低速重载齿轮传动微观热弹流润滑数值分析及齿面抛光实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮传动是机械传动中最重要且应用最广泛的传动形式之一,它的接触强度设计是以hertz弹性接触理论为基础,而这种理论只是光滑表面且无润滑的静态接触,这与实际有很大的差距。然而在齿轮润滑过程中,弹流油膜的厚度通常只有1μm左右甚至更小,而齿面因切削形成的粗糙度和它处于一个数量级,齿面粗糙峰频繁碰撞,造成接触峰点弹塑性变形和金属迁移。大量实验证明,齿面损伤都是因润滑失效引起的,如点蚀、过度磨损以及胶合等,尤其在低速重载齿轮传动中润滑失效占失效的60%以上。因此,对低速重载齿轮传动热弹润滑研究具有较高的理论意义和实际价值,本文具体的研究工作及结论如下:
     1)首先在齿轮啮合原理、齿面粗糙度效应和非牛顿流体特性的基础上建立了低速重载齿轮传动微观热弹流润滑的数学模型,并针对该数学模型中形式相当复杂的二阶非线性偏微分方程组的特征,运用多重网格法(Multi-Grid Method)求解压力分布时变解、多重网格积分法计算弹性变形、逐列扫描法计算温度分布时变解,并分析了影响低速弹流润滑的几个主要因素,结果表明,在一定的条件下,粗糙度越大,产生的局部压力峰越大,而油膜厚度也相应减小,同时最大温升也有一定程度增加;随着速度的增加,油膜厚度有所增加,油膜平行部分相应缩短,二次压力峰的位置逐渐向入口区方向移动,最大的油膜压力也逐渐降低;润滑油粘度的影响主要体现在油膜形状上,润滑油粘度越高,形成的油膜厚度越大,同时油膜间产生的剪切热也越强烈;当载荷越大时,压力分布逐渐接近于Hertz接触压力分布,而载荷越小时,压力分布和经典润滑理论计算的结果非常相似。
     2)参照风电增速箱低速级的行星轮传动的参数和受载情况,建立了相应数学模型,得到太阳轮与行星轮、行星轮与齿圈的热弹流润滑完全数值解,分析油膜压力和膜厚形状与损伤和磨损的关系。结果表明齿圈和行星轮在Ra=0.8μm时,油膜比厚小于1.5,处于不正常工作状态,它的齿面损伤度可达10%以上。
     3)采用在氧化磷化条件下齿轮跑合方案,分析了齿轮在磷化中的化学反应机理:浸入的磷化液使齿轮表面形成结晶型磷酸盐转换膜软化层,在齿轮啮合时产生的摩擦力作用下使齿面粗糙度逐渐降低。通过对比了处理后齿轮和未处理的齿轮在二种不同方案下润滑油温升变化情况,结果表明,降低粗糙度对齿轮啮合时润滑油温度有明显的改善效果。
Gear transmission is the most important and most widely used form of transmission. In common, there is great different for contact strength design of gears based on Hertz elastic contact theory, which is just used for static contact as so smooth surface with no lubrication. However, in the process of gear lubrication, elastohydrodynamic oil film thickness is about 1μm or smaller, which is almost in the same order of magnitude with tooth surface roughness formed by cutting. Under this condition, it is an frequency of tooth surface asperity collisions, which is leaded to plastic deformation and metal migration. A large number of experiments show that tooth surface damage is caused by lubrication failure, such as pitting, excessive wear and glue, etc., especially in low speed heavy gear failure in the lubrication failure accounted for more than 60%. Therefore, there is higher theoretical and practical value for low-speed heavy gear lubrication of thermoelastic. These detailed studies are as follows:
     1) First of all, the mathematical model for micro-thermal elastohydrodynamic lubrication based on gear engagement theory, surface roughness effect and the non-Newtonian behavior is set up. Owe to complexity of second-order nonlinear characteristics of partial differential equations, Some challenging numerical calculation methods are adopted such as multi-grid method (Multi-Grid Method) to solve the pressure distribution of time-varying solution, multiple grid integration method to elastic deformation and the column scanning method to temperature distribution and then several major factors impacting low-speed EHL are discussed. the results show that under certain conditions, the greater the roughness, the greater the resulting local pressure peaks, while the film thickness correspondingly decreases and the maximum temperature rise also increased to some extent; When speed is becoming geater, film thickness is increasing with the corresponding parallel part of the film shortening, the position of the second pressure peak gradually is shifting to the entrance area, and even the largest film pressure is gradually reduced; oil viscosity is mainly reflected in the film shape, The higher the oil viscosity, the greater the formation of film thickness, while oil film shear heat generated by the more strongly; when larger loads, the pressure distribution gradually close to the Hertz contact pressure distribution, while the load is smaller, the pressure distribution is similar with the result calculated by classical lubrication theory.
