高温LiBr溶液中SUS304不锈钢抗腐蚀膜的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对能源消耗与日俱增和能源利用率相对较低的现状,采用第二类吸收式热泵将低品位的废热提高到较高品位,从而实现废热回收利用的技术受到广泛关注。吸收工质-LiBr溶液的高温腐蚀限制了热泵技术的应用范围,是高温吸收式热泵的关键技术之一,本文将针对高温吸收式热泵中的腐蚀及其防护问题进行研究。
     选择不添加任何缓蚀剂的LiBr溶液,考察了SUS304奥氏体不锈钢在150~200℃LiBr溶液中的腐蚀规律。结果表明,在高温环境中,LiBr溶液浓度是腐蚀速率和溶液中溶解金属离子浓度的主要影响因素;同时发现,SUS304不锈钢在高温高浓度LiBr溶液中的腐蚀状态存在由点蚀转变为膜状腐蚀的演化规律,并分析了腐蚀状态的转变机理。
     基于不锈钢在高温高浓度LiBr溶液中由点蚀向膜状腐蚀的转变规律,利用改进水热合成法,在溶液中添加微溶的无机硅配制成膜溶液,在腐蚀体系内边腐蚀边沉积原位制备新型的无机复合硅膜。通过对其结构和性能的表征,证实复合硅膜层主要由两部分组成:腐蚀溶液中不锈钢腐蚀生成的金属氧化物和溶液中溶解并同时沉积到试样表面的硅网状结构。而且两部分并非独立存在,无机硅在热碱中溶解并通过脱水缩合反应与金属氧化物及试样基体发生键合作用,在试样表面形成复合硅膜。脱水缩合形成的-Si-O-Fe、-Si-Fe键,使得膜层较致密且结合力增强,可显著提高其抗腐蚀性。
     选择SiO_2颗粒为无机硅源,在LiBr溶液中制备无机复合硅膜。通过考察Si添加量、LiBr溶液浓度、溶液pH值以及成膜时间对腐蚀体系内制备抗腐蚀性无机复合硅膜的工艺参数进行了优化研究。确定了最佳成膜工艺参数为:加Si量为29ppm,溶液pH值为10.6,溶液浓度为57.8%。制备膜的点蚀电位为0.75V、自腐蚀电位为0V、接触角为69°,具有一定的亲水性和良好的抗腐蚀性。
     选用双功能性硅氧烷1,2-二(甲基二乙氧基硅基)乙烷(BMBSE)为原料,在SUS304不锈钢基体表面,利用提拉法成功制备了双功能性硅氧烷BMBSE有机硅膜。检测结果表明,双功能性BMBSE硅膜具有-Si-O-Fe、Si-O-Si网状结构,提高了膜层的致密性和结合力,显著提高了SUS304不锈钢的耐腐蚀能力。根据BMBSE的结构及对成膜机理的分析,采用羟基含量高的TEOS对BMBSE膜进行改进,提高了复合膜内-Si-O-Fe、Si-O-Si的键合密度,膜层结构更加致密,抗腐蚀性进一步增强。最后考察了各成膜影响因素对复合硅膜性能的影响,得到了最优成膜溶剂配比。
A lot of lower grade thermal energy in industrial processes has been emitted into environment every year in the world,causing energy waste and serious thermal pollution by exhaust gases,cooling water or cooling air.On the other hand,many industrial processes require numerous steam or hot water to heat the fluid stream.As a very effective technique, absorption heat transformer(AHT) can be applied to upgrade the large quantity of low grade waste heat.Due to the high recovery ratio of waste heat,good contribution to environment protection,and little power consumption,AHT is currently becoming a considerable interest in waste heat reutilization in industrial processes.As the working fluid,Lithium bromide solution can cause serious corrosion problems on the metallic component,which is the bottleneck in the development of high temperature AHT.In this dissertation,the preparation and characterization of anti-corrosion film on SUS304 stainless steel in LiBr solution at high temperature has been investigated.
