构关系,探讨了常温和高温下圆钢管混凝土轴压短柱的受力机理,开展了常温下钢管混凝土偏压柱受力性能理论分析,进行了常温下钢管混凝土试件受力性能试验研究,建立了常温和高温(火灾)下钢管混凝土结构非线性有限元分析方法,进行了火灾下钢管混凝土结构数值仿真分析。
     主要研究内容如下:
     (1)建立常温和高温下混凝土多轴强度准则,提出常温和高温下单轴拉压滞回应力-应变关系和轴对称三轴受压应力-应变关系。将荷载引起的混凝土变形分为弹性应变和非弹性应变,提出损伤泊松比的概念,假定非弹性应变与损伤泊松比有关,应用损伤力学理论和最小耗能原理,建立混凝土在多轴应力状态下强度准则的一般形式并揭示混凝土的破坏机理,根据已有试验结果初步确定损伤泊松比的表达式;对各种强度等级混凝土的单轴力学性能试验研究资料进行分析,建立反映不同强度等级的混凝土各种力学性能指标的统一表达式和单轴应力-应变全曲线的统一计算方法、损伤演变方程、损伤本构模型和滞回应力-应变关系;在Ottosen混凝土三轴应力-应变关系的基础上,提出了混凝土轴对称三轴受压应力-应变关系,其中峰值应力点泊松比的取值反映了损伤泊松比的特性。各种方法计算结果与试验结果符合较好。
     (2)建立常温和高温下钢管混凝土轴压弹塑性全过程分析理论,揭示钢管混凝土轴压套箍约束作用机理。利用混凝土轴对称三轴受压应力-应变关系,基于连续介质力学,采用钢管混凝土同心圆柱体力学模型,建立常温和高温下钢管混凝土弹塑性全过程分析理论,编制非线性计算程序;通过对常温下的钢管混凝土轴压受力机理分析,指出钢管在纵向初应力作用下将降低钢管对混凝土的套箍约束作用,钢管套箍混凝土将套箍约束作用发挥至最大,但轴压刚度较小。
     (3)建立常温下钢管混凝土轴压、纯弯和偏压柱承载力和变形实用计算公式;提出常温下钢管混凝土组合截面轴力-应变关系和轴力-弯矩-曲率关系实用计算方法(合称钢管混凝土组合截面实用计算方法)。
     基于钢管混凝土弹塑性全过程分析理论,确立钢管混凝土拉压数值本构关系,建立组合抗压刚度和轴压极限承载力实用计算公式,提出轴力-应变关系实用计算方法;基于平截面假设,利用分层法对钢管混凝土偏压构件截面轴力-弯矩-曲率关系进行全过程分析,建立组合抗弯刚度、抗弯承载力和轴力-弯矩相关方程等实用计算公式,提出轴力-弯矩-曲率关系实用计算方法;利用基于部分正弦曲线的模型柱法对钢管混凝土轴压中长柱和偏压柱(包括等端弯矩和不等端弯矩)进行全过程分析,建立钢管混凝土偏压柱承载力实用计算公式,各种方法计算结果与试验结果符合较好。
     (4)进行67个常温下钢管混凝土试件受力性能的试验研究,探讨其受力性能并验证本文计算理论和方法的正确性。开展45根钢管混凝土轴压短柱试件、4个钢管混凝土纯弯试件和8个钢管混凝土偏压柱试件试验研究;探讨了各种试件的承载力、荷载-变形曲线和荷载-横向变形系数曲线的变化规律;结合其他学者的试验结果,验证了弹塑性全过程分析理论、分层法和模型柱法及各实用计算公式和实用计算方法的正确性。
     (5)建立常温和高温(火灾)下钢管混凝土结构非线性有限元计算理论,编制非线性有限元程序NACFSTLF。提出适合于高温下钢管混凝土柱非线性分析的钢管和混凝土纵向热-力耦合本构模型计算方法;基于连续介质力学,推导出火灾下U.L.列式虚功增量方程,通过调整截面形心应变和曲率,使梁端内外力平衡,完善了火灾下分层梁材料非线性分析理论;编制NACFSTLF程序,并用常温和高温下钢管混凝土构件、结构和钢筋混凝土构件等大量试验结果进行了验证,计算结果与试验结果吻合较好;本程序反映了火灾下钢管混凝土结构的约束套箍作用和温度-荷载历史,具有计算功能强和效率高的优点。
     (6)采用NACFSTLF有限元程序,进行了火灾下足尺钢管混凝土单柱、钢筋混凝土矩形梁和钢管混凝土柱-钢筋混凝土T梁框架结构抗火性能的数值仿真分析。探讨了火灾下钢管混凝土单柱初始缺陷、轴压比、混凝土强度、钢材强度、含钢率和钢管外径对抗火性能的影响,考察了三面受火钢筋混凝土简支梁的抗火性能,分析了钢管混凝土柱-钢筋混凝土T梁框架结构在各楼层火灾下的抗火性能。分析结果表明:局部楼层发生火灾情况下,钢管混凝土框架结构最薄弱环节是底层的钢管混凝土中柱,表现为中柱承载力降低而导致失稳破坏;由于内力重分布的影响,框架柱的抗火性能要优于相同初始荷载下两端固支单柱的抗火性能,但火灾情况下钢管混凝土框架柱仍需进行防火处理。
This paper presents theoretical analyses and experimental studies deeply on the behavior of concrete filled circular steel tubular (CFST) structures both at room tempera -ture and in fire. Strength criterion and constitutive model for concrete under multi-axial stress states both at room temperature and at high temperatures were proposed, the behavior of CFST stub columns under axial compression both at room temperature and at high temperatures were discussed, the theoretical models of CFST columns under eccentric compression at room temperature were developed, the experimental investigations on the behavior of CFST specimens at room temperature were presented, the nonlinear finite element analysis theories of CFST structures subjected to in-plane load both at room tempe -rature and in fire were founded, and the fire performance of a full scale CFST plane frame was analyzed. The main contents are listed as follows:
     (1) Strength criterion for concrete under multi-axial stress states both at room temperature and at high temperatures was founded, and axial stress-stain relations of laterally confined concrete under axial compression and hysteretic stress-stain relations of concrete under uniaxial stress states both at room temperature and at high temperatures were proposed.
