粪肥腐解过程不同溶性腐殖物质结合态铜锌的动态变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以鸡粪为材料,添加不同比例的铜锌进行腐解试验,研究了腐解过程中不同溶性腐殖质及其结合态铜、锌(水溶性、氢氧化钠溶性、氢氧化钠-焦磷酸钠溶性)浓度的动态变化,铜、锌之间的形态竞争,腐殖质结合态铜、锌与有效性的关系,铜、锌浓度对腐殖质转化的影响。旨在揭示粪肥腐解过程的腐植物质和重金属的转化规律,为粪肥的安全处理和施用奠定基础。
     (1)研究了粪肥腐解过程不同溶性腐殖质结合态铜的变化及其受腐解时间和加入铜、锌浓度的影响。粪肥原样中水溶性腐殖质结合态铜(H_2O-Cu)占其全铜量的10.97%,在腐解过程中先上升后下降;随着粪肥中添加铜量的增加(1: 1、2: 1、3: 1处理),H_2O-Cu占其全铜的比例相应减少了;H_2O-Cu浓度随着腐解时间延长呈增加趋势,随粪肥中添加铜量的增加而增加。锌对H_2O-Cu含量的影响与腐解进程有关,在腐解的前期H_2O-Cu浓度随粪肥中锌含量的增加而增加,在腐解的后期(45、60d),H_2O-Cu浓度随粪肥中锌含量的增加而降低。粪肥原样中NaOH浸提的腐殖质-铜(NaOH-Cu)占其全铜量的70.87%,随腐解进行其比例大幅度下降。添加铜锌处理,NaOH-Cu占其全铜的比例随着加入铜的增大而有所下降,且随着腐解时间延长呈下降趋势;NaOH-Cu浓度随腐解时间逐渐下降,随粪肥中铜浓度增加而上升。粪肥中NaOH-Cu浓度受锌含量变化影响较小。粪肥原样中NaOH-Na_4P_2O_7提取腐殖质结合态铜(NaOH-Na_4P_2O_7-Cu)占其全铜量的24.29%,随腐解过程呈增加趋势,添加铜锌的处理的NaOH-Na_4P_2O_7-Cu占其全铜的比例随着加入铜的增大而有所增加,且随着腐解时间延长呈上升趋势;NaOH-Na_4P_2O_7-Cu浓度随着加入铜量的增加而增加,且随腐解进程逐渐增加,NaOH-Na_4P_2O_7-Cu随粪肥中锌含量增加而增加。相关性分析结果表明:H_2O-Cu、NaOH-Cu和NaOH-Na_4P_2O_7-Cu之间为显著正相关,它们与有效铜之间呈显著正相关关系。
     (2)探讨了粪肥腐解过程的不同溶性腐殖质结合态锌的变化及其受腐解进程和加入锌、铜的影响。粪肥原样中水溶性锌(H_2O-Zn)占其全锌量的0.74%,在腐解过程中逐渐下降。随着粪肥中添加锌量的增加(Cu/Zn为1: 1、1: 2、1: 3处理),H_2O-Zn绝对含量也相应增加,同时随着腐解时间延长呈减少趋势。H_2O-Zn含量随铜含量的增加而增加。粪肥原样中NaOH浸提的锌含量占其全锌量的62.41%,在腐解过程其比例大幅度下降;NaOH溶性腐殖物质结合态锌(NaOH-Zn)随着加入锌的增大而有所增加,随着铜含量增加也有增加趋势,而随着腐解时间呈下降趋势。粪肥原样中NaOH-Na_4P_2O_7提取腐殖物质络合锌(NaOH-Na_4P_2O_7-Zn)含量占其全锌量的13.59%,随腐解时间推移呈增加趋势;NaOH-Na_4P_2O_7-Zn的量随着加入锌量的增加,其变化不大。铜含量对NaOH-Na_4P_2O_7-Zn的的量影响很小。随着锌含量增加,H_2O-Zn和NaOH-Zn的分配比例逐渐增加,而NaOH-Na_4P_2O_7-Zn的分配比例减少。H_2O-Zn、NaOH-Zn与有效锌浓度之间呈极显著或显著正相关,而NaOH-Na_4P_2O_7-Zn与H_2O-Zn、NaOH-Zn和有效锌呈极显著或显著负相关。
     (3)探明了粪肥腐解过程腐殖物质变化。随着腐解的进行,鸡粪中可提取性的有机碳(H_2O-C、NaOH-C、NaOH-Na_4P_2O_7-C)总体呈下降趋势,与TOC(总有机碳)含量变化趋势一致。H_2O液浸提的腐殖质碳(H_2O-C)占可提取腐殖质碳的8%~20%左右,H_2O-C分配比随腐解时间延长而减少。随着粪肥中锌含量其变化较小,随着铜含量增加而减小。在腐解整个过程中,NaOH液浸提的腐殖质碳(NaOH-C)占可提取腐殖质碳的50%~70%左右,随腐解时间延长而增加。随着粪肥中锌含量的增加,NaOH溶性腐殖质碳在整个腐解期平均分配比例有所增加,随着粪肥中铜浓度的增加,NaOH溶性腐殖质碳分配比有所下降。NaOH-Na_4P_2O_7液浸提的腐殖质碳(NaOH-Na_4P_2O_7-C)占可提取腐殖质碳的20%~30%左右,NaOH-Na_4P_2O_7-C分配比随腐解时间延长而下降。随着粪肥中锌含量的增加而下降,随着铜含量增加其变化不大。总之,NaOH溶性腐殖质碳在整个腐解期平均分配含量有所增加,而H_2O溶性腐殖质碳有所减少,但NaOH-Na_4P_2O_7溶性腐殖质碳的变化较小。粪肥中Cu、Zn的浓度影响到浸提掖中胡富比(HA/FA)变化。水溶性的HA/FA随着铜含量(1:1,2:1,3:1)增加而下降,随着锌含量(1:1,1: 2, 1: 3)增加而增加;NaOH-HA/FA随着铜含量增加而增加,随着锌含量的增加,其变化不明显;NaOH-Na_4P_2O_7-HA/FA随着铜含量增加而增加,也随着锌含量的增加而增加。