     The corrosion of stainless steel in LiBr solution without any anti-corrosion and anti-fouling inhibitions at 150~200℃was experimentally investigated by means of static immersion test,in which the concentration of dissolved oxygen has been controlled by vacuumizing.The experimental results indicated that the concentration of LiBr solution was the most important factor not only to the corrosion rate but also to the concentration of ions dissolved in solution.It was found that the usual pitting corrosion has a trend to transform into film corrosion in the process at high temperature and high LiBr concentration.This transformation mechanism of corrosion pattern states has been analyzed
     Based on the modified hydrothermal method,a novel inorganic silica composite film was prepared on SUS304 stainless steel substrates.The experimental tests demonstrated that the composite film remarkably improved the anti-corrosion characteristics of substrate.XPS, XRD and FT-IR analysis revealed that two simultaneous sub-processes,i.e.the corrosion of stainless steel stimulated by aqueous Lithium bromide solution and the dissolution of silica from inorganic silica,took place during preparation.The silica dissolved in the solution constituted a network with a layer of hydroxyls on the substrate surface and incorporated with the corrosion products to form -Si-O-Fe,-Si-Fe bonds.
     Silicon dioxide particle was chosen to prepare inorganic composite silica film.Effects of added content of solicon,concentration and pH of LiBr solution and the time of preparation on the performance of composite film were studies.As a result,the optimum condition was determined as follows:silicon content of 29ppm,pH of 10.6,LiBr concentration of 57.8%.
     An organic silica composite film of 1,2- Bis[methylbisethoxysilyl]ethane(BMBSE) was prepared on the surface of stainless steel directly without pre-plating metal with symmetrical structure of groups such as -OH,-CH_4 and -CH_2-CH_2- after hydroxylations.The structure and properties of the films were investigated by FT-IR,SEM,EIS, Potentiodynamically polarization curve and static contact angle.As a result,the structure of -Si-O-Fe,Si-O-Si could improved the anti-corrosion performance of SUS 304 stainless steel obviously.Furthermore,tetraethyl orthosilicate(TEOS:(OH)_3SiOSi(OH)_3) with high density of-OH was chosen to modify the BMBSE film.The content of-Si-O-Fe,Si-O-Si in the film was increased.Addition of TEOS increased the density of the reaction sites of condensation and modified BMBSE films in terms of compactness and anti-corrosion performance at room and higher temperatures.
引文
[1]Tanno K,Itoh M,Takahashi T,et al.The corrsion of carbon steel in lithium bormide solution at moderate temperatures[J].Corrosion Science,1993,34(9):1441-1451
    [2]Yashiro H,Sai A,Kumagai N,et al.Corrosion behavior of carbon steel in concentrated LiBr solutionsup to 473K[J].Corrosion Engineering,1999,48(6):369-374.
    [3]Ningshen S,Mudali U K,Dayal R K.Electrolyte and temperature effects on pitting corrosion of type 316LN stainless steels[J].British Corrosion Journal,2001,36(1):36-41.
    [4]Guinon J L,Garcia-Anton J,Perez-Herranz Vet al.Corrosion of carbon steels stainless steels and titanium in aqueous lithium bromide solution[J].Corrosion,1994,50(3):240-246.
    [5]王文,纪祥.溴化锂溶液中缓蚀剂的应用研究[J].腐蚀与防护,1999,20(6):272-275.
    [6]黄乃宝,梁成浩.高温高浓度溴化锂溶液中磷脱氧铜耐蚀性研究[J].大连理工学报,2001,41(6):667-671.
    [7]Oleinik S V,Kuznetsov Y I,Vartapetyan A R.Corrosion inhibition of steel in lithium bromide brines[J].Protection of Metals,2003,39(1):12-18.
    [8]Igual-Munoz A,Garcia-Anton J,Guinon J L,et al.Corrosion behavior and galvanic studies of brass and bronzes in aqueous lithium bromide solutions[J].Corrosion,2002,58(7):560-569.
    [9]Garcia-Anton J,Igual-Munoz A,Guinon J L,et al.Online visualization of corrosion processes of zinc and a Cu/Zn glvanic pair in lithium bromide solutions[J3.Corrosion,2003,59(2):172-180.
    [10]Igual-Munoz A,Garcia-Anton J,Guinon J L,et al.Galvanic study of zinc and copper in lithium bromide solutions at different temperatures[J].Corrosion,2001,57(6):516-522.
    [11]Anderko A,Young R D.Model for Corrosion of carbon steel in lithium bromide absorption refrigeration systems[J].Corrosion,2000,56(5):543-555.
    [12]郭建伟,梁成浩.碳钢在高温高浓度溴化锂溶液中腐蚀行为[J].大连理工大学学报,2000,40(5):554-556.