     The total principal strain of concrete was classified into elastic principal strain and inelastic principal strain, the conception of damage Poisson’s ratio was presented, supposing the inelastic principal strain was related to damage Poisson’s ratio, and then the theory of damage mechanics and the theory of minimum energy dissipation rate were applied. The general formula of strength criterion for concrete under multi-axial stress states was proposed. The failure mechanism of concrete was illustrated. The equation for damage Poisson’s ratio was determined basically based on the existing experimental data. Through analyzing large numbers of test results of uniaxial mechanical properties of various strength of concrete, the unified formulas for mechanical indexes, the unified method of uniaxial stress-strain relationship, the evolvement law of damage, damage constitutive model, and the hysteretic stress-stain relations for concrete both at room temperature and at high temperatures were proposed. Based on triaxial stress-strain relationship for concrete proposed by Ottosen, the axial stress-strain relations for laterally confined concrete under axial compression both at room temperature and at high temperature were developed, in which the expression of peak Poisson’s ratio of concrete reflected the feature of damage Poisson’s ratio. These models give a relatively reasonableestimate of the experimental behavior.
     (2) The elasto-plastic analysis method of CFST stub columns under axial compression both at room temperature and at high temperatures was proposed, and thus the confinement effect of CFST stub columns under axial compression was illustrated. Utilizing the axial stress-strain relations for laterally confined concrete under axial compression, based on continuum mechanics, the mechanical model of concentric cylinders of circular steel tube with concrete core was determined. The elasto-plastic analysis method of CFST stub columns both at room temperature and at high temperatures was proposed, and a computer program was developed. Through analyzing the behavior of CFST stub columns, it was pointed out that the confinement effect decreased when axial pre-stress in steel tube, and for the concrete confined steel tube, the confinement effect strengthened but the composite elastic modulus diminished.
     (3) Practical calculation formulas of load bearing capacity for CFST columns under axial compression, pure bending, and eccentric compression were proposed, and practical calculation methods of axial force-strain relations and axial force-moment-curvature relations for the composite section of CFST beam-columns were presented. Based on elasto-plastic analysis method, the numerical constitutive model for the concrete filled steel tubes was determined, the practical calculation formulas of composite axial stiffness and axial ultimate capacity for CFST stub columns were proposed, and the practical calculation methods of axial force-strain relations for the composite section were presented. Based on plane section assumption, layered method was applied to calculate the axial force-moment-curvature relations for the composite section of CFST beam-columns, the practical calculation formulas of composite flexural stiffness, flexural capacity, axial force-moment interaction equation were proposed, and practical calculation methods of axial force-moment-curvature relations for the composite section of CFST beam-columns were presented. Fiber model method based on partial sinusoidal shape was applied to calculate the load-deformation relations of CFST columns under eccentric loading with equal or unequal end-moment, and the practical calculation formulas of load bearing capacity for CFST columns under eccentric loading were presented. Good agreement is obtained between these predicted results and experimental results.
     (4) Experimental investigations of 67 CFST specimens at room temperature were presented, the behavior was discussed, and the calculation theories and methods by the author were validated.
     45 CFST stub columns under concentric compression, 4 CSFT members under pure bending, and 8 CFST columns under eccentric compression with equal end-moment wereinvestigated, the behavior of load capacity, load-deformation relations, and load-strain ratio relations of the specimens were discussed. Combined with the test results by other researchers, the reliability of the elasto-plastic analysis method, layered method, fiber model method, the practical calculation formulas and the practical calculation methods was verified.
     (5) The nonlinear finite element analysis theories of CFST structures subjected to in-plane load both at room temperature and in fire were founded, and finite element progra -m named NACFSTLF was developed.
     An appropriate numerical thermal-stress coupling constitutive model of both steel tube and concrete core and its calculation method in concrete filled circular steel tubes in fire were proposed. Based on the principles of continuum mechanics, the U.L. formula of element incremental equilibrium under fire condition was deduced. Through adjusting the strain at centroid of cross section and the curvature, the external nodal loads was in equilibrium with the internal stress, and thus the layered finite element method was perfected. A FORTRAN program named NACFSTLF was developed and the reliability of the program was tested by the experimental results of CFST columns and structures, and reinforced concrete columns both at room temperature and in fire, showing that the analysis results are in good agreement with the experiment results from references. The program reflects the confinement effect and the temperature-load path of CFST structures in fire, and holds the virtue of higher calculative function and efficiency.
     (6) Applying the program of NACFSTLF, the fire performance of full scale single CFST columns with both fixed ends condition, full scale reinforced concrete rectangular beams with both pinned ends condition, and full scale CFST plane frame consisting of circular CFST columns and reinforced concrete T beams was analyzed.
     The influence of initial defect of the single CFST column, axial force ratio, strengths of concrete, strengths of steel, steel ratio, and the outer diameter of steel tube on the fire performance of CFST columns with four surfaces exposed to fire was discussed. The fire performance of full scale reinforced concrete rectangular beams with three surfaces exposed to fire was investigated. The fire performance of a full scale CFST plane frame of six-storey (6×4.5=27 m) and three-bay (3×9=27 m) under storey fire condition was analyzed. From the result, it is indicated that: the worst condition of the full scale frame was the middle CFST column of ground floor when the fire happened in the floor, and the failure mode was stability failure due to decrease of load capacity; due to the redistribution of internal forces, the fire resistance of the frame would be slightly higher than that of single columns of both fixed end condition in fire, and the CFST columns in the structurealso need protection under fire condition.
引文
[1] 蔡绍怀,焦占拴.复式钢管混凝土的基本性能和承载力计算[J].建筑结构学报,1997,18(6):20-25.
    [2] 陶忠.方中空夹层钢管混凝土偏心受压柱力学性能的研究[J].土木工程学报,2003, 36(2):33-40,51.
    [3] 蔡绍怀.现代钢管混凝土结构[M].北京: 人民交通出版社,2003.
    [4] 韩林海.钢管混凝土结构-理论与实践[M].北京: 科学出版社,2004.
    [5] 过镇海.混凝土的强度和变形(试验基础和本构关系)[M].北京: 清华大学出版社, 1997.
    [6] 吴中伟,廉慧珍.高性能混凝土[M].北京: 中国铁道出版社,1999.
    [7] Hajime Okamura , Masahiro Ouchi1.Self-compacting concrete [J].Journal of Advanc -ed Concrete Technology, 2003,1(1):5-151.
    [8] 混凝土基本力学性能研究组.混凝土的几个基本力学指标[A].钢筋混凝土结构研究报告选集[C].北京: 中国建筑工业出版社,1977,21-36.
