配电网可靠性非同调分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统的可靠性与经济性二者相互影响,相互制约。根据可靠性成本效益分析曲线,电力系统可靠性随着投资成本的增加而增加。然而,电力系统中可能存在一种特殊的非同调现象,即:元件增装后,非但未能改善系统可靠性反而降低系统可靠性的现象。为了提高系统可靠性,降低投资成本,本文围绕配电网可靠性的非同调现象进行研究。
     针对配电网开关故障率较高,开关故障后对系统负荷影响较大的特点,结合辐射状配电网的结构特点,提出了计及开关故障的配电网可靠性评估分块算法。在使用现有分块算法计算配电网可靠性的过程中,加入了开关故障的影响分析,以达到更真实地反映系统可靠性水平的目的。算例分析表明,开关故障对配电网可靠性的影响不容忽略,为配电网可靠性非同调的辨识奠定了基础。
     给出了配电网可靠性非同调的定义,分析了配电网可靠性产生非同调的原因和可能元件,并指出开关设备是配电网产生可靠性非同调现象的主要元件。基于计及开关故障的分块算法分析了配电网可靠性非同调元件(如:断路器、隔离开关等开关设备)的可靠性影响,给出了配电网可靠性非同调的辨识方法。为分析非同调元件的经济性影响,从投资、运行维护、停电损失等费用对非同调元件进行了综合经济分析。
     开展了基于系统缺供电量的断路器非同调参数分析,包括断路器可靠性参数、其他元件可靠性参数、系统负荷、网络结构等。算例表明,非同调现象与这些因素均相关,分析结果与定性分析得到的模型相吻合。
     基于系统平均停电频率指标、系统平均供电可用率以及系统缺供电量三个指标对开关元件的非同调特性进行了分析。分析表明,基于不同的可靠性指标有可能得到不同的非同调辨识结果。在实际的非同调辨识中,可以根据系统用户的需求基于不同的可靠性指标进行分析。
     研究表明配电网中的确有可能存在非同调现象,通过可靠性非同调元件的分析,可有效提高配电网可靠性,降低系统投资、运行等综合成本。
     本论文受国家自然科学基金项目“电力系统可靠性非同调的理论及应用研究(50777072)”资助。
Reliability and economy of power system influences and restricts each other. Based on the graph of reliability cost-benefit analysis, the reliability of power system improves while investing more. However, a particular phenomenon in power system called reliability non-coherence,which means the reliability of power system does not get better but probably worse when adding a new component in it,may be a special case against this classic theory.
     For the reason of a comparatively high failure rate of switching devices in distribution power systems (DPS), a section algorithm is presented to evaluate the DPS reliability considering the failures of switching devices. The impact of switching devices failures on the system reliability is analyzed when computing the reliability of DPS to get a more accurate value. Case studies show that the impact of failures on switching devices can not be ignored in DPS, Which laid the foundation for identification of non-coherence phenomena in DPS.
     The reasons of resulting in the non-coherence phenomena and the candidate non-coherence components in DPS are discussed according to the definition of non-coherence in power system reliability. Switching devices are the most possible non-coherence components in DPS. A method of non-coherence components identification is presented based on the section algorithm which considering the failures of switching devices. A comprehensive model considering the capital cost, maintenance and operating cost is proposed to analyze the impacts of non-coherence components on the system economy. According to the qualitative analysis on the impact of circuit breaker to the system reliability, a circuit breaker reliability model based on the energy not supplied index (ENS) is proposed.
     Parameter analysis of non-coherence components caused by the circuit breaker is presented based on the ENS index, which consists of reliability parameters of circuit breaker and other components, loads and system structure. Case studies shows non-coherence phenomenon can be influenced by all this factors. This conclusion is agree with the one received by the qualitative analysis.
     The characters of non-coherence phenomenon are analyzed based on different reliability index. Case study shows different non-coherence identification results can be reached based on different system reliability index.
     Study shows non-coherence phenomenon can probable exist in DPS. Analysis on non-coherence components will improve the reliability of DPS while cutting down the cost.
     This thesis was supported by the National Natural Science Foundation of China (“Study on the reliability non-coherence theory and application for power system”, No. 50777072).
引文
[1]刘柏私.配电网最优切换模型与算法研究用[D].重庆:重庆大学硕士学位论文,2004.
    [2]陈文高.配电网可靠性实用基础[M].北京:中国电力出版社,1998,10-138.
    [3] Billinton R,Billinton J E.Distribution system reliability indices[J].IEEE Trans. on Power Delivery,1989,4(1):561-568.
    [4]李卫星,李志民,刘迎春.复杂辐射状系统的可靠性评估[J].中国电机工程学报,2003,23(3):70-79.
    [5] Billinton R,Wang P.Reliability-network-equivalent approach to distribution-system -reliability evaluation [J]. IEE Proc.-Gener. Trans. Distrib.,1998,145(2):149-153.
    [6]万国成,任震,田翔.配电网可靠性评估的网络等值法模型研究[J].中国电机工程学报,2003,23(5):48-52.
    [7]沈亚东,侯牧武.应用单向等值法评估配电网可靠性[J].电网技术,2004,28(7):68-72.
    [8]徐珍霞,周江昕.复杂配电网可靠性评估的改进故障遍历法[J].电网技术,2005,29(14): 64-67.
