水射流对钴结壳的破碎研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着陆地矿产资源的日趋枯竭和人类对海洋认识的日益深化,许多国家越来越重视海洋资源的开发和利用。深海钴结壳是大洋底部最具吸引力的矿产资源之一,产出在水深800-3000m的海山、岛屿斜坡上,其平均厚度仅为4-6cm,富含钴、铂、镍、锰、铜、铁、磷、钛、锌、铅、铈等战略物质。由于其巨大的战略意义和经济价值,深海钴结壳开采技术与装备的研究已成为国内外研究的一个热点。
     钴结壳开采研究的第一个难题和关键问题,就是如何从高低不平的海底基岩上将薄薄的一层钴结壳破碎剥离下来。钴结壳射流破碎方案为国际上推荐的两种可能开采方法之一,本文对该方案进行了基础研究,主要研究内容和研究结果如下:
     (1)建立了适用于破碎作业的高压水射流喷嘴的流体动力学仿真模型。
     (2)对深海环境下喷嘴水射流的内、外部流场进行了数值仿真分析,得到了5MPa,10MPa和15MPa三种典型围压环境下喷嘴内部射流压力、速度的变化规律和射流离开喷嘴后的压力、速度变化规律,并与非淹没状态下喷嘴射流的性能进行了对比研究。研究结果表明:随着海水围压的增加,喷嘴出口的最大速度相应下降,仿真结果与理论计算结果吻合,验证了选取的仿真计算方法基本合理;深海围压的大小对射流性能基本没有影响,不同围压下的喷嘴射流形成的等速核外形和最优靶距基本相同,深海最优作业喷距约为3倍喷嘴直径;与非淹没环境相比,淹没状态下喷嘴射流沿轴向速度衰减迅速,其等速核长度缩短约40%。
     (3)针对水的粒子特性,对水射流冲击破碎钻结壳和钴结壳模拟料建立了SPH粒子耦合有限元(FEA)模型,通过对不同系统压力下破碎结果分析:在相同条件下,钴结壳和钻结壳模拟料的成坑大小、成坑深度随射流速度增大相应增大。通过射流破碎钴结壳过程的观察,分析了射流破碎钴结壳的机理。
     (4)通过25MPa以下系统压力产生的水射流对钴结壳模拟料进行破碎实验得出:在非淹没环境下,随着系统压力的增加,破碎成坑大小和破碎成坑深度相应成增加趋势;钴结壳模拟料成坑深度随喷距的增大而减少,而成坑直径随喷距的增大而增大。在淹没环境下,破碎效果与非淹没条件下相比除了成孔孔径增大外,其他破碎效果基本一致。
Deep sea mining is a field of mining which attracts more and more attention from all over the world, it is considered as an important means to meet the challenge of the gradually exhaustion of land mineral resources.
     Cobalt-rich Ferromanganese crusts,which grows in the seamount、slope of islands ranged from 800 to 3000m is one of the most attractive mineral resources in the deep sea bed.Its average thickness is only 4 to 6 centimeters, and it is rich in strategic resources such as cobalt, platinum, nickel, manganese, copper, iron, phosphorus, titanium, zinc, lead and cerium etc.Because of its practical strategy, economic and political significance, Cobalt-rich Ferromanganese crusts has become a great concern in ocean resource exploitation in every country.
     The first problem of mining Cobalt-rich Ferromanganese crusts is how to crush the thin layer of Cobalt-rich Ferromanganese crusts from fluctuant surface of bedrock.One of two possible mining method recommended in international of mining Cobalt-rich Ferromanganese crusts is hydrojet.In this paper,the basic research was carried out for the program, the main conclusions of the paper are showed as follows:
     (1) High-pressure nozzle's fluid dynamics simulation model which suitable for break work is established.
     (2) The internal,external flow field and the performance of water jets of nozzle which work in deep-sea is carried out in the numerical simulation, in three typical confining pressure environment 5MPa, lOMPa and 15MPa, water jet's pressure and speed of nozzle internal changes in laws and water jet's pressure and speed changes in laws after leaving the nozzle were obtained,and non-submerged water jet's performance of nozzle is comparatively studied. The simulation results show that:with confining pressure increasing,the largest export speed of nozzle declines correspondingly,the simulation value coincides with the theoretical value,which verify the simulation method of selected is basic rational;the size of confining pressure under submerge environment doesn't affect its performance,The form of nozzle water jets'isokinetic core is similar and the optimal distance from the target is the same at different confining pressure,Optimal spray distance is about 3 times of the nozzle diameter; the axial velocity of submerged jet decay rapidly than non-submerged water jet, whose length of the isokinetic core is about 60% of non-submerged.