    [9] 李家康,王巍.高强混凝土的几个基本力学指标[J].工业建筑,1997,27(8):50-54.
    [10] 蒲心诚,王志军,王冲等.超高强高性能混凝土力学性能研究[J].建筑结构学报, 2002,23(6):49-55.
    [11] 张晓东,仲伟群.高强混凝土的力学性能[J].哈尔滨建筑大学学报, 1996,29(3): 62-68.
    [12] 套箍混凝土专题组.套箍高强混凝土的强度和变形[A].钢筋混凝土结构研究报告选集[C].北京: 中国建筑工业出版社,1994,424-432.
    [13] 胡海涛,叶知满.掺 F 矿粉或粉煤灰高强混凝土应力应变全曲线试验研究[J].青岛建筑工程学院学报, 1996,17(1):1-9.
    [14] 顾培英,陈训诫.高性能混凝土的本构关系研究[J].水利水运科学研究,1999,(9).
    [15] 郑盛娥.掺硅灰混凝土单轴压力荷载下的应力-应变全曲线及其破坏分析[J].西南交通大学学报,1989,24(2):26-33.
    [16] 许凌云.高性能混凝土和密筋高性能混凝土受拉应力应变全曲线试验研究[D].武汉: 武汉水利电力大学,1998.
    [17] 尹建,周士琼,谢友均.高强高性能混凝土极限拉应变性能研究[J].工业建筑,2000, 30(7),47-49.
    [18] 周士琼,李霞,沈志林.普通混凝土受拉性能的试验研究[J].中国公路学报,1994, 7(02):15-19.
    [19] 杨讯.高强混凝土的抗拉应力-应变全曲线[J].上海铁道学院学报,1995,16(4):1-5.
    [20] 蔡绍怀,左怀茜.高强混凝土的抗裂强度[J].土木工程学报,1992,25(2):23-31.
    [21] 黄祚继.粉煤灰混凝土强度及抗裂度试验研究[J].硅酸盐建筑制品,1994,(3):7-10.
    [22] Gopalaratnam V S , Surendra P S.Softening response of pain concrete in direct tension [J].Journal of ACI, 1985,82(3), 310-323.
    [23] Sargin M.Stress-stain relationship for concrete and the analysis of structural concrete sections[J].Canada,1971.
    [24] Seanz L P.Discussion of a paper by Desayi and Krishnan S, equation for the stress- stain curve of concrete [J].Journal of ACI, 1964,61(9), 381-393.
    [25] 过镇海,张秀琴.混凝土受拉应力-应变全曲线的试验研究[J].建筑结构学报,1988, (4):45-53.
    [26] 高丹盈,张煜钦.混凝土拉伸应力应变关系[J].工业建筑,1992,22(12):21-25.
    [27] 陈士纯,王文安.混凝土拉伸应力与应变全曲线的试验研究[J].长江科学院院报, 2001,18(6):26-28.
    [28] 钱晓倩,钱匡亮,詹树林.微矿粉高性能混凝土的轴拉应力-应变关系[J].建筑技术, 2002,(1):25-26.
    [29] Hognestad E.Concrete stress distribution in ultimate strength design[J].Journal of ACI, 1955,42(12):455-479.
    [30] Tsai Wan T.Uniaxial compressional stress-strain relation of concrete[J].Journal of Structural Engineering,1988,114(9): 2133-2136.
    [31] 许锦峰.高强混凝土应力应变全曲线试验研究[D].北京: 清华大学,1986.
    [32] Van Gysel A., Taerwe L.Analytical formulation of the complete stress-strain curve for high strength concrete [J].Materials and Structures, 1996,29(11):529-533.
    [33] Qian Xiaoqian, Li Zongjin . The relationships between stress and strain for high-performance concrete with metakaolin[J].Cement and Concrete Research,2001, 31(11):1607-1611.
    [34] 欧阳东,余斌.超高强混凝土基本力学性能的研究[J].重庆建筑大学学报,2003, 25(4):38-42.
    [35] 李惠,周文松,王震宇等.约束及无约束泵送高性能与超高性能混凝土力学性能试验研究[J].建筑结构学报,2003, 24(5):58-71.
    [36] 谢友均,周士琼,尹建等.免振高性能混凝土力学性能及耐久性研究[J].建筑材料学报,2000,3(2):119-123.
    [37] 赵军,郭庆海,高丹盈.高性能自密实混凝土的抗拉性能研究[J].混凝土,2005, 26(1):37-39.
    [38] 杨树桐,吴智敏.高性能自密实混凝土的抗拉性能研究[J].混凝土,2005,26(1):33 -36.
    [39] 吴智敏,栾兰,高洪波.自密实超高强混凝土力学性能试验研究[J].工程建设与设计,2004,52(9):73-75.
    [40] 王勇,威蒲心诚,王志军.单轴压力下 56.3-164.9MPa 混凝土的应力-应变关系[J].建筑结构学报,2005,26(1):97-102.
    [41] 俞茂宏.混凝土强度理论及其应用[M].北京: 高等教育出版社,2001.
    [42] 梁伟,吴佩刚,赵光仪等.高强混凝土三轴强度规律与破坏准则[J].建筑结构, 2003,33(1):17-19,29.
    [43] Ansari Farhad, Li Qingbin.High-strength concrete subjected to triaxial compression [J].ACI Material Journal, 1998,95(6),747-755.
    [44] 赖伟栋,陈建,李冈陵.混凝土双向拉伸强度弱化研究[J].混凝土,2002,24(6):21-23.
    [45] Sfer Domingo, Carol Ignacio, Gettu Ravindra, et al.Study of the behavior of concrete under triaxial compression[J].Journal of Engineering Mechanics, 2002,128(2):156- 163.
    [46] Zhao Zhiye, Ren Liqun.Failure criterion of concrete under triaxial stresses using neural networks [J].Computer-Aided Civil and Infrastructure Engineering, 2002,17(1): 68-73.
    [47] 宋玉普,赵国藩,彭放.三轴加载下混凝土的变形和强度[J].水利学报,1991, 22(12):17-23.
    [48] 宋玉普,赵国藩,彭放.多轴应力下混凝土的破坏准则[A].第五届岩石、混凝土断裂和强度学术会议论文集[C].长沙: 国防科技大学出版社,1993, 121-129.
