溶胶—凝胶法制备镍铜锌铁氧体的掺杂与磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软磁铁氧体材料是一种应用十分广泛的功能材料,最常见的是镍锌铁氧体和锰锌铁氧体。铁氧体材料具有高磁导率、高电阻率、低损耗等优点,主要在自动控制、计算技术、仪器仪表和通讯广播等电子工业部门中应用,而且在宇宙航行、信息显示、卫星通讯和污染处理等行业也有一定的应用。锰锌铁氧体主要用在高频领域,镍锌铁氧体主要用在低频领域,锰锌铁氧体比镍锌铁氧体电阻率低5-6个数量级并且需要更高的烧结温度,镍锌铁氧体更节省能源,所以本文是通过不同的掺杂来制备NiCuZn铁氧体。铁氧体的制备方法有很多种,溶胶凝胶自蔓延法就是其中一种生产工艺简单、过程易于控制、产品纯度高的制备方法。本文是在前人研究的基础上,采用溶胶凝胶自蔓延法制备出不同掺杂的NiCuZn铁氧体,并应用X射线衍射仪,振动样品磁强计和穆斯堡尔谱仪对这些样品进行了微观结构及磁特性的研究。
     本论文的主要成果如下:
     1.对当前NiCuZn铁氧体的稀土掺杂和复合掺杂现状进行了研究。
     2.采用溶胶凝胶自蔓延法制备出Ni0.6Cu0.2Zn0.2CexFe2-xO4铁氧体,结合样品的XRD图、M-H图和穆斯堡尔谱图,分析研究了稀土铈掺杂对NiCuZn铁氧体微观结构和磁性能的影响。通过XRD分析可知该样品为典型的尖晶石结构,粉末晶粒尺寸在30nm左右。通过样品在T=300K时的磁滞回线表明,此铁氧体为典型的亚铁磁性,并且矫顽力(Hc)随着掺杂离子的增加而增加,饱和磁化强度(Ms)随着掺杂离子的增加而先增大后减小。通过Mossbauer谱分析可知,随着Ce3+掺杂量的增加,A位吸收面积和超精细场相对减小,B位吸收面积相对增加,超精细场变化不大。
     3.采用溶胶凝胶自蔓延法制备出Ni0.6-xCu0.2Zn0.2CoxBiyFe2_yO4铁氧体,结合样品的XRD图、M-H图和穆斯堡尔谱图,分析研究了Co、Bi复合掺杂对NiCuZn铁氧体的微观结构和磁性能的影响。通过XRD分析表明,随着Bi离子掺杂量的增加,样品晶粒密度逐渐增大。样品在T=300K时的磁滞回线表明,此铁氧体为典型的亚铁磁性,并且矫顽力(Hc)随着掺杂离子的增加而增加,饱和磁化强度(Ms)随着掺杂离子的增加而先增大后减小。通过Mossbauer谱分析可知,随着掺杂量的增加,A位吸收面积相对减小,B位吸收面积相对增加。
     最后,我们总结了本文的研究工作,并展望了NiCuZn铁氧体潜在的研究方向。
The soft magnetic ferrite material is a very wide range of functional material, the most common is NiZn ferrite and MnZn ferrite. The ferrite material has the advantages of high permeability, high resistivity and low loss, not only the gradual strengthening of applications in automatic control, computing technology, instrumentation and communication broadcasting of the electronics industry sector, and in astronauts, information display, satellite communications, and pollution treatment and other industries also have broad prospects. The MnZn ferrite is mainly used in high frequency field and the NiZn ferrite is mainly used in the low frequency field, MnZn ferrite resistivity lower5-6order of magnitude than the NiZn ferrite and need higher sintering temperature. In this paper, we use the different doping preparation of NiCuZn ferrite. There are many preparation methods to prepare ferrite, the Sol-Gel SHS is a production process simple, easy control of the process, high purity preparation ferrite method. This article is based on previous research, using the Sol-Gel SHS prepared different doping ratio NiCuZn ferrite, applies X-ray diffractiometer, vibrating sample magnetometer and Mossbauer spectrometer to research microstructure and magnetic properties of the sample.
     The main results of this paper are given as follows:
     1. We research rare earth doped and composite doped NiCuZn ferrite's present situation.
     2. The Sol-Gel SHS were prepared Ni0.6Cu0.2Zn0.2CexFe2-xO.4ferrite, combined with the sample's XRD figure, M-H figure and Mossbauer spectra, and analysis the rare earth cerium doped influence to the microstructure and magnetic properties of the NiCuZn ferrite. We analysis the sample on the XRD can know it is typical spinel structure, the powder grain size is about30nm. The hysteresis loop at T=300K of the samples showed that, this ferrite is typical ferrimagnetic, and coercive force (He) increase with increase of the doped ion. and the saturation magnetization (Mv) first increase and then decrease with increase of the doped ion. We can know through carries on the Mossbauer spectrum measurement, with Ce3+doping content increases, A absorption area and hyperfine field relative reduction, but B absorption area increases and hyperfine field have little change.
