模块化多电平换流器型直流输电若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模块化多电平换流器(MMC)是电压源换流器的一种多电平拓扑。由于MMC不需要将IGBT直接串联来提高阀的耐压等级,从而避免了大功率器件开关过程中的动态均压问题,因此非常适合在高压大功率的柔性直流输电场合应用。由于MMC-HVDC大大降低了柔性直流换流阀设备制造商的技术门槛,因此目前成为了全世界工业界和学术界的研究热点之一。虽然最近几年有大量关于MMC的研究成果公开,但相对于二电平VSC-HVDC,对MMC-HVDC的研究还处于起步阶段。本文针对子模块类型为半H桥的MMC-HVDC系统,主要研究了以下几个方面的问题:
     (1)在MMC低频连续数学模型的基础上,建立了MMC的交直流侧解耦等效电路。从理论上证明了二电平VSC-HVDC的交流侧外环功率控制和内环电流控制策略完全适用于MMC-HVDC系统。同时从内部电动势取值范围的角度,分析了MMC额定运行点的选取方法和稳态运行范围的确定原则。
     (2)对MMC现有的几种调制方式进行了比较,提出了适用于MMC的改进载波相移调制方式和降开关频率的电容电压均衡控制算法。将该方法与最近电平控制方式相比较,分别从谐波水平、基波跟踪误差两个方面分析了各自的优缺点。
     (3)研究了MMC内部环流的形成机理,从数学角度证明了环流的存在性。然后针对环流中的主要分量——二次谐波分量,利用二倍频负序旋转坐标变换,建立了dq坐标下的环流模型,并设计了相应的环流抑制控制器(CCSC),将交流环流分解为两个直流分量,并分别加以抑制。CCSC可以在不影响交流侧电流控制的情况下,消除MMC的内部环流,同时还可以减小子模块电容电压的波动范围。
     (4)在分析MMC换流阀损耗构成的基础上,用曲线拟合方法对厂家的IGBT模块参数进行提取。根据IGBT的热电路模型,将结温作为反馈变量,提出了考虑结温变化的MMC损耗计算方法。最后用该方法编写了基于仿真模型的损耗计算模块,对MMC子模块各部分的损耗和半导体器件的结温进行了计算。针对较多子模块和较少子模块两种情况,进行了损耗评估,结果表明在较多子模块的情况下,可以选择较低的载波频率,并结合提出的降开关频率电容电压均衡控制算法,使MMC的开关损耗大幅下降。
     (5)针对MMC-HVDC交流系统不对称故障时,直流电压中存在二次谐波的问题,设计了一种直流电压波动抑制控制器(DCVRSC)。该控制器可以在不影响交流侧负序电流控制,保持交流侧电流对称的情况下,同时消除直流侧二次谐波电压。还针对直流电压控制站交流系统故障时直流电压失控的问题,将二电平VSC-HVDC系统的低压限流单元(VDCOL)引入到MMC-HVDC系统中,并分别分析了不同类型换流站交流侧故障情况下VDCOL的工作原理。最后通过仿真算例验证,说明VDCOL可以在直流电压控制站交流侧故障情况下,保持MMC-HVDC系统直流电压的稳定和功率的连续传输,增强了系统的故障穿越能力。
Modular multilevel converter (MMC) is an attractive multilevel topology of voltage-sourced converter based HVDC (VSC-HVDC). Since there is no requirement of converter valves with direct-series connection of IGBTs, the difficulty of valve manufacture technology is reduced. As a result, MMC is very suitable in high-voltage and high-power applications. Recently, MMC-HVDC has attracted many engineers' and scientists'attention. A large number of references are published these years. However, MMC topology is still not well understood compared with2-level VSC topology. The dissertation makes researches on several important issues in basic control and operation of MMC-HVDC system.
     The dissertation is organized as follows:
     (1)An ac-dc decoupled model of MMC is presented based on the continues model. This model demonstrates that the outer power control loop and inner current control schemes developed for2-level VSCs are also suitable for MMCs. The range of inner EMF is analyzed, the nominal operation point, active and reactive power operation range are discussed.