    [49] Mills, L. L., Zimmerman, R. M.﹒Compressive strength of plain concrete under multi- axial loading conditions [J]﹒ACI Journal, 1970, 67(10):802-807﹒
    [50] 叶献国.三轴受压混凝土的强度和变形试验研究[D].北京: 清华大学,1987.
    [51] 王敬忠.三轴拉压强度试验和混凝土破坏准则的研究[D].北京: 清华大学,1989.
    [52] 谢和平,董毓利,李世平.不同围压下混凝土受压弹塑性损伤本构模型的研究[J].煤炭学报,1996,21(3),265-270.
    [53] Candappa D.P., Setunge S., Sanjayan J.G..Stress versus strain relationship of high strength concrete under high lateral confinement[J].Cement and Concrete Research, 1999,29(12),1977-1982.
    [54] Xie J., Elwi A.E., MacGregor J.G..Mechanical properties of three high-strength concrete containing silica fume [J].ACI Material Journal, 1995,92(2),135-145.
    [55] Imran I., Pantazopoulou S.J..Experimental study of plain concrete under triaxial stress[J].ACI Material Journal, 1996,93(6),589-601.
    [56] Attard M.M., Setunge S..Stress-strain relationship of confined and unconfined concrete [J].ACI Material Journal, 1996,93(5),432-442.
    [57] 李伟政,过镇海.二轴拉压状态下混凝土的强度和变形试验研究[J].水利学报, 1991,22(8):51-56.
    [58] 周筑宝.最小耗能原理及其应用[M].北京: 科学出版社,2001.
    [59] 过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京: 清华大学出版社, 2003.
    [60] Thienel K.C.H., Rostasy E.S..Strength of concrete subjected to high temperature and biaxial stress: Experiments and modeling[J].Materials and Structure,1995,28,575-581.
    [61] 蒋首超,李国强,楼国彪,孙元杰.钢-混凝土组合楼盖抗火性能的数值分析方法[J].建筑结构学报,2004,25(3):38-44.
    [62] 高立堂.无粘结预应力砼板火灾行为的试验研究及热弹塑性有限元分析[D].西安: 西安建筑科技大学,2003.
    [63] 余天庆,钱济成.损伤力学及其应用[M].北京: 国防工业出版社,1993.
    [64] 李杰.混凝土随机损伤本构关系研究新进展[J].东南大学学报,2002,32(5):750-7 55.
    [65] 张盛东.混凝土本构理论研究进展与评述[J].南京建筑工程学院学报,2002,19(3): 44-52.
    [66] 韩林海,钟善桐.钢管混凝土力学[M].大连: 大连理工大学出版社,1996.
    [67] Castillo Carlos, Duttani A.J..Effect of transient high temperature on high-strength concrete[J].ACI Material Journal, 1990,87(1),47-53.
    [68] 李卫,过镇海.温下砼的强度和变形性能试验研究[J].建筑结构学报,1993,14(1): 8-16.
    [69] 胡海涛,董毓利.高温时高强混凝土强度和变形的试验研究[J].土木工程学报, 2002,35(6).44-47.
    [70] 安部武雄,古村福次郎.高温度におけゐ高強度コンタリ一卜の力学的特性に関すゐ基礎的研究[J].日本建築学会構造系論文集,1999,515(1):163-168.
    [71] 胡海涛,董毓利.高温时高强混凝土瞬态热应变的试验研究[J].建筑结构学报, 2002,23(4):32-35.
    [72] 徐秉业等.塑性力学简明教程[M].北京: 清华大学出版社,1981.
    [73] 李国强,蒋首超,林桂祥.钢结构抗火计算与设计[M].北京: 建筑工业出版社,1999.
    [74] 董毓利. 混凝土结构的火安全设计[M].北京: 科学出版社,2001.
    [75] 赵金城.高温下钢材力学性能的试验研究[J].建筑结构,2000,30(4),26-28.
    [76] 李国强,陈凯等.高温下 Q345 钢的材料性能试验研究[J].建筑结构,2001,31(1), 53-55.
    [77] 徐彦,赵金城.Q235钢在不同应力-温度路径下材料性能的试验研究和本构关系[J].上海交通大学学报,2004,38(6), 967-971.
    [78] 谭巍.高温(火灾)条件下钢结构材料性能研究[J].工业建筑,2000,30(10),61-63,67.
    [79] 李国强,张晓进 等.高温下 SM41 钢的材料性能试验研究[J].工业建筑,2001,31(6), 57-59.
    [80] 古村福次郎,安部武雄,岡部猛,金中和.火災温度域考慮した鋼材の单軸應力-ひずみを用ぃ柱模型高温時の座屈強度[J].日本建築学会構造系論文集,1999,521 (7):169-176.
    [81] 岡部猛.鋼構造新素材(SA440B)を用ぃた柱模型の高温時の座屈強度[J].日本建築学会構造系論文集, 1999,521 (7):169-176.
    [82] 岡部猛.矩形断面をつ持鋼柱模型(SM490)の高温時の座屈強度[J].日本建築学会構造系論文集, 1999,515(1):169-176.
    [83] ECCS.European recommendations for the fire safety of steel structures[S].1983.
    [84] 孙金香,高伟(译).建筑物综合防火设计[M].天津: 天津科技翻译出版公司,1992.
    [85] BS5950.Structural use of steel work in building, part 8. Code of practice for fire resistant design[S].1990.
    [86] CEN(European Committee for Standardization), Eurocode 3.Design of steel structures, draft part 1.4. fire resistance[S].1992.
    [87] Shams M., Saadeghvaziri M.A..State of the art of concrete-filled steel tubular columns[J].ACI Structural Journal, 1997, 94(5): 558-571.
    [88] 韩林海,陶忠等.钢管混凝土结构-理论与实践[J].福州大学学报(自然科学版), 2001,29(6):24-34.
    [89] 蔡绍怀.我国钢管高强混凝土结构技术的最新进展[J].建筑科学,2002,18(4),1-7.
    [90] 钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003.
    [91] 韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [92] AISC-LRFD-1999.Load and Resistance Factor Design Specification for Structural Steel Buildings[S].
    [93] Architectural Institute of Japan (AIJ-1997).Recommendations for Design and Constr- uction of Concrete Filled Steel Tubular Structures [S].
    [94] Eurocode 4-1994.Design of Composite Steel and Concrete Structures, Part1.1,General Rules and Rules for Buildings[S].
    [95] DL-5085/T-1999.钢管混凝土组合结构设计规程[S].