Chicken manure added with Cu and Zn was used for a composting experiment to study the dynamics of soluble humus copper complexes and zinc complexes (expressed as H_2O-Cu, NaOH-Cu, NaOH-Na_4P_2O_7-Cu). The competitive relationship of zinc and copper and the relationship between humus-complexed copper and available Cu were also investigated. Study on The changes of humic substance and the effect of high copper and zinc concentrations on the transformation of humic substance. The results showed the change pattern of transformation between humic substance and heavy metal in the composting process. This provides a theoretical base for safe treatment and use of manures.
     (1) The changes of different soluble humic copper complexes and the effect of composting time and Cu and Zn contents on humic copper complexes were revealed. The study showed that water-soluble humic complexed copper (H_2O-Cu) in raw manure accounted for 10.97% of total copper in the compost, increasing during the first 45 days of composting and decreasing thereafter. As the added copper content increased in the treatments such as 1: 1, 2: 1 and 3: 1, the relative H_2O-Cu content decreased ,and increased with composting . H_2O-Cu concentration increased with the added copper content increasing, and H_2O-Cu concentration increased as the added Zinc content increased at first stages of compost, but adding zinc to the manure resulted in a decrease of H_2O-Cu concentration at the later stages of composting (45, 60 days). NaOH-Cu accounted for 70.87% of total copper in raw manure and decreased greatly as the composting proceeded. With the added copper content increasing in the manure, the percentage of NaOH-Cu to total copper decreased. During decomposition, NaOH-Cu also decreased. NaOH-Zn concentration gradually decreased with composting time, and increased with the Copper content increasing, but the added zinc levels had no significant effect on NaOH-Cu. NaOH-Na_4P_2O_7-Cu accounted for 24.29% of total copper in the raw manure, increasing with composting time. With the added copper content increasing in the manure, the percentage of NaOH-Na_4P_2O_7-Cu to total copper increased, and showed an increasing trend with composting time. NaOH-Na_4P_2O_7-Cu concentration increased with copper content and composting time increasing , and as adding zinc increased NaOH-Na_4P_2O_7-Cu also increased. Correlation analysis showed:H_2O-Cu,NaOH-Cu and NaOH-Na_4P_2O_7-Cu were significantly correlated to each other, and all were significantly correlated to DTPA-Cu (P≤0.01).