     3. The Sol-Gel SHS were prepared Ni06-xCu0.2Zn0.2CoxBiyFe2-yO4ferrite, combined with the sample's XRD figure, M-H figure and Mossbauer spectra, and analysis the composite doped influence to the microstructure and magnetic properties of the NiCuZn ferrite. The XRD analysis showed that, with doping amount increase of the Bi ion, sample grain density increases. The hysteresis loop at T=300K of the samples showed that, this ferrite is typical ferrimagnetic, and coercive force (He) increase with increase of the doped ion, and the saturation magnetization (Ms) first increase and then decrease with increase of the doped ion. Through its Mossbauer spectrum analysis, the absorption area of A site is relatively reduced and the absorption area of B site is relative increase with compound doped increase.
引文
[1]宛德福,马兴隆.磁性物理学[M].北京:电子工业出版社,1999.
    [2]周志刚.铁氧体磁性材料[M].北京:科学出版社,1981.
    [3]李荫远,李国栋.铁氧体物理学(修订本)[M].北京:科学出版社,1978.
    [4]北京大学物理系铁磁学编写组.铁磁学[M].北京:科学出版社,1976.
    [5]郭贻诚.铁磁学[M].北京:高等教育出版社,1965.
    [6]都有为.磁性材料进展[J].物理学报,2000,29(6):323—332.
    [7]李全禄.压电与压磁声电转换材料的研究及应用[J].压电与声光,1995,17(2):43—51.
    [8]韩志全.软磁铁氧体研究国内外近期动态[J].磁性材料及器件,2010,40(1):1-11.
    [9]宣益民,李强,杨岗.锰锌铁氧体纳米粒子的制备和磁性能研究[J].功能材料,2007(38)198--200.
    [10]Yue Z X, Zhou J, Gui Z L. Magnetic and electrical properties of low temperature sintered Mn-doped NiCuZn ferrites[J].J Magn Magn Mater,264(2003):258-263.
    [11]Abdeen A M. Dielectric behavior in Ni-Zn ferrites[J].J Magn.Magn.Mater,1999,192: 121-129.
    [12]Chen C J, Bridger K, Winzer S R, etal. A novel low temperature preparation of Ni-Zn ferrite and the properities of the ultrafine particles formed[J].J Appl Phys,1998,63(8):3786-3788.
    [13]Oliver S A, Harris V G, Hamdeh H H, etal. Largezinc cation occupancy of octahedral sites in mechanically actived zinc ferrite powders[J]. Appl Phys Lett,2000,76(19):2761-2763.
    [14]冯则坤,李海华,何华辉.掺杂对高磁导率MnZn铁氧体磁特性的影响[J].华中科技大学学报,2004,32(1):79-81.
    [15]聂建华.高性能MnZn铁氧体材料的制备及机理研究[D].华中科技大学,2004:77-78.
    [16]郑亚林,徐光亮,赖振宇.Cu含量对NiCuZn铁氧体烧结性能的影响[J].压电与声光,2007,29(6):707-712.
    [17]向勇,谢道华.片式多层元件新技术概论[J].电子元件与材料,1999,18(4):34-40.
    [18]Pannaparayil T, Marande R, Komaraeni S, etal. A novel low temperature preparation of several ferrite magnetic spinels and their magnetic and Mossbauer characterization [J].J Appl Phys,1998,64(10):5641-5463.
    [1]黄传真,艾兴,等.溶胶-凝胶法的研究和应用现状[J].材料导报,1997(3):8-10.
    [2]冀勇斌,李铁虎,林起浪,等.溶胶-凝胶法在材料制备中的应用[J].化工中间体,2005(1):31-33.
    [3]宋继芳.溶胶-凝胶技术的研究进展[J].无机盐工业,2005,37(11):14-16.
    [4]翟学良,刘伟华,宋双居,等.溶胶-凝胶法制备功能陶瓷纤维材料研究进展[J].河北师范大学学报:自然科学版,2007,31(2):233-236.
    [5]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.
    [6]王君龙,梁国正,祝保林.溶胶-凝胶法制备纳米SiO2/CE复合材料的研究[J].航空材料学报,2007,27(1):61-64.