    [96] CECS28:90.钢管混凝土结构设计与施工规程[S].
    [97] JCJ01-89.钢管混凝土结构设计与施工规程[S].
    [98] 黄世娟,钟善桐,等.初应力对钢管混凝土轴压构件承载力影响的实验研究[J].哈尔滨建筑大学学报,1995,29(6):44-50.
    [99] Johansson Mathias, Gylltoft Kent.Mechanical behavior of circular steel-concretecomposite stub columns[J].Journal of Engineering Mechanics, 2002,128(8):1073- 1081.
    [100]Sakina K., Tomii M., Watanabe K..Experimental study on the properties of concrete confined by circular steel tubes [A].Proceedings of the International Conference on Concrete Filled Steel Tubular Structures[C].The Science and Technology Exchange of Heilongjiang Province, Harbin, China,1985:112-118.
    [101]朱筱俊.高层钢管混凝土结构体系的试验研究[D].南京: 东南大学博士学位论文,2000.
    [102]陈肇元等.钢管混凝土短柱作为防护结构构件的性能[A].钢筋混凝土结构在冲击荷载下的性能(科学报告集第 4 集) [M].北京: 清华大学出版社,1986, 45-52.
    [103]Sakino K., Hayashi H..Behavior of concrete filled steel tubular stub columns under concentric loading[A].Proceedings of the Third International Specialty Conference on Steel-Concrete Composite Structure[C].ASCCS-3 Secretariat, Fukuoka, Japan, 1991: 25-30.
    [104]Luksha L.K., Nesterovich A.P..Strength test of large-diameter concrete on steel- concrete composite structure[A].Proceedings of the Third International Specialty Con -ference on Steel-Concrete Composite Structure[C].ASCCS-3 Secretariat, Fukuoka, Japan, 1991: 67-70.
    [105]Goode C.D., 韩林海译.钢管混凝土组合柱的研究进展[J].工业建筑,1996,26 (3):23-27.
    [106]蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报, 1984,5(6):13-29.
    [107]汤关祚,招炳泉等.钢管混凝土短柱的基本力学性能的研究[J].建筑结构学报, 1982,3(1):12-31.
    [108]钟善桐,何若全.钢管混凝土轴心受压长柱承载力的研究[J].哈尔滨建筑工程学院学报,1983,16(1):1-13.
    [109]李继读.钢管混凝土轴压承载力的研究[J].工业建筑,1985,15(2):25-31.
    [110]顾维平,蔡绍怀.钢管高强混凝土的性能与极限强度[J].建筑科学,1991,7(1):23-27.
    [111]韩林海.钢管高强混凝土轴压力学性能的理论分析与试验研究[J].工业建筑, 1997,27(11):39-44,13.
    [112]蒋继武.周期反复荷载作用下钢管高强混凝土压弯构件抗震性能的试验研究[D].北京: 清华大学,1997.
    [113]谭克锋.钢管与超高强混凝土复合材料的力学性能及承载力研究[D].重庆: 重庆建筑大学,1999.
    [114]贺锋,周绪红.钢管高强混凝土轴压短柱承载力性能的试验研究[J].工程力学,2000,17(4):61-66.
    [115]王力尚,钱稼茹.钢管高强混凝土柱轴向受压承载力试验研究[J].建筑结构, 2003,33(7):46-49.
    [116]赵均海,顾强等.基于双剪统一强度理论的轴心受压钢管混凝土承载力的研究[J].工程力学,2002,19(2):32-35.
    [117]王玉银.圆钢管高强混凝土轴压短柱基本性能研究[D].哈尔滨: 哈尔滨工业大学, 2003.
    [118]尧国皇,韩林海.钢管自密实高性能混凝土压弯构件力学性能研究[J].建筑结构学报,2004, 25(4):34-42.
    [119]蒲心诚,蒲怀京等.千米承压材料的试制与性能研究[J].混凝土.2003,161(3).3-9.
    [120]最相元雄,安部貴之,中矢浩二.超高強度コンタリ一卜充填鋼管柱の終局曲げ耐力にす関ゐ研究[J].日本建築学会構造系論文集,1999,523(9):133-140.
    [121]Sakina Kenji, Nakahara hiroyuki, Morino Shosuke, et al. Behavior of centrally loaded concrete-filled steel-tube short columns [J].Journal of Structural Engineering,2004, 130(2),180-188.
    [122]李云飞.钢管混凝土轴心受压构件受力性能的试验研究[D].西安: 西安建筑科技大学,2003.
    [123]王勇威.千米承压材料的制取与力学性态研究[D].重庆: 重庆大学,2004.
    [124]Giakoumelis Georgios, Lam Dennis.Axial capacity of circular concrete-filled tube columns[J].Journal of Constructional Steel Research,2004,60(7):1049-1068.
    [125] Huang C.S., Yeh Y.K., Liu G.Y. at el.Axial load behavior of stiffened concrete- filled steel columns[J].Journal of Structural Engineering,2002,128(9), 1222- 1230.
    [126]O’shea M., Bridge R.Q..Design of circular thin-walled concrete filled steel tubes [J].Journal of Structural Engineering, 2000, 126(11), 1295-1303.
    [127]王秋萍.薄壁钢管混凝土轴压短柱力学性能的试验研究[D].哈尔滨: 哈尔滨工业大学,2002.
    [128]屠永清.钢管混凝土压弯构件恢复力特性的研究[D].哈尔滨: 哈尔滨建筑大学, 1994.
    [129]陈洪寿.各种截面钢管混凝土轴压短柱基本性能连续性的理论研究[D].哈尔滨:哈尔滨工业大学,2001.
    [130]韩林海,钟善桐.利用内时理论描述钢管混凝土在复杂受力状态下核心混凝土本构模型[J].哈尔滨建筑工程学院学报,1993,26(2):48-54.
    [131]张文福.单层钢管混凝土框架恢复力特性研究[D].哈尔滨: 哈尔滨工业大学, 2000.
    [132]Susantha K.A.S., Ge Hanbin, Usami Tsutomu.Uniaxial stress-strain relationship ofconcrete confined by various shipped steel tubes[J].Engineering Structure,2001,23 (10), 1331-1347.
    [133]Shams M., Saadeghvaziri M.A..Nonlinear response of concrete-filled steel tubular columns under axial loading[J].ACI Structural Journal, 1999,96(6), 1009-1019.