    [13]Griess J C,DeVan J H,Blanco H Perez,Corrosion of materials in absorption heating and refrigeration fluids.Report,1985:39-44.
    [14]Igual-Munoz A,Garcia-Anton J,Loez-Nuevalos Set al.Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures[J].Corrosion Science,2004,46(12):2955-2974.
    [15]欧阳录春,谢雪梅,俞卫刚等.塑料换热器在溴化锂吸收式制冷机中的应用[J].暖通空调,2005,35(3):65-69.
    [16]凌国平,刘涛.化学镀Ni-P层抗溴化锂溶液腐蚀的研究[J].材料保护,2001,34(7):14-17.
    [17]Jayaweera P,Sanjurjo A,Lau K H,et al.Corrosion resistant coatings for steels used in bromide-based absorption cycles:US,6399216BL[P]:2002-06-04
    [18]Jiang Z S,Wang R Z.Experimental research on characteristics of corrosion-resisting nickel tube used.in triple-effect LiBr/H_2O absorption chiller[J].Applied Thermal Engineering,2001,21(11):1161-1173.
    [19]郭建伟,梁成浩.不锈钢在高温高浓度溴化锂溶液中电化学行为研究[J].大连理工学报,2003,43(2):152-155.
    [20]梁成浩,黄乃宝.溴化锂制冷机中铜及其合金缓蚀剂的应用与发展.制冷,2002,21(3):62-65
    [21]Igual-Munoz A,Garcia-Anton J,Guinon J L,et al.Comparison of inorganic inhibitors of copper nickel and copper- nickels in aqueous lithium bromide solution[J].Electrochimica Acta,2004,50(4):957-966.
    [22]Itzhak D.Method for retarding corrosion of metals in lithium halide solutions:US,20030007888A1[P],2003-01-09
    [23]Inoue S,Yamamoto S,Furukawa T,et al.Improvement of high temperature applicability and compactness of a unit of an absorption heat pump[J].Heat Recovery System & CHP,1994,14(3):305-314
    [24]蒋伏广,陆柱.苯骈三氮唑对碳钢在溴化锂溶液中的缓蚀作用[J].淮阴师范学院学报,2003,2(2):142-144.
    [25]蒋伏广,陆柱.钼酸锂与苯并三氮唑对碳钢在溴化锂溶液中缓蚀作用的协同效应[J].华东理工大学学报,2004,30(2):153-156.
    [26]Verma S K,Mekhjian M S,Sandor G R,et al.Corrosion inhibiting solutions and processes for refrigeration systems comprising halides of a group Va metallic elements:US,006267908B1[P],2001-07-31
    [27]Verma S K,Mekhjian M S,Sandor G R,et al.Corrosion inhibiting processes for refrigeration systems:US,006083416A[P],2000-07-04
    [28]Du T B.Electronic structure study of AC modified passive film on stainless steel[J].British Corrosion Journal,2002,37(1):18-22.
    [29]Hsu H W,Tsai W T.High Temperature corrosion behavior of siliconized 310 stainless steel[J].Material Chemistry & Physics,2000,64(2):147-155.
    [30]Li L F,Jiang Z H,Riquier Y.High temperature oxidation of duplex stainless steel in air and mixed gas of air and CH_4[J].Corrosion Science,2005,47(1):57-68.
    [31]Szklarska-Smial owska Z,Mechanism of pit nucleation byelectrical breakdown of the passive film[J].Corrosion Science,2002,44(5):1143- 1149.
    [32]Hong T,Nagumo M.Effect of surface roughnes on early stages of pitting corrosion of type 301 stainless steel[J].Corrosion Science,1997,39(9):1665-1672.
    [33]Laycock N J,Newman R C.Localized dissolution kinetics salt films and pitting potentiate[J].Corrosion Science,1997,39(10-11):1771-1790.
    [34]Burstein G T,Liu C,Souto R M,et al.Origins of pitting corrosion[J].Corrosion Engineering Science and Technology,2004,39(1):25-30.
    [35]Ilevbare.G O,Burstein G T.The Inhibition of pitting corrosion of stainless steels by chromate and molybdate ions[J].Corrosion Science,2003,45(7):1545- 1569.
    [36]Gravano S M,Gatvele J R.Transport processes in passivity breakdown Ⅲ,full hydrolysis plus ion migration plus buffers[J].Corrosion Science,1984,24(6):517-534.