     2) The reference to gear parameters and load conditions of a company's wind power growth of low-level box planetary gear, a mathematical model is established to solve gear complete thermal EHL numerical solutions for sun gear, planetary gear and ring and then the relationship between film pressure and film thickness of planetary gear system and damage and wear is analyzied. The results show that the ring gear and planet gear with Ra = 0.8μm work in abnormal state, whose degree of tooth injury up to 10% on account of the oil film thickness less than 1.5.
     3) The papar proposed gear running programs under the oxidation and phosphate conditions, and analyzed chemical reaction of the gears in phosphate solution: gear in reaction with solution is formed on the surface softening membrane of crystalline phosphate conversion layer, which is wiped by friction when gear is meshing. Over and over again roughness peak of gear tooth surface is decreased. Then by comparing the treated and untreated gears in the two kinds of programs, oil temperature of gear with lower roughness is great lower than anothers.
引文
[1]温诗铸著.摩擦学原理[M].北京:清华大学出版社,1990.
    [2] F. Oyague.Gearbox Modeling and Load Simulation of a Baseline 750-kW Wind Turbine Using State-of-the-Art Simulation Codes [J] .Technical Report:2009.
    [3]杨萍,杨沛然.斜齿轮圆柱齿轮的热弹流润滑理论[J].机械工程学报,2006,42(10):43~48.
    [4] N.Pair,H.S.Cheng.An average flow model for determining effects of three dimensional roughness on partial Hydrodynamic lubrication[J].Trans ASME,Serial F,1978,100(2):5~10.
    [5] Wellaur E.J.,Ho lloway G.A.Application of EHD oil film theory to industrial gear drives[J] .Trans ASME,Series B,1976,98 (2) :317—321.
    [6] Jing X,Cheng H.S.,Hua D.Y. A theoretical analysis of mixed lubrication by macro-micro approach:part I-results in a gear surface contact [J]. Tribology Transactions,2000,43(4):689—699.
    [7] H. Christensen.Failure by collapse of hydrodynamic oil films [J] .Wear,1972,22(3):359—366.
    [8] Martin,H.M.lubrication of gear teeth[J].Engineering,1916,Vol.102:199.
    [9] McEween E.The effect of variation of viscosity with pressure on the load carrying capacity of oil film between gear teeth[J].Journal Institute of Petroleum,1952,V.38:655~665.
    [10] Adkins R.W.,Radzimovsky E.I.lubrication phenomena in spur gears[J].Trans.ASME Journal Basic Eng,1965,V.87:653~656.
    [11] Grubin A.N.Elasto-hydrodynamic Lubrication of Involute Gears[J].Transa.ASME,Journal of Engineering for Industry,1973,Vol.95:1164~1170.
    [12] Grubin A.N.investigating of the contact of machine components [J]. Central Scientific Research Institute for Technology and Mechanics,Moscow,1949,Book30:337.
    [13] Vichard J.P.Transient Effects in the Lubrication of Hertzian Contacts [J]. Journal of Mechanical Engineering Science,1971,Vol.13:173~180.
    [14] Wang K.L.,Cheng H.S.A Numerical Solution to the Dynamic load,Film Thickness and Surface Temperature in Spur Gears.Trans.ASME,Journal of Mechanical Design,1981,V.103:177~195.
    [15] LIN Z.G.,Medley J.B.transient elasto-hydrodynamic lubrication of involute spur gears under isothermal conditions[J].Wear,1984,V.95:143~163.
    [16] Sata M ., Takansashi S . thermo-elasto-hydrodynamic lubrication of an involute gear[J].Tribology international,1982,V.11:23~30.
    [17] Petrousevitch A.I.the Investigation of oil film thickness in lubricated ball-race rolling contact[J].Wear,1972,V.19(1):369~389.
    [18] Wada S ., Tsukijihara M . Elasto-hydrodynamic squeeze problem of two rotating cylinders[J].Bulletin JSME,1981,24(90):937~942.
    [19]任宁.非稳态线接触弹性流体动力润滑问题的研究[D].清华大学硕士学位论文,1987.
    [20]温诗铸,杨沛然.弹性流体动力润滑[M].北京,清华大学出版社,1992.