    [134]Schneider S.P..Axially loaded concrete-filled steel tubes[J].Journal of Structural Engineering, 1998,124(10), 1125-1138.
    [135]Prion H.G.L., Boehme J..Beam-column behavior of steel tubes filled with high strength concrete[J].Canadian Journal of Civil Engineering, 1994,21(2):207-218.
    [136]Bergmann R..Load introduction in composite columns filled with high strength concrete[A].Tubular Structures VI[C].Edited by Grundy Holgate , Wong Balkem Rotterdam, 1994:373-380.
    [137]Kavoossi H.R., Schmidt L.C..The mechanical behavior of higher strength concrete confined in circular hollow sections [A].13th Australasian Conference on the Mechan- ics of Structures and Materials[C].University of Wollonggong, 1993:453-460.
    [138]李固华,叶跃忠.钢管混凝土的复合弹性模量及承载力研究[J].混凝土与水泥制品,1998,25(5):40-43.
    [139]Furlong R.W..Strength of steel-encased beam columns[J].Journal of Structural Engineering Division, 1967,93(5):113-124.
    [140]蔡绍怀,顾万黎.钢管混凝土长柱的性能和强度计算[J].工业建筑,1985,15(1):33- 42.
    [141]蔡绍怀,顾维平.钢管混凝土空心长柱的性能和承载力计算[J].建筑科学,1987,3(4): 11-21.
    [142]顾维平,蔡绍怀.钢管高强混凝土长柱性能和承载能力的研究[J].建筑科学, 1991, 7(3):3-8.
    [143]韩林海.大长细比钢管混凝土轴心受压柱承载力的试验研究[J].钢结构,1999, 14(2):21-25.
    [144]李斌,闻洋.钢管混凝土轴压长柱承载力的试验研究[J].地震工程与工程振动, 2003,23(5):130-133.
    [145]潘友光.钢管混凝土受弯构件承载力研究[J].哈尔滨建筑工程学院学报,1990,23 (2): 41-49.
    [146]蔡绍怀,顾万黎.钢管混凝土抗弯强度的试验研究[J].建筑结构,1985,15(3):28-29.
    [147]陈宝春,王永来,陈水盛.钢管混凝土悬臂短柱试验研究[J].福州大学学报(自然科学版),2001,29(6):98-103.
    [148]Hu Hsuan-The, Huang Chiung-Shiann, Chen Zhi-Liang.Finite element analysis of CFT columns subjected to an axial compressive force and bending moment incombination[J]. Journal of Constructional Research, 2005, 61(12):1692-1712.
    [149]Yasuo Ichinohe.Elasto-plastic behavior of concrete filled steel circular columns [C].Proceedings of the International Conference on Steel-Concrete Composite Structures[A].ASCCS-3 Secretariat, Fukuoka, Japan,1991:131-136.
    [150]Elchalakani M..Concrete-filled circular steel tubes subjected to pure bending [J].Journal of Constructional Research, 2001,57(11):1141-1168.
    [151]卢辉,韩林海.圆钢管混凝土抗弯刚度计算方法探讨[J].工业建筑,2004,34(1):1-5.
    [152]钱稼茹,王刚,赵作周等.钢管高强混凝土构件截面弯矩-曲率全曲线研究[J].工业建筑,2004,34(8):70-72,89.
    [153]Neogi P.K..Concrete-filled tubular steel columns under eccentric loading[J].The Structural Engineer, 1969,47(5):187-195.
    [154]周广师.钢管混凝土偏心受压构件稳定承载力的研究[J].哈尔滨建筑工程学院学报,1982,15(4):29-46.
    [155]钟善桐.钢管混凝土偏心受压构件紧箍力的研究[J].哈尔滨建筑工程学院学报, 1983,16(3):1-18.
    [156]蔡绍怀,邸小坛.钢管混凝土偏压柱的性能和强度计算[J].建筑结构学报,1985,6 (4):32-41.
    [157]顾维平,蔡绍怀.钢管高强混凝土偏压柱性能和承载能力的研究[J].建筑科学, 1993,9(3):8-12.
    [158]Rangan B. Vijaya, Joyce Matthew.Strength of eccentrically loaded slender steel tubular columns filled with high-strength concrete[J].ACI Structural Journal, 1992,89 (6):676-681.
    [159]松井千秋,津田惠吾.コンタリ一卜充填鋼管長柱の耐力[J].日本建築学会構造系論文集,1997,494(4):137-144.
    [160]Kilpatrick Andrew E., Rangan B. Vijaya.Tests on high-strength concrete-filled steel tubular columns[J].ACI Structural Journal, 1999,96(2):268-274.
    [161]赵均海,顾强等.钢管混凝土偏心受压承载力的试验及理论研究[A].工程力学,2001, (增刊 A02):273-276.
    [162]陈宝春,欧智菁等.钢管混凝土偏心受压承载力试验分析[J].福州大学学报(自然科学版),2002,30(6):838-844.
    [163]蜷川利彦,石出一郎,崎野健治.コンタリ一卜充填鋼管柱の弹塑性曲げ性状[J].日本建築学会構造系論文集,1998,508(6):135-141.
    [164]Fujimoto Toshiaki, Mukai Akiyoshi, Nishiyama Isao, et al.Behavior of eccentrically loaded concrete-filled steel tubular columns[J].Journal of Structural Engineering, 2004,130(2), 203-212.
    [165]刘殿忠.在不等端弯矩作用下钢管混凝土偏压柱稳定承载力的计算[J].哈尔滨建筑工程学院学报,1986,19(1):18-25.
    [166]蔡绍怀,顾维平.弯矩分布图形对钢管混凝土无侧移柱承载能力的影响[J].建筑结构学报,1990,11(5):1-8.
    [167]陈宝春,陈友杰,王来永,等.钢管混凝土偏心受压应力—应变关系模型研究[J].中国公路学报,2004,17(1):24-28.
    [168]颜全胜,王頠,邹巧鸿.钢管混凝土受压构件的弹塑性承载力分析[J].郑州大学学报(工学版),2003,24(2):29-32.
    [169]程晓东,程莉莎,叶贵如.圆钢管混凝土压弯长柱非线性屈曲承载力的理论研究[J].工程力学,2004,21(6):131-137.
    [170]陈宝春.钢管混凝土拱桥计算理论研究进展[J].土木工程学报,2003,36(12):47-57.
    [171]秦泽豹.钢管混凝土单圆管肋拱极限承载力研究[D].福州: 福州大学,2002.