    [37]Sato N.The Stability of localized corrosion[J].Corrosion Science,1995,37(12):1947-1967.
    [38]Isaacs H S,Kaneko M.A study of the behavior of bromide in artificial pits using in situ X-ray microprobe analysis[C].Proceedings of Electrochemical Society(pits and Pores:Formation Properties and Significance for Advanced Luminescent Materials):Montreal,1997:341-349
    [39]Newman R C,Isaacs H S.Diffusion coupled active dissolution in the localized corrosion of stainless.steels[J].Journal of the Electrochemical Society,1983,130(7):1621-1624.
    [40]郭建伟,梁成浩.LiNO_3对高温高浓度LiBr溶液中碳钢的缓蚀机理[J].腐蚀科学与防护技术,2002,14(4):197-202.
    [41]Tzaneva B R,Fachikov L B,Raicheff R G.Effect of halide anions and temperature on initiation of pitting in CrMnN and CrNi steels[J].Corrosion Engineering Science and Technology,2006,41(1):62-66.
    [42]Alamr A,Bahr D F,Jacroux M.Effects of alloy and solution chemistry on the fracture of anodic films formed at metastable pitting potentials[J].Corrosion Engineering Science and Technology,2005,40(3):255-261,
    [43]Moayed M H,Newman R C.Using pit solution chemistry for evaluation of metastable pitting stability of austenitic stainless steel[J].Materials and Corrosion,2005,56(3):166-173.
    [44]Ernst P,Newman R C.Pit growth studies in stainless steel foils.Ⅱ.effect of temperature,chloride concentration and sulphate addition[J].Corrosion Science,2002,44(5):943-954.
    [45]Ernst P,Newman R C.Pit growth studies in stainless steel foils Ⅰ.introduction and pit growth kinetics[J].Corrosion Science,2002,44(5):927-941.
    [46]Bentiss F,Bouanis M,Mernari B,et al.Effect of iodide ions on corrosion inhibition of mild steel by 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole in sulfuric acid solution[J].Journal of Applied Electrochemistry,2002,32(6):671-678.
    [47]Kaneko M,Isaacs H S.Pitting of stainless steel in bromide chloride and bromide/chloride solutions[J].Corrosion Science,2000,42(1):67-78.
    [48]常立民,安茂忠,石淑云.Ni/Al_2O_3复合镀层在800℃NaCl盐膜下的腐蚀[J].机械工程材料,2005,29(11):39-41.
    [49]胡吉明,刘惊,张鉴清,曹楚南.LY12铝合金表面电化学沉积制备DTMS硅烷膜及其耐蚀性研究[J].高等学校化学学报,2006,27(6):1121-1125.
    [50]卢文壮,左敦稳,王珉等.Cr过渡层沉积粘附型CVD金刚石膜的机理研究[J].中国机械工程,2004,15(18):1676-1680.
    [51]黄令,林克发,杨防祖等.铜表面修饰硅烷膜在碱性溶液中的耐蚀性能研究[J].材料保护,2005,38(11):32-36.
    [52]王禹慧,赵景茂,左禹.铝合金耐蚀膜的制备及其性能研究[J].腐蚀与防护,2005,26(10):432-435.
    [53]周幸福,褚道葆,林昌健.不锈钢表面纳米Tio_2膜的制备及其耐蚀性能[J].材料保护,2002,35(7):4-5.
    [54]黄晖,苗鸿雁,罗宏杰等.水热法制备薄膜技术[J].硅酸盐通报,2002,(6):58-62.
    [55]Almomani M A,Aita C R.Pitting corrosion protection of stainless steel by sputter seposited hafnia,alumina,and hafnia alumina nanolaminate films[J].Journal of Vacuum Science &Technology A,2009,27(3):449-455.
    [56]Jean M B,Balmain J,Creus J,et al.Characterization of thin solid films containing yttrium formed byelectrogeneration of base for high temperature corrosion applications[J].Surface and Coatings Technology,2004,185(2-3):275-282.
    [57]Rohr V,Donchev A,Schuetze M,et al.Diffusion coatings for high temperature corrosion protection of 9 - 12%Cr steels[J].Corrosion Engineering,Science and Technology,2005,40(3):226-232.