    [21]艾晓岚.非稳态线接触弹性流体动力润滑完全数值解及应用研究[D].清华大学硕士学位论文,1986.
    [22]任宁,温诗铸.非稳态线接触弹性流体动力润滑的直接迭代法[J].第四届全国摩擦学学术会议论文集.北京:清华大学出版社,1987,27~32.
    [23]艾晓岚,俞海青,温诗铸.线接触非稳态弹流润滑完全数值解及实际应用[J].第四届全国摩擦学学术会议论文集.北京:清华大学出版社,1987,21~26.
    [24]卢立新,蔡莹,张和豪.渐开线直齿轮圆柱齿轮传动瞬态弹流润滑研究[J].润滑与密封,1999,5(5):7~10.
    [25]卢立新,蔡莹.直齿轮传动非牛顿流体瞬态弹流润滑研究[J].润滑与密封,2005,6(1):36~41.
    [26]章易程.直齿轮啮合弹性流体动力润滑的非稳态效应的研究[J].机械工程学报,2000,36(1):32~35.
    [27]梅雪松,谢友柏.一种快速求解非稳态弹流润滑问题的直接迭代法[J].应用力学报,1991,8(3):19~28.
    [28]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M].北京,高等教育出版社,1995.
    [29] Petrusevich.A.I.Fundamental conclusions from the contact-hydrodynamic theory of lubrication [J].Izv.Akad.Nauk SSR (OTN) 2,1951:209~223.
    [30] Stephenson,R.R.,Osterle,J.F.A direct solution of the elasto-hydrodynamic lubrication problem [J].Trans.ASLE,1962,5(4) :365~374.
    [31]温诗铸,朱东.等温弹流润滑问题的直接迭代解[J].润滑与密封,1985,4:20~25.
    [32] Yang P ., Wen S . A forward interative numerical method for steady-state elasto-hydrodynamically lubricated line contacts[J].Tribology International,1990,23(1):17~22.
    [33]陈瀚,唐照民.两凸面接触弹性流体动力润滑数值解[N].西安交通大学科学技术学报,1980.
    [34] Kim k . H ., Sadeghi , F . Three-dimensional temperature distribution in EHDlubrication[J].Part I:circular contact.Trans.ASME,J.of Tribology,1992,114:32~41.
    [35] Kim, k . H . and Sadeghi, F . Three-dimensional temperature distribution in EHD lubrication[J].Part II:point contact and numerical formulation.Trans.ASME,J.of Tribology,1993,115:36~45.
    [36] Hamrock B.J.,Jacobson Bo.O.Elasto-hydrodynamic lubrication of line contacts[J].ASLE Trans.,1984,27(4):275~287.
    [37] Lubrecht A.A.,ten Napal W.E.An alternative method for calculating film thickness and pressure profiles in elasto-hydrodynamically lubricated line contacts[J].J.of Tribology,1986,108(4);551~556.
    [38] Dowson, D ., Higginson G . R . A numerical solution to the elastohydrodynamics problems[J].J.of Mechanical Engineering Science,1959,1 (11):6~15.
    [39] Dowson D . , Higginson G . R . New roller bearing lubrication of rollers[J].Proc.Roy.Soc.262A,1961,57~69.
    [40] Dowson D.Elasto-hydrodynamics[A].Proc.Inst.Mech.Eng.[C],London,182(3A),1968.
    [41] Archard, G.D.,Gair, F.C.The EHL of rollers[J].Proc.Roy.Soc.,London,Science A,1961,262:51~59.
    [42] Cheng H.S.,Sternlicht B.A numerical solution for the pressure, temperature and film thickness between two infinitely lond,lubricated rolling and siding cylinders under heavy loads[J].Trans.ASME,J.of Basic Engineering,1965,5:695~707.
    [43] Rohde,S.M.,Oh K.P.A unified treatment of thick and thin elastohydrodynamic problems by using higher order element method[J].Proc.Roy.Soc:3 1 5~327.
    [44]杨沛然,温诗铸.用残量法求弹流问题的完全数值解[A].第一届清华大学摩擦学学术会议论文[C],北京,1986.
    [45] Hughes,T.G,Elcoate,C.D.and Evans,H.P.A novel method for integrating first-and second-order differential equations in elastohydrodynamic lubrication for the solution of smooth isothermal line contact problems[J]. Int.J.Number. Meth. Engng.,1999,44:1099~1113.