    [9] Xie Kaigui,Zhou Jiaqi,Billinton R.Reliability evaluation algorithm for complex medium voltage electrical distribution networks based on the shortest path[J] . IEE Proc-Gener.Transm.Distrib.,2003,150(6):686-690.
    [10]谢开贵,周平,周家启,等.基于故障扩散的复杂中压配电网可靠性评估算法[J].电力系统自动化,2001,25(4):45-48.
    [11]刘柏私,谢开贵,等.复杂中压配电网的可靠性评估分块算法[J].中国电机工程学报,2005,25(4):40-45.
    [12]彭鹄,谢开贵,等.基于开关影响的复杂配电网顺流评估算法[J].电网技术,2007,31(9):13-16.
    [13]谢莹华,王成山.基于馈线分区的中压配电网可靠性评估[J],中国电机工程学报,2004,24(5):35-39.
    [14]张焰,黎小刚.配电网供电可靠性的递归算法[J].华东电力,2000,11:5-7.
    [15]高炜欣,罗先觉,支岗印.复杂配电网络可靠性评估的向量法[J].电力系统自动化,2003,27(22):36-39.
    [16]雷娜,周渝慧,王蓉蓉.贝叶斯网络的复杂配电网可靠性评估[J].电力系统及其自动化学报,2009,21(1):108-112.
    [17]徐荆州,李扬,陈霄.基于GO法的配电网可靠性评估[J].电力系统及其自动化学报,2006,18(5):66-69.
    [18] Balijepalli N.,Venkata S S.,Richter. C.W., et al.Dist ribution system reliability assessment due to lightning storms[J].IEEE Trans. on Power Delivery,2005,20(3):2153-2159.
    [19] D Midence, S Rivera,A. Vargas. Reliability Assessment in Power Distribution Networks by Logical and Matrix Operations[C].Transmission and Distribution Conference and Exposition, Latin America,2008:1-6.
    [20]陆志峰,周家启.计及开关和母线故障的配电网可靠性评估[J].电网技术,2002,26(4):26-29.
    [21]谢开贵,王小波.计及开关故障的复杂配电网可靠性评估[J].电网技术,2008,32(19):16-21.
    [22] Munasinghe M.Electric Power economics[M].Butterworths,1990:214-215.
    [23] Billinton R,Wenyuan Li.Reliability assessment of electric power systems using Monte Carlo methods[M].New York:plenum press,1994:15-32.
    [24] Billinton R,Allen R N.Reliability assessment of power systems[M]. New York:plenum press,1996.
    [25] Wenyuan Li,J.K. Korczynski.Risk evaluation of transmission system operation modes:concept,method and application[C].IEEE Winter Meeting,New York,2002.
    [26] Wenyuan Li,J.K. Korczynski.Risk evaluation of transmission system operation modes and its application at British Columbia Transmission Corporation[J].IEE Proc.-Gener. Transm. Distrib,2004,151(5):658-664.
    [27]李文沅,周家启,等.在输电线和变电站组合联结网络中的非同调现象[J].中国电机工程学报,2006,26(14):7-14.
    [28] Wenyuan Li.Risk assessment of power systems: models, methods and applications[M]. IEEE Press and John Wiley & Sons Inc., 2004.
    [29]王俊峰,谢开贵,周家启.配电网开关优化配置的改进遗传算法[J].电网技术,2005,29(19):27-32.
    [30]谢开贵,刘伯私,等.配电网开关优化配置的动态规划算法[J].中国电机工程学报,2005,25(11):29-34.
    [31]谢开贵,周家启.基于免疫算法的配电网开关优化配置模型[J].电力系统自动化. 2003,27(15):35-39.
    [32]史燕琨,王东,等.基于综合费用最低的配电网开关优化配置研究[J].中国电机工程学报,2004,24(9):136-141.
    [33] Rong-Liang Chen,Kim Allen, Roy Billinton, Value-Based Distribution Reliability Assessment and Planning[J], IEEE Trans. on Power System, 1995, 10(1):421-429.
    [34]万国成,任震,等.配电网可靠性成本与效益综合[J].电力自动化设备,2003,23(9):18-22.
    [35]周家启,蒋锦峰,孙渝江,谢开贵.DL/T 861-2004电力可靠性基本名词术语[S].北京:中国电力出版社,2004.
    [36]谢开贵,王小波.计及开关故障的复杂配电网可靠性评估[J].电网技术,2008,32(19):17-21.
    [37]电力可靠性管理中心.2006年电力可靠性指标发布会资料汇编.
    [38]谢开贵,周家启.基于ANN削减负荷的发输电组合系统可靠性评估[J].电力系统自动化,2002,26(22):31-33,44.
    [39]重庆大学.基于LCC的配电网可靠性成本/效益分析系统研究[R].2008.
    [40]王小波.计及可靠性的配电网LCC模型及应用[D].重庆:重庆大学硕士学位论文,2008.
    [41] Roy Billinton,Satish Jonnavithula,A test system for teaching overall power system reliability assessment[J].IEEE Trans. on Power System,1996,11(4):1670-1676.
    [42] Jonnavithula S,Billinton R.Minimum cost analysis of feeder routing in distribution system planning[J].IEEE Trans. on Power Delivery,1996,11(4):1935-1940.
    [43] Wang P,Billinton R.Optimal load-shedding technique to reduce the total customer interruption cost in a distribution system[J].IEE Proceeding-C,2000,147(1):51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700