     (2) The changes of different soluble humic copper complexes and the effect of composting time and Cu and Zn contents on humic copper complexes were discussed.. The results showed that water-soluble humic complexed zinc (H_2O-Zn) of raw manure accounted for 0.74% of total Zinc of the compost, decreasing with the manure composting. With the increase of zinc content in the treatment such as1: 1, 1: 2 and 1: 3, H_2O-Zn increased, showing a decrease trend with decomposition process. The average percentages of H_2O-Zinc to total Zinc of the treatment of 1: 1, 1: 2 and 1: 3 were lower than that of the control (raw materials). H_2O-Zn was increased with the increase of copper content. NaOH-Zn accounted for 62.41% of total Zinc of the raw manure and decreased greatly with the compost proceeding. With the added Zinc content increasing in manure, NaOH-Zn increased, but decreased with decomposing process. During decomposition, the added copper increased the content of NaOH-Zn. NaOH-Na_4P_2O_7-Zn accounted for 13.59% of total copper of the raw manure, which increased with time of composting. With the added Zinc content increasing in compost manure, the percentage of NaOH-Na_4P_2O_7-Zn to total Zinc changed slightly. The added copper had no significant effect on NaOH-Na_4P_2O_7-Zn. With the added zinc contents increasing in compost manure, the distribution percent of NaOH-Na_4P_2O_7-Zn (Pressed as percent of extracted Zn) decreased and that of H_2O-Zn and NaOH-Zn increased. Correlation analysis showed:H_2O-Zn,NaOH-Zn, and DTPA-Zn were positively correlated to each other and all were negatively correlated to NaOH-Na_4P_2O_7-Zn. (P≤0.01).
     (3) The changes of humic substance during manure composting were investigated. With manure decomposition, the extractable organic carbon showed decrease trend in chicken manures, which was similar to trend of Total organic carbon. The H_2O humic Carbon (H_2O-C) accounted for 8%~20% of extracted humic carbon,and dereased with the copper content and composting time, but had no great change with the zinc content increasing.The greatest amounts of humus-C was present in NaOH faction, accounting for 50%~70%, increasing with composting time. With the zinc content increasing, the average content of NaOH humic Carbon(NaOH–C)increased in the whole composting process, but NaOH–C distribution ratio decreased with copper content increasing. The NaOH-Na_4P_2O_7 humic Carbon (NaOH-Na_4P_2O_7-C) accounted for 20%~30% of extracted humic carbon,and decreased with the zinc content and composting time, but had no great change with the copper content increasing,but that of NaOH-Na_4P_2O_7-C decreased, and that of H_2O-C had a little change. In a whole,the average content of NaOH-C also increased in the whole composting process, and that of H_2O-C decreased, NaOH-Na_4P_2O_7-C varied small. High Cu and Zn concentrations to the extent may affect the level of HA/FA. The value of water HA/FA ratio decreased with copper content increasing, but increased with zinc content increasing. The value of NaOH HA/FA ratio increased with copper content increasing, but changed little with zinc content increasing. The value of NaOH-Na_4P_2O_7 HA/FA ratio increased with copper and zinc content increasing.
引文
[1]李芳柏,钟继洪,谭军.广东集约化养猪业的环境影响及其防治对策[J].土壤与环境, 1999, 8(4): 245-249.
    [2]中国环境保护总局.中国环境状况公报[J].2000.
    [3]沈玉英.畜禽粪便污染及加快资源化利用探讨[J].土壤, 2004,36(2): 164-167.
    [4]刘培芳,陈振楼,许世远,刘杰.长江三角洲城郊畜禽粪便的污染负荷及其防治对策.长江流域资源与环境[J].2002, 11(5):456-460.
    [5] Bhatti AU, Khan Q, Gurmani AH, Khan MJ. Effect of organicmanure and chemical amendments on soil properties and crop yield on a salt affected entisol [J]. Pedosphere, 2005, 15(1): 46-51.
    [6] McConnell DD, Shiralipour A, Smith WH. Compost applicationimprove soil properties [J]. Bio. Cycle., 1993, 34: 61-63.
    [7] Tam NFY, Wong YS. Spent litter as fertilizer for growing vegetables [J]. Bioresource Technol., 1995, 53: 151-155.
    [8]徐伟朴,陈同斌,刘俊良,何延青.规模化畜禽养殖对环境的污染及防治策略[J].环境科学, 2004, 25(增刊): 105-108.
    [9]陈怀满等著.土壤-植物系统中的重金属污染[M].北京:科学出版社, 1996: 86-89.
    [10] Nicholson FA, Chambers BJ, Williams JR, Unwin RJ. Heavy metal contents of livestock feeds and animal manures in Englandand Wales [J]. Bioresouse Technol., 1999, 70: 23-31.