    [7]杨南如,余桂郁.溶胶-凝胶法的基本原理与过程[J].硅酸盐通报,1993,12(2):56-63.
    [8]牛紫平,王颖,李发伸.溶胶-凝胶法制备的Co.5Ni0.5Fe2O4铁氧体纳米颗粒的离子迁移[J].磁性材料及器件,2006,37(3):31~33.
    [9]高大志,马学虎.溶胶-凝胶法钝化金属合金[J].四川化工与腐蚀控制,2003,6(4):22-26.
    [10]黄英,黄飞,王艳丽.溶胶—凝胶法制备纳米钡铁氧体薄膜[J].稀有金属材料与工程,2008,37(7):1229-1232.
    [11]于永杰,杨成韬,王磊等.射频溅射法制备的CoFe2O4薄膜结构及磁性能[J].磁性材料及器件,2009,40(6):19-21.
    [12]张悦,兰中文,余忠.溶胶凝胶法合成纳米NiZn铁氧体研究[J].材料导报,2006,20(5):49-51.
    [13]Zhou J P, He H C, Nan C W. Effects of substrate temperature and oxygen pressure on the magnetic properties and structures of CoFe2O4 thin films prepared by pulsed-laser deposition[J].Applied Surface Science,2007,253:7456-7460.
    [14]Gu B X. Magnetic properties and magneto-optical effect of Co0.5 Fe2.5 O4 nanostructured films[J]. Applied Physics Letters,2003,82(21):3707-3709.
    [15]Li D K, Roxana O, Soora W,etal. A population based respective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage[J]. Epidemiol, 2002,13(1):9-20.
    [1]《诺贝尔奖讲演全集》编辑委员会.《诺贝尔奖讲演全集》[M].福州:福建人民出版社,2003.
    [2]卢希庭.原子核物理[M].北京:原子能出版社,2000.
    [3]马如璋,徐英庭.穆斯堡尔谱学[M].北京:科学出版社,1996.
    [4]马如璋.穆斯堡尔谱学[M].北京:北京钢铁学院,1984.
    [5]U.贡泽尔.穆斯堡尔谱学[M].北京:科学出版社,1979.
    [6]金永君.穆斯堡尔谱法及其应用[J].物理与工程.2004,14(5):49-51.
    [7]徐海斌.穆斯堡尔效应及分析在磁性材料研制中的应用[J].江苏冶金,2004(3):23-25.
    [8]夏元复,叶纯灏.穆斯堡尔谱效应及其应用[M].北京:原子能出版社,1984.
    [9]夏元复,陈懿。穆斯堡尔谱学基础和应用[M].北京:北京科学出版社,1987.
    [10]GL特里格著,华新民等译.二十世纪物理学的重要实验[M].北京:科学出版社,1982.
    [11]何云.多氰根桥联的双金属配合物的磁性研究[D].南京:南京大学博士论文,2004.
    [12]Magill F N. The nobel prize winners:Physics[M].Pasadena:Salem Press,1989.
    [13]Wertheim G K.Mossbauer effect:principles and applications[M].New York:Academic Press,1964.
    [14]Frauenfelder H. The Mossbauer effect [M]. New York:W. A.Benjamin,Inc.1962.
    [15]Mossbauer R L. The discovery of the Mossbauer effect[J].Hyperfine Interactions.2000.
    [16]Lustig H. The Mossbauer effect[J]. Am. J. Phys.1961,29(1).
    [17]Siegbahn K. Alpha,Beta and Gamma Ray Spectroscopy [M]. Amsterdam:North Holland Publishing Company,1965.
    [18]Kock W E. The Mossbauer radiation[J]. Science.1960.
    [19]Alan J, Bearden. The Mossbauer effect [J]. Phys Today.1963.
    [1]王耕福.表面贴装片式电感器和铁氧体材料生产技术的进展[J].电子元器件应用,2000,2(12):53-55.
    [2]牛青山.等.低温烧结NiCuZn铁氧体材料的研究现状及进展[J].中北大学学报(自然科学版),2008,29(5):454-459.
    [3]夏爱林.等.适于低温烧结的NiCuZn铁氧体的最新研究进展[J].材料导报,2010,24(15):293-295.
    [4]顾卫卫,苏桦,张怀武.等.缺铁量对低温烧结NiCuZn铁氧体材料性能的影响[J].磁性材料及器件,2010,41(3):71-73.
    [5]P.K.Poy, J.Bera. Characterization of nanocrystalline NiCuZn ferrite powders synthesized by sol-gel auto-combustion method[J]. J.Mater.Process. Technol. (2008)197:279-283.