     (2)Based on the comparison of different modulation schemes of MMC, an improved phase-shifted carrier PWM method is introduced. To reduce the switching losses of MMC, a reduced switching-frequency voltage balancing algorithm (RSFVBA) is investigated. The presented PSC-PWM and the nearest level control (NLC) method are compared from the aspects of harmonics and modulation errors.
     (3)The characteristic of the circulating current is investigated based on an analytical model. With the double line-frequency, negative-sequence rotational frame, the three-phase alternative circulating currents are decomposed into two dc components and are minimized by a dedicated circuiting current suppressing controller (CCSC). The alternative current control is not affected at the same time. The CCSC can also reduce the capacitor voltage fluctuations.
     (4)To evaluate the power loss of MMC, the manufacture data of IGBT modules is used with the curve fitting method. The power loss is calculated with the real-time simulation voltages and currents. Based on the thermal circuit model, the variation of junction temperature is considered and a feedback method is implemented to calculate the power loss more accurately.
     (5)There are dc voltage ripples when MMC-HVDC operates under unbalanced grid conditions. To eliminate the second order harmonic voltage in the dc bus, a dc voltage ripple suppressing controller (DCVRSC) is introduced. The controller is incorporated with the negative-sequence current controller, which is widely used in2-level VSCs. Thus, the dc voltage ripple is eliminated as well as the ac current are balanced. To enhance the low voltage ride through (LVRT) capability of MMC-HVDC system, a dc voltage dependent current order limiter (VDCOL) is investigated. The VDCOL changes the active current reference according to the dc link voltage and keep the active power balanced in the dc system. Simulation results demonstrate the dc voltage is stable with the VDCOL, when the ac voltage of dc voltage control (DCVC) station is unbalanced.
引文
[I]Bahrman Michael, Johnson Brian. The ABCs of HVDC transmission technologies[J]. IEEE Power and Energy Magazine.2007,5(2):32-44.
    [2]Ooi Boon-Teck, Wang Xiao. Boost-type PWM HVDC transmission system[J]. IEEE Transactions on Power Delivery.1991,6(4):1557-1563.
    [3]Lu Weixing, Ooi Boon Teck. Multiterminal LVDC system for optimal acquisition of power in wind-farm using induction generators[J]. IEEE Transactions on Power Electronics.2002, 17(4):558-563.
    [4]Ooi Boon Teck, Wang Xiao. Voltage angle lock loop control of the boost type PWM converter for HVDC application[J]. IEEE Transactions on Power Electronics.1990,5(2):229-235.
    [5]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社.2004.
    [6]徐政,等.柔性直流输电系统[M].北京:机械工业出版社.2013.
    [7]张静VSC-HVDC控制策略研究.[博士学位论文]杭州:浙江大学,2009.
    [8]Flourentzou Nikolas, Agelidis Vassilios G., Demetriades Georgios D. VSC-based HVDC power transmission systems:An overview[J]. IEEE Transactions on Power Electronics.2009, 24(3):592-602.
    [9]Yazdani Amirnaser, Iravani Reza. Voltage-Sourced Converters in Power Systems[M]. Hoboken, New Jersey, USA:John Wiley & Sons, Inc.2010.
    [10]徐政,陈海荣.电压源换流器型直流输电技术综述[J].高电压技术.2007,33(01).
    [11]Adapa Ram. High-wire act:HVdc technology:The state of the art[J]. IEEE Power and Energy Magazine.2012,10(6):18-29.
    [12]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社.2010.
    [13]Lundberg Peter, Callavik Magnus, Bahrman Michael, et al. Platforms for change:High-voltage DC converters and cable technologies for offshore renewable integration and DC grid expansions[J]. IEEE Power and Energy Magazine.2012,10(6):30-38.
    [14]Glasdam J., Hjerrild J., Kocewiak L. H., et al. Review on multi-level voltage source converter based HVDC technologies for grid connection of large offshore wind farms[C]. IEEE International Conference on Power System Technology (POWERCON). Auckland, New Zealand: 2012.1-6.
    [15]Marquardt R. Stromrichterschaltungen mit verteilten Energiespeichern[P]:German Patent. DE10103031A1.2001-01-24.
    [16]Marquardt R. Modular Multilevel Converter topologies with DC-Short circuit current limitation[C]. The IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE). Jeju, Korea:2011.1425-1431.