    [11] Cang L, Wang YJ, Zhou DM, Dong YH. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China [J]. Environ. Sci., 2004, 16(3): 371-374.
    [12]刘荣乐,李书田,王秀斌,王敏.我国商品有机肥料和有机废弃物中重金属的含量状况分析[J].农业环境科学学报, 2005, 24(2): 392-397.
    [13]张庆利,史学正,黄标,于东升,王洪杰,Blombaeck K, Oboern I.南京城郊蔬菜基地土壤有效态铅、锌、铜和镉的空间分异及其驱动因子研究[J].土壤, 2005, 37(1): 41-47.
    [14]杨定清,傅绍清.施用高锌猪粪对土壤环境污染的影响[J].四川环境, 2000 (2): 30-34.
    [15] Han FX, Kingery WL, Selim HM, Gerard PD. Accumulation of heavy metals in a long-term poultry waste-amended soil [J]. Soil Science., 2000, 165(3): 260-268.
    [16]陈振楼,许世远,徐启新,胡雪峰,俞立中.长江三角洲地表水环境污染规律及调控对策.[J].长江流域环境, 2001 (4):353-359.
    [17] Jackson BP, Miller WP. Soluble arsenic and selenium species in fly ash/organic waste amended soils using ion chromatographyinductively coupled plasma mass spectrometry [J]. Environ. Sci. Technol., 1999, 33: 270-275.
    [18] Del Castilho P, Chardon WJ, Salomons W. Influence of cattle manure slurry application on the solubility of cadmium, copperand zinc in a manured acidic, loamy-sand soil [J]. Environ. Qual.,1993, 32: 689-697.
    [19] Jackson BP, Bertsch PM, Carera ML, Camberato JJ, Seaman JC,Wood CW. Trace element speciation in poultry litter[J].Environ. Qual., 2003, 32: 535-540.
    [20] Wong MH, Chan KM, Liu WK. Trace metal concentrations in tilapia fed with pig and chickenmanure[J]. Conservation Recycling, 1984, 7(2/4): 351-360.
    [21] Wong MH, Cheung YH, Lau WM. Toxic effects of animal manures and sewage sludge as supplementary feeds for the common carp, Cyprinus carpio[J].Toxicology Letters., 1982, 12(1): 65-73.
    [22]乔伟,王之盛,宾石玉.高铜在养猪生产中应用的利弊[J].当代畜牧, 2004 (1): 37-39.
    [23] Wong MH. Effects of animal manure composts on tree (Acacia confusa) seedling growth [J].Agricultural Wastes, 1985, 13(4):261-272.
    [24] Zhou DM, Hao XZ, Wang YJ, Dong YH, Cang L. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures [J].Chemosphere, 2005, 59: 167-175.
    [25] Miller MH, et al. Characterization of chelating agents and their reaction with trace metals in soils [J].Proc. Soil Sci. Soc. Am., 1958, 22: 225-229.
    [26] Kandah M. Zinc adsorption from aqueous solutions using disposal sheep manure waste [J].Chemical Engineering Journal, 2001, 84: 543-549.
    [27]陈同斌,黄泽春,陈煌.废弃物中水溶性有机质对土壤吸附Cd的影响及其机制[J].环境科学学报, 2002, 22(2): 150-155.
    [28] Rupa TR, Srinivasa Rao Ch, Subba Rao A, Singh M. Effect of farmyard manure and phosphorus on zinc transformation and phytoavailability in two alfisols of India [J].Bioresource Technol., 2003, 87: 279-288.
    [29]孙波,孙华,张桃林.红壤重金属复合污染修复的生态环境效应与评价指标[J].环境科学,2004, 25(2): 104-110.
    [30] Tiquia SM, Tam NY, Hodgkiss IJ. Effects of composting on phytotoxicity of spent pig-manure sawdust litter [J].Environ. Pollu., 1996, 93: 249-256.
    [31] Hsu JH, Lo SL. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure [J].Environ. Pollu., 2001, 114: 119-127.
    [32]黄国锋,张振佃,钟流举,吴启堂,黄焕忠.重金属在猪粪堆肥过程中的化学变化[J].中国环境科学, 2004, 24(1): 94-99.
    [33]张雪英,周顺桂,周立祥,黄焕忠,吴启堂.堆肥处理对污泥腐殖物质形态及其重金属分配的影响[J].生态学杂志, 2004, 23(1): 30-33.