     (3) For the particles characteristic of water, the SPH particles coupled finite element (FEA) model for the Cobalt-rich Ferromanganese crusts and the simulaed Cobalt-rich Ferromanganese crusts matrials was broken by the water jet was established. The breaking results are analyzed under the different systems pressure as follows:under the same conditions, the crater size and cut depth of Cobalt-rich Ferromanganese crusts and the simulated Cobalt-rich Ferromanganese crusts materials increasing with the increasing of water jet velocity.The process of Cobalt-rich Ferromanganese crusts was broken by the water jet was observed, the mechanism of Cobalt-rich Ferromanganese crusts was broken by the water jet was analyzed.
     (4) The simuled Cobalt-rich Ferromanganese crusts materials was broken by the water jet generated under 25MPa pressure. In the non-submerged environment, the crater size and cut depth of Cobalt-rich Ferromanganese crusts increases corresponding to the increasing of crushing pressure.The cut depth of the simulaed Cobalt-rich Ferromanganese crusts materials decreases with the increasing of spary distance.but the crater size increases corresponding to the increasing of spary distance.In this experiment,with the exception of the crater size increasing,the crushing effect between submerged conditions and non-submerged conditions is basically the same.
引文
[1]吕东,何将三,刘少军.深海资源开采技术的研究现状.[J].矿山机械,2004,(09)6-9
    [2]莫杰.中国大洋矿产资源勘查进展概况[J].海洋地质动态,2000,16(3):6-8
    [3]吕华.海洋开发与管理的探讨[J].地质科技管理,1999,(1):7-11
    [4]Halbach P、Manheim F T. Marine Mining[M],1984, (4):319-336
    [5]Halbach P, etal. Marine Mining [M],1989, (8):23-9
    [6]Halbach P、Manheim F T、OttenP. Erzmetall [M],1982,35(9):447-453
    [7]简曲.大洋多金属结核资源开发新进展[J].湖南有色,1999,(6):51-53
    [8]许东禹,金庆焕,梁德华.太平洋中部多金属结核及其形成环境[J].地质出版社,1994
    [9]张海峰主编.中国海洋经济研究[M].海洋出版社,1986
    [10]菲尔莫尔CF埃尔尼著.海洋矿产资源[M],翟国谦等译.北京:海洋出版社,1991
    [11]吕文超编译.深海取宝[M].上海科学技术文献出版社,1997
    [12]简曲.我国已开始对大洋富钴结壳资源的开发研究[J].矿业研究与开发,1998,18(5):50-50
    [13]Claude Plchocki, Michel Hoffert. Marine Geology [M],1987, (77):109-119
    [14]沈裕军,钟祥,贺泽全.大洋钴结壳资源研究开发现状[J].矿冶工程,1999,19(2):11-13
    [15]阳宁,夏建新.国际海底资源开发技术及其发展趋势[J].矿冶工程,2000,20(1):1-3
    [16]黄中华,刘少军,沈海阔,金波.自主式深海浮游微生物浓缩保真取样器控制系统设计[J].海洋工程,2006,24(1):128-131
    [17]John E. Halkyard. Technology For Mining Cobalt Rich Manganese Crust From Seamounts[M]. John E. Halkyard&Company,352-367
    [18]国家海洋局第二海洋研究所,“中国大洋矿产资源勘查航次调查报告”(DY95-6、DY95-8)[J].杭州,1999
    [19]徐依吉.超高压水射流理论与应用基础研究[D]:[博士学位论文].成都:西南石油学院,2004
    [20]陶彬.高压水射流理论与技术基础研究[D]:[硕士学位论文].大连:大连理 工大学,2003
    [21]庄静伟,王强等.高压水射流的发展与应用[J].中国水运,2007,7(6):124-125
    [22]邱长军.钴结壳和基岩的特性与模拟研究[D]:[博士学位论文].长沙:中南大学,2002
    [23]Masuda Y, Crulckshank, Michael J. Progress in the development of the Continuous line bucket(CLB) mining on the 5th Takayou Sea Mount. Proceedings of the Intern offshore and Polar Engineering Conference[J]. Golden: ISOPE,1994.286-293
    [24]Masuda Y. Cobalt-rich crust mining by continuous line bucket(CLB)[J]. Oceans (NewYork). NewYork:IEEE,1987.1021-1026