    [172]韦建刚.钢管混凝土对称弯压拱分支点失稳问题研究[D].福州: 福州大学,2002.
    [173]陈宝春,秦泽豹,彦坂熙,陈友杰. 钢管混凝土拱(单圆管)面内受力双重非线性有限元分析[J].铁道学报,2003,25(4),80-84.
    [174]颜全胜,王頠.钢管混凝土拱肋面内弹塑性承载力分析[J].昆明理工大学学报(理工版),2003,28(5),110-113.
    [175]李德建,戴公连,曾庆元.钢管混凝土拱桥弹塑性极限承载力分析的截面内力塑性系数法[J].中南工业大学学报(自然科学版),2003,34(3),320-323.
    [176]Lie T. T., Chabot M..Experimental studies on fire resistance of hollow steel columns filled with plain concrete[R].Internal Report No.611, Institute for Research in Construction, National Research Council of Canada, Ottawa, Canada,1992.
    [177]韩林海,贺军利.钢管混凝土柱耐火性的试验研究[J].土木工程学报,2000,33(3): 31-35,63.
    [178]冯九斌,韩林海等.钢管高强混凝土轴压柱耐火极限的试验研究[J].消防科学与技术,2001,20(1):7-9.
    [179]Kim Dong-kyu, Choi Sung-mo, Chung Kyung-soo.Structural characteristics of CFT columns subject to fire loading and axial force[A].Proceeding of 6th ASCCS Conference[C].ASCCS-6 Secretariat, Los Angeles, USA, 2000:271-278.
    [180]Kodur K.R..Performance of high strength concrete-filled steel columns exposed to fire[J].Canadian Journal of Civil Engineering,1998,25(6):975-981.
    [181]Kodur V.K.R., Lie T.T..Fire resistance of circular steel columns filled with bar-reinforced concrete[J].Journal of Structural Engineering, 1996,122(1), 30-36.
    [182]Kodur V.K.R., Lie T.T..Fire Resistance of Circular Steel Columns Filled with Fiber-Reinforced Concrete[J].Journal of Structural Engineering, 1996,122(7), 776-782.
    [183]Kodur V.K.R., Sultan M.A..Enhancing the fire resistance of steel columns through composite construction[A].Proceeding of 6th ASCCS Conference[C].ASCCS-6 Secretariat, Los Angeles, USA, 2000:279-286.
    [184]Lie T.T., Stringer D.C..Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete[J].Canadian Journal of Civil Engineering, 1994,21(3):382-385.
    [185]Wang Y.C..The effects of structural continuity on the fire resistance of concrete filled columns in non-sway frames[J].Journal of Constructional Steel Research,1999,50(2): 177-197.
    [186]韩林海.钢管混凝土轴心受压柱耐火极限的理论计算[J].哈尔滨建筑大学学报, 1998,31(1):25-30.
    [187]Zha X.X..FE analysis of fire resistance of concrete filled CHS columns[J].Journal of Constructional Steel Research, 2003,59(6) : 769-779.
    [188]Ding J., Wang Y.C..Finite element analysis of concrete filled steel columns in fire[A].Advances in Steel Structures[C], Vol.Ⅱ, Shanghai, China, 2005:1053-1058.
    [189]杨华.火灾作用下(后)钢管混凝土柱力学性能研究[D].哈尔滨: 哈尔滨工业大学,2003.
    [190]Al-Khaleefi Abdullateef M., Terro Mohammad J..Prediction of fire resistance of concrete filled tubular steel columns using neural networks[J].Fire Safety Journal 2002, 37(4): 339-352.
    [191]Kodur V.K.R..Performance-based fire resistance design of concrete-filled steel columns[J].Journal of Constructional Steel Research,1999,51(1):21-36.
    [192]Wang Y.C..Some Considerations in the Design of Unprotected Concrete-Filled Steel Tubular Columns Under Fire Conditions[J].Journal of Constructional Steel Research, 1997,44(3):203-223.
    [193]Wang Y.C..A simple method for calculating the fire resistance of concrete-filled CHS columns[J].Journal of Constructional Steel Research, 2000, 54(3):365-386.
    [194]Eurocode 4.Design of Steel and Concrete Structures, Part1.2, Structural fire design [S].
    [195]ECCS TC3.Fire safety of steel structures, Calculation on the fire resistance of centrally loaded composite steel-concrete columns exposed to standard fire, Technical Note 55, European Convention for Constructional Steelwork, Brussels, 1988.
    [196]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京: 清华大学出版社,1992.
    [197]European Committee for Standardization, EuroCode-2 (EC-2). Design of concretestructures—part 1: general rules and rules for buildings. September 2003.
    [198]GB 50010-2002.混凝土结构设计规范[S].北京: 中国建筑工业出版社,2002.
    [199]滕智明,邹离湘. 反复荷载下钢筋混凝土构件的非线性有限元分析[J]. 土木工程学报,1996,29(2):19-17.
    [200]Han Lin-Hai, Yao Guo-Huang, Zhao Xiao-Ling. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)[J]. Journal of Constructional Steel Research, 2005;61(9):1241-1269.
    [201]Han Lin-Hai, Yao Guo-Huang. Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)[J]. Thin-Walled Structures, 2004, 42(9):1357-1377.
    [202]罗素蓉,王国杰,王雪芳 等.自密实混凝土在钢管混凝土拱桥中的应用[J].铁道科学与工程学报,2004,1(2):30-34.
    [203]汤国栋,汤羽.轴向受压钢管混凝土短柱的表观弹塑性本构方程及其极限承载力[J].中国公路学报,1991, 4(4):45-51.
    [204]Pan You-guang. Analysis of complete curve of concrete filled steel tubular stub columns under axial compression[A]. Proceedings of International Specialty Confere- nce of Concrete Filled Steel Tubular Columns (including Composite Beams)[C]. Harbin, China, 1988: 87-93.
    [205]陈骥.钢结构稳定理论与设计[M]. 北京:科学出版社,2001:80-82.
    [206]GB 50017-2003.钢结构设计规范[S]. 北京:中国计划出版社.
    [207]程进,肖汝诚,项海帆.超大跨径缆索承重桥梁极限承载力分析的现状与展望[J].中国公路学报,1999,12(4):59-63.
    [208]奉龙成,汪宏,赵人达.大跨径钢筋混凝土拱桥受力行为的几何材料非线性耦合分析[J].公路交通技术,2000,16(3):20-26.