    [34] Ihnat M, Fernandes L. Trace elemental characterization of composted poultry manure [J].Bioresource Technol., 1996, 57: 143-156.
    [35] Tiquia SM, Tam NY. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge [J].Bioresource Technol., 1998, 65: 43-49.
    [36]张玉,林梅. GB4284农用污泥中污染物控制标准[ S] .环境污染,1984, 12: 25-36.
    [37]张树清,张夫道规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报2005 ,11(6) : 822– 829.
    [38] Huang G. F., Wong.J.W.C., Wu Q.T., et al. Effec t o f C / N o n co m p o s t i n g o f p i g m a n u r e w i t hsawdust [J].Waste Manage,2004 (24):805-813.
    [39] Wilshusena J.H, Hettiaratchi JPA, Visscherb AD, et al. Methane oxidation and formation of EPS in compost: Effect of oxygen concentration [J]. Environ Poll,2004,129 (2): 305-314.
    [40]杨国义,夏钟文,李芳柏,等.不同通风方式对猪粪高温堆肥氮素和碳素变化的影响[J].农业环境科学学报,2003, 22 (4): 463-467.
    [41] Sundberg C., Smars S., Jonsson. Low pH as an inhibiting factor in the transition from mesophilicto thermophilic phase in composting [J]. Bioresour Technol, 2004, 95:145-150.
    [42]刘克锋,刘悦秋,雷增谱,等.不同微生物处理对猪粪堆肥质量的影响[J].农业环境科学学报,2003,22 (3): 311-314.
    [43]赵秋等猪粪堆制过程中铅、镉、铜、锌的变化[J].黑龙江农业科学,2007(5):50-52.
    [44]郑国砥,陈同斌等.好养高温堆肥处理对猪粪中重金属形态的影响[J].中国环境科学2005,25(1): 6-9.
    [45] Chefetz B , Hatcher P G, Hadar Y, et al . Chemical and biological characterization of organic matter during composting of municipal solid waste [J]. Journal of Environmental Quality, 1996 , 25 (4) : 776-785.
    [46] Gennaro M C, Ferrara E, Abollino O, et al. Multimethod analysis in studies of characterization and degradation of municipal treatment sludges [J]. International Journal of Environmental Analytical Chemistry , 1993, 53 ( 2 ) : 101-114.
    [47] Murwira H K, Kirchmann H, Swift M J . The effect of moisture on the decomposition rate of cattle manure [J ] . Plant and Soil , 1990 , 122 (2) : 197-199.
    [48] Domeizel M, Khalil A, Prudent P. UV spectroscopy : a tool for monitoring humification and for proposing an index of the maturity of compost [ J ]. Bioresource Technology, 2004, 94 (2): 177-184.
    [49] Jiménez E I, García V P. Determination of maturity indices for city refuse composts [J] . Agriculture , Ecosystems and Environment , 1992, 38 (4) : 331-343.
    [50] Castaldi P, Alberti G, Merella R, et a . Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity [J]. Waste Management , 2005 , 25 (2) : 209-213.
    [51]廖新,吴银宝,王植三,等.堆体大小对猪粪堆肥的影响和袋装堆肥的研究[J].农业工程学报, 2003, 19 (4): 287-290.
    [52]廖新,吴银宝.通风方式和气温对猪粪堆肥的影响[J].华南农业大学学报(自然科学版), 2003, 24(2): 77-80.
    [53]李吉进,郝晋民,邹国元,等.高温堆肥碳氮循环及腐殖质变化特征研究[J].生态环境, 2004, 13(3): 332-334.
    [54] Smolander A, Loponen J, Suominen K, et al. Organic matter characteristics and C and N transformations in the humus layer under two tree species Bet ula pendula and Picea abies [J ] . Soil Biology & Biochemistry , 2005 , 37 (7) : 1309-1318.
    [55]高伟等,堆肥处理过程中猪粪有机物的动态变化特征[J ] .环境科学。27(5):986-990.
    [56]王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用[J ] .黄金,24(1): 47-49.
    [57]上海化工学院腐殖酸小组.腐殖酸制品在环境保护中的应用[J ].环境科学,1986 ,7(3) :57-631.
    [58]陈静生,重金属在环境中的迁移(上) [J ] .1环境科学,1985 ,6 (2) :58-621.
    [59]陈静生,重金属在环境中的迁移(下) [J ] .环境科学,1985 ,6 (3) :50-551.