    [46] Cheng H.S.,Sternlicht B.A numerical solution for the pressure,temperature,and film thickness between two infinitively long,lubricated rolling and sliding cylinders,under heavy loads[J].Trans.ASME,D,1965,Vol.87:695~707.
    [47]小野京右,水川真.EHLの数值解法[J],润滑,1982,27(10):726~732.
    [48] Okamura H.A contribution to the numerical analysis of isothermal elasto-hydrodynamic lubrication[A].Proc.of the 9th leeds-lyon symposium on tribology(C),1983,France.
    [49]侯克平,温诗铸.重载条件线接触弹流润滑问题的数值分析[J].清华大学学报,1985,3.
    [50] Hou Keping,Wen Shizhu.The numerical solution to line contact elasto-hydrodynamic problem under heavy load[J].Wear,N.111,1986.
    [51] Hou Keping,Zhu Dong,Wen Shizhu.An inverse solution to the point contact EHL problem under heavy loads[J].Trans.ASME,1986,109(3).
    [52]杨沛然.流体润滑数值分析[M].北京,国防工业出版社,1998.
    [53] Lubrecht, A. A., Napel, W.E.T.and Bosina R. Multigrid , an alternative method for calculating film thickness and pressure profiles in elastohydrodynamically lubricated line contacts[J].Trans. ASME, J.of Tribology,1986,108:551~556.
    [54] Venner C H. Multilevel solutions of the EHL line and point contact problems [D]. Ph D thesis,Enschede:University of Twente,1991.
    [55]郭峰.椭圆接触微观热弹性流体动力润滑求解的多重网格算法研究[D].青岛:青岛建筑工程学院,1998.
    [56]刘超群.多重网格法及其在计算流体力学中的应用[M].北京:清华大学出版社,1995.
    [57]王优强,苏海滨,宋开利.齿轮弹流润滑分析的简化算法[J].煤矿机械,2005(1):30~33.
    [58]贺治成,杨萍,王优强.粗糙峰和粗糙谷对直齿圆柱齿轮热弹流润滑的影响[J].润滑与密封,2007,32(7):87~89.
    [59]吴文蕾,沈雪瑾,陈晓阳.多重网格法计算有限长线接触热弹流问题初值对求解过程的影响[J].摩擦学学报,2008,28(2):178~181.
    [60]孔金平.航空齿轮滑润数值计算[D].南京:南京航天航空大学,2006.
    [61] Dowson D , Higginson G . R . A numerical solution to the elasto-hydrodynamics problems[J].Journal of Mechanical Engineering Science,1959,1(1):6~15.
    [62] Tallian,T.E.The theory of partial elasto-hydrodynamic contact[J].Wear,1972,21:49~101.
    [63] Huang P, Wen S.Study on oil film and pressure distribution of micro EHL[J].ASME Journal of Tribology,1992,114(1):42~46.
    [64] Yang P,Wen S.Analysis of transient rheological thermal elasto-hydrodynamic lubrication in line contacts[J].Chinese Journal of Mechanical Engineering,1991,4(1):1~8.
    [65] Johnson,K.L.and Tevaarwerk,j.L.Shear behavior of elasto-hydrodynamic oil films[J].Proc.Roy. Soc.,London, A,1977,356,2 l~236.
    [66] Bair S, Winer W. O. A rheological model for elastohydrodynamic contacts based on primary laboratory data[J].A SM E.J.of Lubrication Technology,1979,101:258~265.
    [67] Lee R.T,Hamrock B.J.A circular non-Newtonian fluid model,part I:Used in EHL.A SM E,J.of Tribo.,1990,112:486~496.
    [68] Weck,M.,Kruse,A.and Gohrihz,A.Determination of surface fatigue of gears material by roller tests.J.of Mechanical Design,1978,100:433~439.
    [69]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992.
    [70]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990:18~32.
    [71] Yang P , Wen S . A generalized Reynolds equation for non-Newtonian thermal elasto-hydrodynamic lubrication.ASME Journal of Tribology,1990,112(4):631~636.
    [72]杨沛然,温诗铸.润滑力学中非牛顿流动的普遍Reynolds方程,力学学报,1991,23(3):283~289.
    [73]杨沛然,非稳态热弹流性流体动力润滑研究[D].北京:清华大学,1989.
    [74] Sadeghi F,Sui P C.Thermal elasto-hydrodynamic lubrication of rough surface.ASME Journal of Tribology,1990,112(2):341~346.
    [75] Barus C.Isothermals,isopiestics and isometrics relative to viscosity[J].American Journal of Science,V.45,1893.