    [58]Tada E,Frankel G S.Effects of particulate silica coatings on localized corrosion behavior of AISI 304SS under atmospheric corrosion conditions[J].Journal of The Electrochemical Society,2007,154(6):C318-C325.
    [59]Baba K,Hatada R,Nagata S,et al.SiO_2 coatings produced by ion beam assisted ECR-plasma CVD[J].Surface and Coatings Technology,1995,74-75(1-3):292-296.
    [60]李媛.碳钢表面纳米SiO_2薄膜的制备及性能研究[D].北京:北京化工大学,2004
    [61]Katsuhisa N,Kunitsugu A.One and two dimensional polymer films of modified alkanethiol monolayers for preventing iron from corrosion[J],Corrosion Science,1999,41(1):57-73.
    [62]Akihiro Hishinuma,Takuji Goda,Hideo Kawahara,et al.Formation of silicon dioxide films in acidic solutions[J].Applied Surface Science,1991,48-49:405-408.
    [63]Garcla Cerda L A,Mendoza Gonzalez O,Perez Robles J F et al.Structural characterization and properties of colloidal silica coatings on copper substrates[J].Materials Letters,2002,56(4):450-453.
    [64]Heras M G,Morales A J,Casal B,et al.Preparation and electrochemical study of cerium silica Sol-Gel thin films[J].Journal of Alloys and Compounds,2004,380(1-2):219-224.
    [65]Hamdy A S,Butt D P,Ismail A A.Electrochemical impedance studies of Sol-Gel based ceramic coatings aystems in 3.5%NaCl solution[J].Electrochimica Acta,2007,52(9):3310-3316.
    [66]王黔平,黄转红,刘淑贤.溶胶凝胶法制备不锈钢表面SiO_2-ZrO_2-Al_2O_3-Cr_2O涂层的研究[J].陶瓷,2006,(1):16-18.
    [67] Kumaraguru S P, Veeraraghavan B, Popov B N. Development of an electroless method to deposit corrosion resistant silicate layers on metallic substrates[J]. Journal of The Electrochemical Society, 2006, 153(7):B253-259.
    [68] Stevens M P. Polymer chemistry: an introduction, 3rd Edition. Oxford: Oxford University Press, 1999.
    [69] Owen M J, Rice D J. Biaxial strength behaviour of glass fabric reinforced polyester resins[J]. Composites, 1981, 12(1):13-25.
    [70] Plueddemann E P. Encyclopedia of polymer science engineering 2nd Editon[M]. New York: John Wiley & Sons, 1986.
    
    [71] Plueddemann E P. Silane coupling agents[M]. New York: Plenum Press, 1991.
    [72] Van Ooij W J, Zhu D Q, Stacy M, et al. Corrosion protection properties of organo-functional silanes-an overview[J]. Tsinghua Science and Technology, 2005, 10(6):639-664.
    [73] Subramanian V. Silane coupling agents for corrosion protect ion [D]. Cincinnati: University of Cincinnati, 1999
    [74] Subramanian V, Van Ooij W J. Effect of the amine functional group on corrosion rate of iron coated with films of organofunctional silanes[J]. Corrosion,. 1998, 54 (3):204-215.
    [75] Nakagawa T, Soga M, Contact angle and atomic force microscopy study of reactions of n-Alkyltrichlorosilanes with muscovite micas exposed to water vapor plasmas with various power densities[J]. Japanese Journal of Applied Physics, 1997, 36(11):6915-6921.
    [76] Sheffer M, Groysman A, Mandler D. Electrodeposition of Sol -Gel films on Al for corrosion protection[J].Corrosion Science, 2003, 45(12):2893-2904.
    [77] Underhill P R, Goring G, DuQuesnay D L. A study-of the curing of 3 - glycidoxyprop-yltrimethoxy silane films on aluminum[J]. International Journal of Adhesion and Adhesives,1998, 18(5): 313-317.
    [78] Gandhi J S, Metroke T L, Eastman M A. et al. Effect of the degree of hydrolysis and condensation of bis-[triethoxysilylpropyl] tetrasulfide on the corrosion protection of coated aluminum alloy 2024-T3[J]. Corrosion, 2006, 62(7):612-623.