    [60]熊毅,1975,土壤有机无机复合VI.有机无机复合体的剖析研究[J ] .土壤学报6 (4): 1-12.
    [61]傅积平,1983,土壤结合态腐殖质分组的测定[J ] .土壤通报,第2期,36-137.
    [62]徐建民,袁可能,1995土壤有机质矿物复合体研究VII.土壤结合态腐殖质的形成特点及其结合特征[J ] .土壤学报,第32卷第2期.
    [63]李丽,冉勇,盛国英,等.泥炭土连续碱抽提腐殖酸的分子结构特征[ J ].分析化学, 2002, 30 (11) :1303 -1307.
    [64] Kang S, Amarasir Iwardena D, Veneman P, et al.Characterization of ten sequentially extracted humic acids and a humin from a soil in westernMassachusetts[ J ]. Soil Science, 2003, 168: 880 -887.
    [65] LiLi, Huang Weil In, Peng Ping’An, et al. Chemical and molecular heterogeneity of humic acids repetitively extracted from a peat [ J ]. Soil Science Society ofAmerica Journal, 2003, 67: 740-746.
    [66] Xing BaoShan, Liu Ju Dong, L iu Xiao Bing, et al. Extraction and characterization of humic acids and humin fractions from a blacksoil of China [ J ]. Pedosphere, 2005, 15: 81-87.
    [67]张晋京,宋祥云,窦森连续提取对土壤腐殖质组分数量与特性的影响,2007[J ] .土壤通报,第38卷第3期.
    [68]Tessier, A., Campbell, P.G.C., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metal[J ] . Anal. Chem. 51, 844-851.
    [69] He, X.t., Logan, T J., 1995. Physical and chemical characteristics of selected U. S. municical solid waste composts [J ] . Journal of Environment Quality 24, 543-552.
    [70] Hsu, J.H., Lo, S.L., 2001. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure [J ] .Environ. Pollut. 114, 119-127.
    [71] Liu G G, Wang L X, Xu H J. The p rogress of aquatic toxicity test[J ] .Environment Health, 2004, 21 (6) 419-421.
    [72] Xu J L, Yang J R. The crop effect and influence factors effect of arsenic soils[J ] .Soils, 1996, 28 (2) : 85-89.
    [73] Duan X J, Min H. Effects of Cd on the biological activities and the enzyme activities in submerged paddy soil[J ] .Journal of Agro EnvironmentScience, 2004, 23 (3): 422 -427.
    [74] Kunito T, Saeki K, Nagaoka K. Characterization of copper2resistant bacterial community rhizosphere of highly copper2contaminated soil [J ] .European Journal of Soil Biology, 2001, 37: 95 - 102.
    [75] Huang Y Z, Zhu Y G. A review on cadmium contamination in forest ecosystem [J ] .Acta Ecologica Sinica, 2004, 24 (1): 101-108.
    [76] Hu Y, Huang Y Z, Liu Y X, et al. Toxicity of vanadium to rice plants [J ] .Environmental Chemistry, 2003, 22 (5): 507-510.
    [77] Cao Z H, Hu Z Y, WongM H. Copper contamination in paddy soils irrigated with wastewater. Special issue of Environmental contamination, toxicology and health [J] .Chemosphere, 2000, 41: 3-6.
    [78] Bessonova V P. Effect of environmental pollution with heavy metals on hormonal and trophic factors in buds of shrub p lants [J ] .Russian Journal Ecology, 1993, 24 (2): 91-95.
    [79] Zhou Q, Huang X H, Shi G X, et al. Effect of Cadmium on the physiological and biochemical character of evergreen trees [J ] .Research of Environmental Sciences, 2001, 14 (3): 9-11.
    [80] Chatterjee J, Chatterjee C. Phytotoxicity of cobalt, chromium and copper in cauliflower [J ] .Environmental Pollution, 2000, 109: 69-74.
    [81] Yu J S. The molecularmechanisms of heavymetals biotoxicity effect [J] .Environmental Pollution and Control, 1996, 18 (4): 28-31.
    [82] Wang L B, ShuW S. Ecology for heavymetal pollution: recent advances and future prospects [J] .Acta Ecologica Sinica, 2005, 25 (3): 596-605.
    [83] Deng J F, Wang Z Z, Zhang Y U, et al. Effect of heavymetals on animal community ecology in soil [J ] . Environmental Sciences, 1996, 17 (2): 1-5.