    [6]Ailin Xia, Comparative study of structural and magnetic properties of NiZnCu ferrite powders prepared via chemical coprecipitation method with different coprecipitators [J]. J.Magn.Magn Mater, (2011) 323:1682-1685.
    [7]周济,等.Bi掺杂对NiCuZn铁氧体的烧结与磁性能的影响[J].功能材料,1997,28(1):22-25.
    [8]宛德福,马兴隆,磁性物理学[M],电子工业出版社,1999.
    [9]P.K.Poy, Bibhuti B.Nayak, J.Bera.Study on electro-magnetic properties of La substituted NiCuZn ferrite synthesized by auto-combustion method[J]. Journal of magnetism and magnetic materials,2008(320):1128-1132.
    [10]张伟.等.溶胶-凝胶自燃烧法合成镍铜锌纳米晶铁氧体及其吸波性能的研究[J].稀土28(4):44-46.
    [11]M.Kaiser,S.S.Ata-Allah. Mossbauer effect and dielectric behavior of compound [J]. Mater.Res.Bull.2009(44):1249-1255.
    [12]韩志全.等.so-gel法低温烧结NiCuZn铁氧体的磁导率、温度系数等性能与Zn含量的关系[J].磁性材料及器件,2006,37(5):21-23.
    [13]王丽,王海波,王涛,李发伸.纳米颗粒的结构、磁性以及离子迁移[J].物理学报,2006,55(12):6515-6520.
    [14]李发伸,王涛,王颖.氧化法制备纳米颗粒及与共沉淀法制备该样品的比较[J].物理学报,2005,54(7):3100-3105.
    [1]迟煜顿,荆鹏,许启明.Bi2O3-MoO3复合掺杂对高磁导率MnZn铁氧体磁特性的影响[J].金属功能材料,2009,16(3):21-24.
    [2]牛青山,等.低温烧结NiCuZn铁氧体材料的研究现状及进展[J].中北大学学报(自然科学版),2008,29(5):454-459.
    [3]Ailin Xia, Comparative study of structural and magnetic properties of NiZnCu ferrite powders prepared via chemical coprecipitation method with different coprecipitators [J]. J.Magn. Magn. Mater, (2011) 323:1682-1685.
    [4]Sepelak V,Baabe D,Mienert D,et al.Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite[J].J Magn Magn Mater,2003,257(2-3):377-386.
    [5]宛德福,马兴隆,磁性物理学[M],电子工业出版社,1999.
    [6]苏桦,张怀武,等.复合掺杂对NiCuZn铁氧体烧结特性和磁性能的影响[J].磁性材料及器件,2003,34(3):7-8,16.
    [7]王耕福.表面贴装片式电感器和铁氧体材料生产技术的进展[J].电子元器件应用,2000,2(12):53-55.
    [8]夏爱林.等.适于低温烧结的NiCuZn铁氧体的最新研究进展[J].材料导报,2010,24(15):293-295.
    [9]李茹民.掺杂纳米铁氧体的合成与磁性能研究[D].哈尔滨工程大学博士论文,2007.
    [10]M.A.Gabal,et al.Structural,magnetic and electrical properties of Ga-substituted NiCuZn nanocrystalline ferrite[J]. J Ceramics International,2010,36:1339-1346.
    [11]N. Ramamanohar Reddy, M. Venkata Ramana, G. Rajitha, K.V. Sivakumar, V.R.K. Murthy. Stress insensitive NiCuZn ferrite compositions for microinductor applications [J]. Current Applied Physics,9 (2009) 317-323
    [12]P.K.Poy, J.Bera. Characterization of nanocrystalline NiCuZn ferrite powders synthesized by sol-gel auto combustion method[J]. J.Mater. Process. Technol.279-283 (2008)197.
    [13]P.K.Poy, Bibhuti B.Nayak, J.Bera.Study on electro-magnetic properties of La substituted NiCuZn ferrite synthesized by auto-combustion method[J]. Journal of magnetism and magnetic materials,320(2008) 1128-1132.
    [14]M. Kaiser, S.S.Ata-Allah.Mossbauer effect and dielectric behavior of NixCu0.8-xZn0.2Fe2O4 compound[J].Mater.Res.Bull, (2009)44:1249-1255.
    [15]王丽,王海波,王涛,李发伸CoFe2O4纳米颗粒的结构、磁性以及离子迁移[J].物理学报,2006,55(12):6515-6520.
    [16]李发伸,王涛,王颖.H2O2氧化法制备Fe3O4纳米颗粒及与共沉淀法制备该样品的比较[J].物理学报,2005,54(7):3100-3105.
    [17]北京大学铁磁学编写组.铁磁学[M].北京:科学出版社.1976,157-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700