    [79] VanOoij W J, Zhu D Q, Lamar A, et al. The Potential of organofunctional silanes as chromate replacements on aluminum alloys[C]. The SIP seminar on chromate-free pretreatments: Norway,2002. 78-84
    [80] Zhu D Q, Van Ooij W J. Corrosion protection of metals by water based silane mixtures of bis-[trimethoxysilylpropyl] amine and vinyltriacetoxysilane[J]. Progress in Organic Coatings, 2004, 49(1):42-53.
    [81] Van Ooij W J, Zhu D Q, Prasad G, et al. Silane based chromate replacements for corrosion control, paint adhesion and rubber bonding[J]. Surface Engineering, 2000, 16(5):386-396.
    [82] Sundarara jan G P, VanOoijWJ. Silane based pretreatments for automotive steels[J]. Surface Engineering, 2000, 16(4):315-320.
    [83]Pan G R,Shaefer D W,Van Ooij W J,et al.Morphology and water resistance of mixed silane films of bis[3-(triethoxysilyl)propyl]tetrasulfide and bis[tri methoxysilylpropyl]amine[J].Thin Solid Films,2006,515(4):2771-2780.
    [84]Palanivel V,Zhu D Q,Van Ooij W J.Nanoparticle filled silane films as chromate replacements for aluminum alloys[J].Progress in Organic Coatings,2003,47:384-392.
    [85]陆峰,Van Ooij W J.铝合金表面硅烷处理后腐蚀性能的研究[J].材料工程,1999,(8):18-20.
    [86]郭增昌,王云芳,王汝敏.铝合金表面不同硅烷化预处理的耐蚀性研究[J].中国腐蚀与防护学报,2007,27(3):172-180。
    [87]顾仁敖,陈惠,刘国坤.过渡金属表面有机官能团硅烷膜的研究镍电极表面γ-氨丙基三甲氧基硅烷膜的结构[J].化学学报,2003,61(10):1550-1555.
    [88]Franquet A,Terryn H,Vereecken J.IRSE study on effect of thermal curing on the chemistry and thickness of organosilane films coated on aluminium[J].Applied Surface Science,2003,211(1-4):259-269.
    [89]Yuan W,van Ooij W J.Characterization of organofunctional silane films on zinc substrates[J].Journal of Colloid and Interface Science,1997,185(I):197-209.
    [90]Buchheit R G,Grant R P,Hlava P F,et al.Local dissolution phenomena associated with S phase(Al_2CuMg) particles in aluminum alloy 2024-T3[J].Journal of the Electrochemical Society,1997,144(8):2621-2628.
    [91]Hong T,Ogushi T,Nagumo M.The effect of chromium enrichment in the film formed by surface treatments on the corrosion resistance of type 430 stainless steel[J].Corrosion Science,1996,38(6):881-888.
    [92]Noh J S,Laycock N J,Gao W,et al.Effects of nitric acid passivation on the pitting resistance of 316 stainless steel[J].Corrosion Science,2000,42(12):2069-2084.
    [93]Shih C C,Shih C M,Su Y Y,et al.Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical application[J].Corrosion Science.2004,46(2):427-441.
    [94]Ryan M P,Williams D E,Chater R J,et al.Why stainless steel corrodes[J].Nature,2002,415(6873):770-774.
    [95]Maximovitch S,Barral G,Cras F L,et al.The electrochemical incorporation of molybdenum in the passive layer of a 17%Cr ferritic stainless steel.Its influence on film stability in sulphuric acid and on pitting corrosion in chloride media[J].Corrosion Science,1995,37(2) 271-291.
    [96]Kraack M,Bohni H,Muster W,et al.Corrosion properties of stainless-steel films[J].Surface Coating Technology,1994,68-69:541-545.
    [97]Pan Q Y,Huang W D,Song R G,et al.The improvement of localized corrosion resistance in(?)sitized stainless steel by laser surface remelting[J].Surface & Coating Technology,1998,102(3):245-255.
    [98] Sudbury J D, Riggs O L, Shock DA. Anodic passivation studies[J]. Corrosion, 1960, 16:47-54.
    [99] Haupt S, Strehblow H H. A combined surface analytical and electrochemical study of the formation of passive layers on Fe/Cr alloys in 0.5M H2SO4LJ]. Corrosion science, 1995,37(1):43-54.
    [100] Cunha B M D, Rondot B, Compere C, et al. Chemical composition and semiconducting behavior of stainless steel passive films in contact with artificial seawater[J]. Corrosion Science,1998, 40 (2/3):481-494.