    [17]Marquardt R. Modular Multilevel Converter:An universal concept for HVDC-Networks and extended DC-Bus-applications[C].2010 International Power Electronics Conference (IPEC). Sapporo, Japan:2010.502-507.
    [18]Ahmed N., Haider A., Van Hertem D., et al. Prospects and challenges of future HVDC SuperGrids with modular multilevel converters[C]. The 14th European Conference on Power Electronics and Applications (EPE). Birmingham, United Kingdom:2011.
    [19]滕松,宋新立,李广凯,等.模块化多电平换流器型高压直流输电综述[J].电网与清洁能源.2012,28(08):43-50.
    [20]韦延方,卫志农,孙国强,等.适用于电压源换流器型高压直流输电的模块化多电平换流器最新研究进展[J].高电压技术.2012,38(05):1243-1252.
    [21]Jacobson Bjorn, Karlsson Patrik, Asplund Gunnar, et al. VSC-HVDC Transmission with Cascaded Two-Level Converters[C]. Cigre 2010 Session. Paris, France,2010.
    [22]Dorn Joerg, Huang Hartmut, Retzmann Dietmar. A new Multilevel Voltage-Sourced Converter Topology for HVDC Applications[C]. Cigre Session. Paris, France,2008.
    [23]Dorn Joerg, Huang Hartmut, Retzmann Dietmar. Novel Voltage-Sourced Converters for HVDC and FACTS Applications[C]. Cigre Symposium. Osaka, Japan,2007.
    [24]Dorn J., Gambach H., Strauss J., et al. Trans Bay Cable-A Breakthrough of VSC Multilevel Converters in HVDC Transmission[C]. Cigre San Francisco Colloquium. San Francisco, USA, 2012.
    [25]杨晓峰,林智钦,郑琼林,等.模块组合多电平变换器的研究综述[J].中国电机工程学报.2013,33(06):1-14.
    [26]Trainer D. R., Davidson C. C., Oates C. D. M., et al. A New Hybrid Voltage-Sourced Converter for HVDC Power Transmission[C]. Cigre 2010 Session. Paris, France,2010.
    [27]Adam G. P., Ahmed K. H., Finney S. J., et al. New Breed of Network Fault-Tolerant Voltage-Source-Converter HVDC Transmission System[J]. IEEE Transactions on Power Systems.2013,28(1):335-346.
    [28]宋强,刘文华,李笑倩,等.模块化多电平换流器稳态运行特性的解析分析[J].电网技术.2012,36(11):198-204.
    [29]Qiang Song, Wenhua Liu, Xiaoqian Li, et al. A Steady-State Analysis Method for a Modular Multilevel Converter[J]. IEEE Transactions on Power Electronics.2013,28(8):3702-3713.
    [30]Xiaofeng Yang, Jianghong Li, Xiaopeng Wang, et al. Harmonic analysis of the DC capacitor voltage in modular multilevel converter based STATCOM[C]. The 6th IEEE Conference on Industrial Electronics and Applications (ICIEA). Beijing, China:2011.2575-2579.
    [31]张崇魏,张兴.PWM整流器及其控制[M].北京:机械工业出版社.2003.
    [32]Antonopoulos A., Angquist Lennart, Nee H-P. On dynamics and voltage control of the Modular Multilevel Converter[C]. The 13th European Conference on Power Electronics and Applications(EPE). Barcelona, Spain:2009.1-10.
    [33]Munch P., Liu Steven, Dommaschk M. Modeling and current control of modular multilevel converters considering actuator and sensor delays[C]. The 35th Annual Conference of IEEE Industrial Electronics Society(IECON). Porto, Portugal:2009.1633-1638.
    [34]Munch P., Gorges D., Izak M., et al. Integrated current control, energy control and energy balancing of Modular Multilevel Converters[C]. The 36th Annual Conference on IEEE Industrial Electronics Society(IECON). Glendale, United States:2010.150-155.
    [35]刘栋,汤广福,郑健超,等.模块化多电平换流器小信号模型及开环响应时间常数分析[J].中国电机工程学报.2012,32(24):1-8.
    [36]王姗姗,周孝信,汤广福,等.模块化多电平电压源换流器的数学模型[J].中国电机工程学报.2011,31(24):1-8.