    [209]项海帆,刘光栋.拱结构的稳定与振动[M].北京: 人民交通出版社,1991.
    [210]赵振铭,陈宝春.杆系与箱形梁桥结构分析及程序设计[M].广州: 华南理工大学出版社,1997.
    [211]张国政.铁路悬索桥非线性分析及其极限承载力的研究[M].北京: 铁道部科学研究院,1994.
    [212]南建林.温度-应力耦合作用下混凝土力学性能的试验研究[D].北京: 清华大学, 1994.
    [213]Lie T.T., Irwin R.J.. Method to calculate the fire resistance of reinforced concrete columns with rectangular cross section[J]. ACI Structural Journal, 1993, 90(1):52-60.
    [214]ACI 216 R-94.Guide for determining the fire endurance of concrete elements [S]. 1994.
    [215]Lam W.F., Morley C.T..Arc-length method for passing limit points in structural calculation [J].Journal of Structural Engineering, 1992,118(1):169-185.
    [216]Han Lin-Hai, Lu Hui, Yao Guo-Huang et al.Further study on the flexural behaviour of concrete-filled steel tubes[J]. Journal of Constructional Steel Research, 2006,62(6):554 -565.
    [217]Gopal S. Ramana, Manoharan P. Devadas.Experimental behaviour of eccentrically loaded slender circular hollow steel columns in-filled with fibre reinforced concrete[J]. Journal of Constructional Steel Research, 2006,62(5):513-520.
    [218]中南大学土木建筑学院.自密实高性能混凝土在桥梁构件中的应用[R].长沙: 中南大学,2001.
    [219]谢怀欣. 高强混凝土偏心受压长柱的试验研究[D]. 北京: 清华大学,1988.
    [220]Han Lin-Hai, Zhao Xiao-Ling, Yang You-Fu, et al. Experimental study and calculation of fire resistance of concrete-filled hollow steel columns [J]. Journal of Structural Engineering, 2003,129(3):346-356.
    [221]Yin Jing, Zha Xiao-xiong, Li Long-yuan.Fire resistance of axially loaded concrete filled steel tube columns[J]. Journal of Constructional Steel Research, 2006,62(7):723- 729.
    [222]徐玉野.钢筋混凝土柱在高温下的数值模拟[J].建筑科学, 2005,21(6):41-43.
    [223]Becker J.M., Bresler B..Reinforced concrete frames in fire environments[J].Journal of Structural Engineering ASCE(ST), 1977,103(1):211-224.
    [224]姚亚雄,朱伯龙. 钢筋混凝土框架结构抗火试验研究[J]. 同济大学学报,1996,24 (6):619-624.
    [225]时旭东,过镇海. 高温下钢筋混凝土框架的受力性能试验研究[J]. 土木工程学报, 2000,33(1):36-45.
    [226]陆洲导,朱伯龙,姚亚雄. 钢筋混凝土框架火灾反应分析[J]. 土木工程学报,1995,28 (6):18-27.
    [227]Cheng Wun-Chau.Theory and application on the behavior of steel structures at elevated temperatures[J].Computers and Structures, 1983,16(1-4):27-35.
    [228]Huang Z.F., Tan K.H..Analytical fire resistance of axially restrained steel columns [J].Journal of Structural Engineering, 2003,129(11):1531-1537.
    [229]Vimonsatit V., Tan K.H., Ting S.K..Nonlinear elasoplastic analysis of semirigid steel frames at elevated temperature: MP approach[J].Journal of Structural Engineering, 2003,129(5):661-671.
    [230]Li Guo-Qiang, Jiang Shou-Chao.Prediction to nonlinear behavior of steel frames subjected to fire[J]. Fire Safety Journal, 1999,32(4):347-368.
    [231]Najjar S.R., Burgess I.W..A non-linear analysis for three-dimensional steel frames in fire conditions[J]. Engineering Structures,1996,18(1):77-89.
    [232]Bailey C.G., Burgess I.W., Plank R.J..Computer simulation of a full-scale structural fire test[J]. The Structural Engineering,1996,74(6):93-100.
    [233]Huang Z., Burgess I.W., Plank R.J..Three-dimensional analysis of composite steel- framed building in fire[J]. Journal of Structural Engineering,2000,126(3):389-397.
    [234]Burgess I.W., Huang Z., Plank R.J..火灾下钢结构和组合结构的非线性模拟[J]. 建筑钢结构进展,2004,6(3):23-29.
    [235]李易,查晓雄,王靖涛.端部约束对钢管混凝土柱抗火性能的影响[J].哈尔滨工业大学学报,2005,37(Sup):438-441.
    [236]GB 50045-95.高层民用建筑设计防火规范[S]. 北京:中国计划出版社.
    [237]Lie T. T.. A Method of to Predict the Fire Resistance of Circular Concrete Filled Hollow Steel Columns [J]. Journal of Fire Protection Engineering, 1990, 2(4):111-126.
    [238]Bisby L. A.. Fire behavior of fiber-reinforced polymer (FRP) reinforced or confined concrete [D]. Queen’s University, Canada, 2003.
    [239]Han Lin-Hai, Xu Lei, Zhao Xiao-Ling. Tests and analysis on the temperature field within concrete filled steel tubes with or without protection subjected to a standard fire [J]. Advances in Structural Engineering, 2003, 6(2):121-133.
    [240]Kodur V.K.R., Wang T.C., Cheng F.P..Predicting the fire resistance behaviour of high strength concrete columns[J]. Cement and Concrete Composites, 2004,26(2):141-153.
    [241]陆洲导,朱伯龙.钢筋混凝土梁在火灾侵袭下的反应分析[J].火灾科学,1996, 5(2):35-43.
    [242]Huang Zhaohui, Andrew Platten, John Roberts.Non-linear Finite Element Model to Predict Temperature Histories within Reinforced Concrete in Fires[J].Building and Environment, 1996,31(2):109-118.
    [243]Eurocode 2. Design of Concrete Structures, Part 1-2, General Rules——Structural Fire Design[S]. 1996.
    [244]钟善桐. 钢管混凝土的防火[J]. 建筑结构,1999,29(7):55-57.
    [245]ISO-834. Fire resistance tests-elements of building construction. International Standard ISO-834, Geneva, 1975.
    [246]段文玺.建筑结构的火灾分析和处理(二) [J].工业建筑,1985,15(8):51-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700