    [84] Wang Z Z, Zhang YM, Hu J L, et al. Effect of heavymetals in soil on earthworms (Opisthopor) [J] .Acta Scientiae Circumstantiae, 1994, 14 (2): 236 -243.
    [85] Briat L R, LebrunM. Plant responses to metal toxicity [J] .Plant Biology and Pathology, 1999, 322: 43-54.
    [86] Leffler P E, Nyholm N E. Nephrotoxic effects in free2living bank voles in a heavymetal polluted environment [J] .Ambio, 1996, 25 (6): 417-420.
    [87] Wei S H, Zhou Q X. Discussion on basic p rincip les and strengthening measures for phytoremediation of soils contaminated by heavy metals [J] .Chinese Journal of Ecology, 2004, 23 (1): 65-72.
    [88] SadiqM. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water, Air [J] .Soil Pollution, 1997, 93: 117-136.
    [89] Goh H K. Lira T. Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment [J] .Applied Geochemistry, 2005, 20: 229-239.
    [90] Paquin P R, Robert C, Santore R C, Wua KB, Kavvadas C D, Di Toro D M. The biotic ligand model: A model of the acute toxicity ofmetals to aquatic life [J] .Environmental Science&Policy, 2000, 3: S175-S182.
    [91] Bingham F T, Strong J E, Sposito G. Influence of chloride salinity on cadmium up take by Swiss chard [J] .Soil Science, 1983, 35: 160-165.
    [92] SauvéS, Cook N, HendershotW H, McBrideM B. Linking p lant tissue concentrations and soil copper pools in urban contaminated soils [J] .Environ Pollution, 1996, 94: 153-157.
    [93] Markich S J, Brown P L, Jeffree R A, Lim R P. The effects of pH and dissolved organic carbon on the toxicity of cadmium and copper to freshwater Bivalve: Further support for the extended Free Ion ActivityMode [J] .Arch Environ Contamination Toxicology, 2003, 145 (4): 479-491.
    [94] McLaughlin M J. Bioavailability ofmetals to terrestrial p lants. In Allen H E ( Ed. ) . Bioavailability ofmetals in terrestrial ecosystems. Influence of partitioning for bioavailability to Invertebrates. Pensacola [J] .FL: SETAC Press, 2000. 39-67.
    [95] Smolders E, Lambregts R M, McLaughlin M J, Tiller K G. Effect of soil solution chloride on cadmium availability to Swiss chard [J] .Journal of Environmental Quality, 1998, 27: 426-431.
    [96] Saeki K, Kunito T, Oyaizu H, Matsumoto S. Relationship s between bacterial tolerance l evels and forms of copper and zinc in soils [J] .Journal of Environmental Quality, 2002, 31: 1570-1575.
    [97] Poldoski J E. Cadmium bio2accumulation as saystheir relationship to various ionic equilibria in lake superior water [J] .Environmental Science and Technology, 1979, 13: 701-709.
    [98] Oka Y S, Yang J E, Zhang Y S. Heavy metal adsorp tion by a formulated zeolite2Portland cementmixture [J] .Journal of HazardousMaterials, 2007, 147: 91-96.
    [99] Hu N J, Luo YM, Song J. Influence of soil organic matter, pH and temperature on Cd sorption by four soils from Yangtze River delta [J] .Acta Pedologica Sinica, 2007, 44 (3): 437 - 443.
    [100] Chen T B, Wei C Y, Huang Z C, et al. Arsenic hyper accumulator p teris vitiate L. and its arsenic accumulation [J] .Chinese Science Bulletin, 2002, 47 (11): 902-905.
    [101] Mayluga D P.BiogeochemicalMethods of Prospecting[J] .Acad Sci Press: Moscow Translated Consultants Bureau, NY, 1964. 205-211.
    [102] Wu H J, Li L, Zhang F S. The influence of interspecific interactions on Cd up take by rice and wheat intercropp ing. [J] Review of China Agricultural Science and Technology, 2003, 5 (5): 43 -46.
    [103] Huang Y Z, Zhu Y G, Hu Y, et al. Absorp tion and accumulation of Pb, Cd by corn, lup in and chickpea in intercropp ing systems [J] .Acta Ecologica Sinica, 2006, 26 (5): 1478-1485.
    [104] Zhang G H. Relation between biological harmfulness of Cd and water variation [J] .Journal of Xi′An College of Geology, 1997, 19 (3): 61 - 66.