    [37]Gnanarathna U. N., Gole A. M., Jayasinghe R. P. Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs[J]. IEEE Transactions on Power Delivery.2011,26(1):316-324.
    [38]许建中,赵成勇,刘文静.超大规模MMC电磁暂态仿真提速模型[J].中国电机工程学报.2013,33((优先出版)).
    [39]Peralta Jaime, Saad Hani, Dennetiere Sebastien, et al. Detailed and averaged models for a 401-level MMC-HVDC system[J]. IEEE Transactions on Power Delivery.2012, 27(3):1501-1508.
    [40]Jianzhong Xu, Chengyong Zhao, Wenjing Liu, et al. Accelerated Model of Modular Multilevel Converters in PSCAD/EMTDC[J]. IEEE Transactions on Power Delivery.2013,28(1):129-136.
    [41]Rodriguez J., Franquelo L. G., Kouro S., et al. Multilevel Converters:An Enabling Technology for High-Power Applications[J]. Proceedings of the IEEE.2009,97(11):1786-1817.
    [42]Lesnicar A., Marquardt R. An innovative modular multilevel converter topology suitable for a wide power range[C]. Proceedings of IEEE Bologna Power Tech Conference. Bologna, Italy: 2003.6.
    [43]刘钟淇,宋强,刘文华.新型模块化多电平变流器的控制策略研究[J].电力电子技术.2009,43(10):5-7.
    [44]李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制方法[J].电力系统自动化.2010,34(22):75-79.
    [45]Hagiwara M., Akagi H. Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters [J]. IEEE Transactions on Power Electronics.2009,24(7):1737-1746.
    [46]赵昕,赵成勇,李广凯,等.采用载波移相技术的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报.2011,31(21):48-55.
    [47]Li Zixin, Wang Ping, Zhu Haibin, et al. An Improved Pulse Width Modulation Method for Chopper-Cell-Based Modular Multilevel Converters[J]. IEEE Transactions on Power Electronics. 2012,27(8):3472-3481.
    [48]何大清,蔡旭.模块化多电平变流器的限幅控制和混合调制[J].电力自动化设备.2012,32(04):63-66.
    [49]丁冠军,汤广福,丁明,等.新型多电平电压源换流器模块的拓扑机制与调制策略[J].中国电机工程学报.2009,29(36):1-8.
    [50]Qiang Li, Zhiyuan He, Guangfu Tang. Investigation of the Harmonic Optimization Approaches in the New Modular Multilevel Converters[C]. The 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC). Chengdu, China:2010.1-6.
    [51]丁冠军,丁明,汤广福VSC-HVDC主电路拓扑及其调制策略分析与比较[J].电力系统自动化.2009,33(10):64-68.
    [52]管敏渊,徐政,屠卿瑞,等.模块化多电平换流器型直流输电的调制策略[J].电力系统自动化.2010,34(02):48-52.
    [53]刘钟淇,宋强,刘文华.基于模块化多电平变流器的轻型直流输电系统[J].电力系统自动化.2010,34(2):53-58.
    [54]Saeedifard Maryam, Iravani Reza. Dynamic performance of a modular multilevel back-to-back HVDC system[J]. IEEE Transactions on Power Delivery.2010,25(4):2903-2912.
    [55]吴亚楠,汤广福,查鲲鹏,等.模块化多电平HVDC换流阀运行试验主回路数学模型及参数设计[J].电网技术.2013,37(01):65-70.
    [56]丁冠军,丁明,汤广福,等.新型多电平VSC子模块电容参数与均压策略[J].中国电机工程学报.2009,29(30):1-6.
    [57]王姗姗,周孝信,汤广福,等.交流电网强度对模块化多电平换流器HVDC运行特性的影响[J].电网技术.2011,35(02):17-24.
    [58]王姗姗,周孝信,汤广福,等.模块化多电平HVDC输电系统子模块电容值的选取和计算[J].电网技术.2011,35(01):26-32.
    [59]王姗姗,周孝信,汤广福,等.模块化多电平换流器HVDC直流双极短路子模块过电流分析[J].中国电机工程学报.2011,31(01):1-7.