    [76] Cameron A.Principle of lubrication [J].Longman Press,1966.
    [77] Roelands C.J.A.Correlational aspects of the viscosity-temperature-pressure relationship of lubrication oils[D].Druk.U.R.B.,Groningen,1966.
    [78] Houpert L . New results of traction force calculations in elastohydrodynamic contacts[J].Journal of Tribology,Trans.ASME,V.107(1),1985.
    [79] Dowson D.Higginson G.R.Elastohydrodynamic lubrication [M].Pergamon Press,1977.
    [80] Cheng H.S. A refined solution to the thermal-elastohydrodynamic lubrication of rolling and sliding cylinders [J].Trans.ASLE,V.8(1),1965.
    [81] Zhu Dong,Wen Shi-zhu,A full numerical solution for the thermoelastohydrodynamic problem in elliptical contacts[J].Journal of Tribology,Trans.ASME,V.106(2),1984.
    [82]张鹏顺,陆思聪,弹性流体动力润滑及其应用[M].北京:高等教育出版社,1995.
    [83] Moosavi H.Optimization of spur gear systems by tooth profile and face width modification [D].PhD thesis,Wichita State University,1990.
    [84]杨沛然.流体润滑数值分析[M].国防工业出版社,北京,1998年.
    [85]张建军,杨沛然.润滑油环境粘度对非稳态热弹流润滑的影响,润滑与密封,2007,32(2):78~80.
    [86] Martin H.M.,The lubrication of gear teeth.Engineering,V.102,1916.
    [87] Dowson D.,Higginson G.R.,Elasto-Hydrodynamic lubrication.Pergamon Press,1977.
    [88]杨沛然,温诗铸.线接触弹流问题一种新的解算方法及更准确的油膜厚度公式.清华大学科学报告,1988年.
    [89]陈刚,刘新,李军.昆仑FD20000高性能风电专用齿轮油的应用[J].油品研究与应用,2009,24(3):22~25.
    [90] Saito T,Imada Y,Sugita K,Honda F.Tribological study of chemical states of protective oxide film formed on steel after sliding in humid atmosphere and in aqueous solutions[J].Trans ASME J Tribol 1997;119:613~618.
    [91] Wen-zhong Wang,Hui Chen.Effect of surface roughness parameters on mixed lubrication characteristics [J].Tribology International 2006,39:522~527.
    [92] Gary Sroka,Lane Winkelmann.Superfinishing Gears-The State of the Art [J].Gear Technology 2003,Nov:28~33.
    [93] Mark Michaud,Gary Sroka.Chemical mechanical machining and surface finish:US 2005/0164610A1[P].2005-7-28.
    [94] William P.Nebiolo.The reduction of parasitic friction in automotive gearbox and drive train components by the isotropic superfinish,SAE Performance Racing Industry Conference,2002,02MSEC-20.
    [95] T.L.Krantz,M.P.Alanou,H.P.Evans.Surface fatigue live of case-carburized gears with an improved surface finish.2000,NASA/TM-210044.
    [96] P.W.Niskanen,B.Hansen,L.Winkelmann.Evaluation of the Scuffing Resistance of Isotropic Superfinished Precision Gears[J].05FTM13,AGMA Fall Technical Meeting,Detroit Michigan,October,2005.
    [97] H.So.D.S.Yu,C.Y.Chuang.Formation and wear mechanism of trio-oxides and the regime of oxidation wear of steel [J].Wear 253(2002):1004~1015.
    [98] K. Oobayashi,K. Irie,F. Honda.Producing gear teech with high form accuracy and fine surface finish using water-lubricated chemical reactions[J].Tribology International 38(2005) :243~248.
    [99] P. de Baets,G. Kalacska,K. Strijckmans,F.Van de Velde.Experimental study by means of thin layer activation of the humidity influence on the fretting wear of steel surfaces[J].Wear ,216(1998) :131~137.
    [100] Weck M,Mauer G.Optimum tooth flank correction for helical gears[J].Trans ASME 1990;112: 584~589.
    [101]姜宏伟,石万凯,秦大同.蜗杆传动磨损的理论分析[J].重庆大学学报,2008(1).
    [102]石万凯,姜宏伟,秦大同,陈勇.超微细磷酸锰转化涂层摩擦磨损性能研究[J].摩擦学学报,2009(5).
    [103]石万凯,姜宏伟,秦大同,武斌.新型涂层钢蜗杆副传动机理研究与传动性能评价.机械工程学报.2010,3,46(5):22~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700