    [105] Huang Y Z, Zhu Y G, Dong Y P, et al. Absorp tion and accumulation of Cd in corn: effects by soilwater contents [J] .Acta Ecologica Sinica, 2004, 24 (12): 2832-2836.
    [106] Huang Y Z. Interactions between cadmium and phosphorus, zinc, iron, calcium and their ecological effects. [J] Acta Ecologica Sinica, 2004, 23 (2): 92-97.
    [107] Huang Y Z, Zhu Y G, Huang F T, et al. Effects of cadmium and iron and their interactions on plants growth: a review [J]. Acta Ecologica Sinica, 2004, 13 (3): 406-409.
    [108] Valtcho D Z, Phil R W. 2004. Phytoavailability and reactionation of copper, manganese and zinc in soil following application of two composts to four crops [J]. Environment Pollution, 131: 187-195.
    [109] Giusquiani P L, Concezzi L, Businelli M. et al. Fate of pig sludge liquid fraction in calcareous soil: agricultural and environmental implications [J]. Journal Quality, 1998, 27: 364-371.
    [110] Petruzzelli, G., Szymura, I., Lubrano, L., Pezzarossa, B., Chemical speciation of heavy metals in different size fractions of compost from solid urban wastes [J] .Environmental Technology Letter 1989, 10, 521–526.
    [111]李国学,孟凡乔,姜华,等.添加钝化剂对污泥堆肥处理中重金属形态( Cu Zn Mn)影响[ J ] .中国农业大学学报, 2000, 5 (1): 105-111.
    [112] Shoko I, Chisato T. Effect s of dissolved organic matter on toxicity and bioavailability for lettuce sprout s [J] Environment International, 2005, (31): 603-608.
    [113] Garcia-Mina J M, Antolin M C.Sanchez-Diaz, [M] Metal humic complexes and plant micronutrients uptake [J]. Plant and Soil, 2004, 258: 57-68.
    [114]王旭东,关文玲.纯有机物料腐解形成腐植物质性质的动态变化[J].西北农林科技大学学报:自然科学版, 2001, 29 (5): 88-91.
    [115] Schniter M. and S.I.M.Skinner. Organo-metallic interaction in soil: stability constants of Cu+2. Fe+2. And Zn+2-Fulvic acid [J]. Soil Sci, 1966, 102: 361-365.
    [116] Kerndorff H., Schnitzer M. Sorption of metals on humic acid. [J] Geochimica et Cosmochimica Acta, 1980, 44 (11): 1701-1708.
    [117]鲍士旦.土壤农化分析[M] .北京:中国农业出版社, 2000 , 25-38.
    [118]林稚兰,田哲贤.微生物对重金属的抗性及解毒机理[J]微生物学通报,1998, 25 (01):253-261.
    [119]刘帅;卢丽兰;张俊峰;刁世勇;王旭东.粪肥腐解过程中不同溶性腐殖质态铜、锌变化及其结合竞争[J].中国农业科学,2008, 41(8):2347-2354.
    [120]闫秋良,刘福柱.通过营养调控缓解畜禽生产对环境的污染[J].家畜生态, 2002 , 23 (3): 68-70.
    [121] Diana H ,Cesar P ,Nicola S. Detection of copper and zinc binding to humic acids from pig slurry and amended soil by fluorescence spectroscope [J ] . Environment Pollution, 2005 (24): 129-134.
    [122] Garcia Mina J M, Antolin M C, Sanchez Diaz M. Metal humic complexes and plant micronutrients uptake [J]. Plant and Soil, 2004 (258): 57-68.
    [123]武天云, Schoenau JJ,李凤民,等.土壤有机质概念和分组技术研究进展[J].应用生态学报, 2004, 15 (4) : 71-72.
    [124] Butler T A, Sikora L J, Steinhilber P M. et al. Compost age and sample storage effects on maturity indicators of biosolids compost [J ] . Journal of Environmental Quality, 2001, 30 (6): 2141-2148
    [125]王旭东,杨莹等.鸡粪腐解过程腐殖质结合态铜变化及其与铜淋失的关系[J].植物营养与肥料学报, 2008, 14 (2): 345-350.
    [126]王旭东,罗敏等.粪肥腐解过程中铜与腐殖物质结合状况及其与铜淋失的关系[J].西北农林科技大学学报(自然科学版), 2008, 36 (3): 111-116.
    [127]王旭东,胡田田,张一平.1998.不同结合态胡敏酸性质结构研究[J].西北农业学报, 1998, 7 (1): 75-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700