    [25]Masuda Y, Cruickshank M J, Mechanical design developments for a CLB mining system. Oceans(new York) [J]. Piscataway:IEEE,1991.1583-1586
    [26]Masuda Y, Crulckshank M J, Abernathy J A, etal. Feasibility study of crust Mining in the Republic of the Marshall Islands[J]. Oceans (NewYork). Piscataway:IEEE,1991.1475-1478
    [27]James Hein. Cobalt-rich ferromanganese crusts:global distribution, composition, origin and research activities. Polymetallic massive sulphides and Cobalt-rich ferromanganese crusts:status and prospe-cts[J]. ISA Technical study, (2):43-49
    [28]SMART LESLIE ROBIN(ZA); DINGLE MICHAEL ESTMENT(ZA) Underwater mining machine. US6003952,1999-12-21
    [29]Aoshika, Katsuyuki, Zaitsu, Masaru Lto, Hidenobu, etal. Experimental study of cutting the cobalt-rich manganese crusts[J]. NKK Technical Review,1990, (59): 61-67
    [30]John E. Halkyar. Technology for mining cobalt-rich manganese crusts from seamounts[J]. Ocean(New York),1985:352-374
    [31]李俊.螺旋切削式深海钴结壳采矿头最小工作能耗设计研究[D]:[硕士学位论文].长沙:中南大学,2005
    [32]袁碧华.钴结壳振动切削规律的试验研究[D]:[硕士学位论文].长沙:中南大学,2004
    [33]Trupel T. Ueber die Einwirkung eines Luftstrahles auf die umgobende Luft[J]. Zeitschrift fur dasgesammte Turbinenwesen,1915
    [34]Zimm W. Ueber die Stromungsvorgange in freien Luftstrahl, Forschung a.d. Gebieted[J]. ingeniruwesens,1921
    [35]Tollmine W. Berechnung turbulenter Ausbreitungsorgange[J]. ZAMM,6(6), 1926
    [36]Gortler H. Berechnung von Aufgaben der freien Turburbulenz auf Grund eines neuen Naherungsansatzes[J]. ZAMM,22(5),1942
    [37]Schliching H. Boundary Layer Theory, Mcgraw-Hill Book Company[J]. Nic, New York,1968
    [38]Forthmann E., Dai Y.B., Iensen R.A., Rouse H. Diffusion of submerged jets[J]. Proceedings of the ASCE,74,1751,1948.
    [39]廖华林,李根生.超高压水射流冲击岩石的流固耦合分析[J].水动力学研究与进展,2004.7,19(4),452-457
    [40]崔谟渗,孙家俊.高压水射流技术[M].北京:煤炭工业出版社,1993
    [41]肖柱华.高压水射流在我国煤矿应用及前景[J].煤气与热力,1994,(4):35-37
    [42]杨林,唐川林,张凤华.高压水射流技术的发展及应用[J].洗净技术,2004,(1)
    [43]唐川林,廖振方.石油钻井钻头用自激振荡喷嘴的研究[J].石油学报,1993,(1)
    [44]兰华菊.空化水射流破岩实验研究及机理分析[D]:[硕士学位论文].重庆:重庆大学,2007
    [45]薛胜雄,黄汪平,陈正文,等.高压水射流技术与应用[M].北京:机械工业出版社,1998
    [46]潘超,姚勇.高压水射流破碎岩石数值模拟[J].中国农村水利水电,2005,(12):59-62
    [47]李万莉,徐宝富等.水射流侵蚀破碎水泥路面的微结构损伤模型及仿真[J].同济大学学报(自然科学版),2005,1(33):42-45
    [48]卢义玉,冯欣艳,等.高压空化水射流破碎岩石的试验分析[J].重庆大学学报(自然科学版),2006,29(12):88-91
    [49]沈忠厚.水射流理论与技术[M].山东:石油大学出版社,1998
    [50]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984
    [51]万连德.高压水射流破岩机理的几个问题[J].北京:中国矿业大学,1985
    [52]Kondo M, Fujii K, SyojiH. On the destruction of mortar specinens by submerged waterjets[J]. Second International Symposium on Jet Cutting Technology. Cambridge, U K,1974, B5:69-88
    [53]张作龙,梁忠民.高压淹没水射流破岩实验研究[J].石油矿场机械,2000,29(5):27-30
    [54]廖华林,李根生等.围压对射流破岩特性影响的试验研究[J].石油钻探技术,2007,35(5):46-48
    [55]Singh M.M., Hartman H.L., Hypothesis for the Mechanism of Rock Failure under Impact,4th Symposium on Rock Mechanics [J]. Pennsylvanis Ssate University, PA,1961,221-228
    [56]Farmer I.W., Attewell P.B., Rock Penetration by High Velocity Water Jets[J]. International Journal of Rock Mechanics and Mining Science, Vol.2, No.2, July, 1965,135-153