    [101] Hakiki N B, Boudin S, Rondot B, et al. The electronic structure of passive films formed on stainless steels[J]. Corrosion Science, 1995, 37(11):1809-1822.
    [102] Carmezim M J, Simoes A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel[J]. Corrosion Science,2005, 47(3):581-591.
    [103] FerreiraMGS, Hakiki N B, Goodlet G, et al. Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel[J]. Electrochimica Acta, 2001, 46(24-25):3767-3776.
    [104] Okamoto G. Passive film of 18-8 stainless steel structure and it function[J]. Corrosion Science, 1973,13(6):471-489
    [105]. Paola A D, Quarto F D, Sunseri C. A photoelectrochemical characterization of passive films on stainless steel[J]. Corrosion Science, 1986, 26(11):935-948.
    [106] Sunseri C, iazza S, Paola AD, et al. A photocurrent spectroscopic investigation of passive films on ferritic stainless steelsLJ]. Journal Electrochemica Society, 1987,134(10):2410-2416.
    [107] Paola A D, Shulka D, Stimming U. Photoelectrochemical study of passive film on stainless steel in neutral solutions[J]. Electrochimica Acta, 1991, 36(2):345-352.
    [108] LorangG, Cunha B M D, Simoes A M P, et al. Chemical composition of passive films on AISI304 stainless steel[J], The Electrochemical Society, 1994, 141(12):3347-3356.
    [109] Rangel C M, Silva T M, Cunha B M D. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steelsLJ]. Electrochimica Acta,2005, 50(25-26):5076-5082.
    [110] Shahryari A, Omanovic S. Improvement of pitting corrosion resistance of a biomedical grade 316LVM stainless steel by electrochemical modification of the passive film semiconducting properties[J]. Electrochemistry Communication, 2007, 9(1):76-82.
    [111] Schmuki P, Bohni H. Metastable pitting and semiconductive properties of passive film[J]. Journal of The Electrochemical Society, 1992, 139(7):1908-1913.
    [112] Bernard P, Dougall B M, Robert A. The role of metal /oxide interface in the growth of passive films in aqueous environments[J]. Corrosion Science, 2005, 47(1):247-256.
    [113] Ziemniak S E, Hanson M. Corrosion behavior of 304 stainless steel in high temperature,hydrogenated water[J]. Corrosion Science, 2002, 44(10):2209-2230.
    [114]Ziemniak S E,Hanson M.Corrosion behavior of NiCrFe alloy 600 in high temperature,hydrogenated water[J].Corrosion Science,2006,48(2):498-521.
    [115]Castelli R A,Persans P D,Strohmayer W,et al.Optical reflection spectroscopy of thick corrosion layers on 304 stainless steel[J].Corrosion Science,2007,49(12):4396-4414.
    [116]Stellwag B.The mechanism of oxide film formation on austenitic stainless steels in high temperature water[J].Corsoion Science,1998,40(2-3):337-370.
    [117]刘光启,马连湘,邢志有.化工物性算图手册[M].北京:化学工业出版社,2002
    [118]Fujita N,Matsuura C,Ishigure K.Corrosion control by silicate in high temperature water[J].Corrosion,1989,45(11):901-908.
    [119]Fujita N,Matsuura C,Ishigure K.The effect of silica on hydrogen evolution and corrosion of iron in high-temperature water[J].Corrosion,1990,46(10):804-812.
    [120]Doelsch E,Masion A,Rose J,et al.Hydrolysis of iron(Ⅱ) chloride under anoxic conditions and influence of SiO_4 ligands[J].Langmuir,2002,18(11):4292-4299.
    [121]Doelsch E,Masion A,Rose J,et al.Chemistry and structure of colloids obtained by hydrolysis of Fe(Ⅲ)in the presence of SiO_4 ligands[J].Colloids Surface A,2003,217(1-3):121-128.
    [122]Kwon S K,Shinoda K,Suzuki S,et al.Influence of silicon on local structure and morphology of γ-FeOOH and α-FeOOH particles[J].Corrosion Science,2007,49(3):1513-1526.
    [123]Sjoberg S.Silica in aqueous environments[J].Journal of non-crystalline solide,1996,196(1-3):51-57.
    [124]汤鸿霄.无机高分子絮凝理论与絮凝剂[M].北京:中国建筑工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700