    [57]Yen C., Huang F., G. Hammitt. Mathematical modeling of normal impact between a finite cylindrical liquid jet and non-slip flat rigid surface[J]. First International Symposium On JetCutting Tech,1972, A4:57-68
    [58]Heymann F.J. On the shock wave velocity and impact pressure in high-speed liquid-solid impact[J]. TransASME-Journal ofBasic Engineering,1968, Vol.90: 400-402
    [59]Heymann F.J. High-speed impact between a liquid drop and a solid surface[J]. Journal of Applied Physics,1969,40(3):5113-5122
    [60]Bowden F.P, Brunton J.H. The deformation of solids by liquid impact at supersonic speeds[J]. Proceedings of the Royal Society, Series A,1963, Vol. 263:433-450
    [61]Field J.F. Stress Waves, Deformation and fracture caused by liquid impact [J]. Philosophical Transactions of the Royal Society of London, Series A,1966, Vol. 260:86-93
    [62]Kang S.W., Reitter T., Carlson GTarget responses to the impact of high-Velocity, Non-abrasive Water Jests[J].7th American Water Jet Conference, August,1993: Seattle, Washington, USA, Paper5
    [63]Chermensky G.P. Pulsed Water Jet Pressure in Rock Breaking[J]. Proceedings of the 5th International Symposium on Jet Cutting Technology,1980, C6:155-164
    [64]Kinoshita T., Sc M. An investigation of the mechanism of a high-speed liquid jet and its practical application[J]. Second International Symposium on Jet Cutting Technology. Cambridge, U.K,1974, B4:47-68
    [65]Kinoshta T. An investigation on the compressible properties of liquid jet and its impact onto the rock surface[J]. Third International Symposium on Jet Cutting Technology, Chicago, USA,1976, A2:17-32
    [66]Daniel I.M. Experimental studies of water jet impact on rock and rocklike materials[J]. Third International Symposium on Jet Cutting Technology, Chicago, USA,1976, B3:27-46
    [67]Daniel I.M. Photoelastic study of water jet impact[J]. Second International Symposium on Jet Cutting Technology, Cambridge, U.K,1974, A1:1-18
    [68]Corw S.C., Lade P.V., Hurlburt G.H. The Mechanics of Hydraulic Rock Cutting. Second International Symposium on Jet Cutting Technology[J]. Cambridge, England, April,1974,1-14
    [69]Corw S.C. A Theory of Hydraulic Rock Cutting[J]. International International Journal of Rock Mechanics and Mining Science,1973 (10),567-584
    [70]张永利,张彦路,李成全.水射流切割理论研究进展[J],1999,18(5):503-506
    [71]倪红坚,王瑞和,白玉湖.高压水射流破碎岩石的有限元分析[J].石油大学学报(自然科学版),2002,26(3):37-40
    [72]朱自强.应用计算流体力学、[M].北京:北京航空航天大学出版社,1998
    [73]薛胜雄.高压水射流技术工程.合肥[M].合肥工业大学出版社,2006
    [74]廖勇.高围压下磨料水射流切割的模糊建模和实验研究[D]:[博士学位论文].重庆:重庆大学资源与环境科学学院,2003
    [75]付曙光.高压水除鳞喷嘴射流特性的CFD仿真[D]:[硕士学位论文].武汉:武汉科技大学机械自动化学院,2007
    [76]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2008:74-140
    [77]夏毅敏.深海钴结壳螺旋切削采集过程仿真和螺旋采集头工作参数优化研究[D]:[博士学位论文].长沙,中南大学,2006
    [78]夏毅敏.富钻结壳采集头切削特性相似实验研究[J].湖南科技大学学报,2007,22(1):34-36
    [79]尚晓江,苏建宇等.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2005
    [80]马利.无网格法及液体射流高速碰撞与侵彻模拟[D]:[博士学位论文].浙江:浙江大学,2007
    [81]常宗旭.水射流非均质破岩理论及其应用[D]:[博士学位论文].太原:太原理工大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700