    [60]谢妍,陈柏超,陈耀军,等.新型模块化多电平换流器串联电抗器的功能与取值分析[J].电力自动化设备.2012,32(09):55-59.
    [61]陈谦,唐国庆,胡铭.采用dq0坐标的VSC-HVDC稳态模型与控制器设计[J].电力系统自动化.2004,28(16):61-66.
    [62]李国栋,毛承雄,陆继明,等.基于逆系统理论的VSC-HVDC新型控制[J].高电压技术.2005,31(08):45-47.
    [63]王国强,王志新,李爽.模块化多电平变流器的直接功率控制仿真研究[J].中国电机工程学报.2012,32(06):64-71.
    [64]郭捷,江道灼,周月宾,等.交直流侧电流分别可控的模块化多电平换流器控制方法[J].电力系统自动化.2011,35(07):42-47.
    [65]赵岩,胡学浩,汤广福,等.模块化多电平变流器HVDC输电系统控制策略[J].中国电机工程学报.2011,31(25):35-42.
    [66]Glinka M., Marquardt R. A new AC/AC multilevel converter family[J]. IEEE Transactions on Industrial Electronics.2005,52(3):662-669.
    [67]董文杰,张兴,刘芳,等.模块化多电平变流器均压策略研究[J].电力电子技术.2012,46(02):69-71.
    [68]Congzhe Gao, Xinjian Jiang, Yongdong Li, et al. A DC-Link Voltage Self-Balance Method for a Diode-Clamped Modular Multilevel Converter With Minimum Number of Voltage Sensors[J]. IEEE Transactions on Power Electronics.2013,28(5):2125-2139.
    [69]司志磊,张兴,董文杰.模块化多电平换流器闭环均压策略研究[J].电力电子技术.2012,46(09):58-60.
    [70]Angquist Lennart, Antonopoulos A., Siemaszko D., et al. Inner control of Modular Multilevel Converters-An approach using open-loop estimation of stored energy[C]. The 2010 International Power Electronics Conference (IPEC). Sapporo, Japan:2010.1579-1585.
    [71]王奎,郑泽东,李永东.新型模块化多电平变换器电容电压波动规律及抑制方法[J].电工技术学报.2011,26(05):8-14.
    [72]王奎,郑泽东,李永东.模块化多电平变换器电压平衡控制[J].清华大学学报(自然科学版).2011,51(07):909-913.
    [73]Bergna G., Berne E., Egrot P., et al. An Energy-Based Controller for HVDC Modular Multilevel Converter in Decoupled Double Synchronous Reference Frame for Voltage Oscillation Reduction[J]. IEEE Transactions on Industrial Electronics.2013,60(6):2360-2371.
    [74]Lesnicar A. Neuartiger, modularer mehrpunktumrichter M2C fur netzkupplungsanwendungen. [PhD Dissertation] Munich, Germany:Univ. of Bundeswehr,2008.
    [75]周月宾,江道灼,郭捷,等.模块化多电平换流器子模块电容电压波动与内部环流分析[J].中国电机工程学报.2012,32(24):8-14.
    [76]杨晓峰,郑琼林.基于MMC环流模型的通用环流抑制策略[J].中国电机工程学报.2012,32(18):59-65.
    [77]杨晓峰,王晓鹏,范文宝,等.模块组合多电平变换器的环流模型[J].电工技术学报.2011,26(05):21-27.
    [78]Jiangchao Qin, Saeedifard M. Predictive Control of a Modular Multilevel Converter for a Back-to-Back HVDC System[J]. IEEE Transactions on Power Delivery.2012,27(3):1538-1547.
    [79]Perez M. A., Rodriguez J., Fuentes E. J., et al. Predictive Control of AC-AC Modular Multilevel Converters[J]. IEEE Transactions on Industrial Electronics.2012,59(7):2832-2839.
    [80]Liu Yang, Chengyong Zhao, Xiaodong Yang. Loss calculation method of modular multilevel HVDC converters[C]. The 2011 IEEE Electrical Power and Energy Conference (EPEC). Winnipeg, Canada:2011.97-101.
    [81]刘建涛,王珂,姚建国,等.模块化多电平换流器损耗分析[J].电气应用.2012,31(17):70-75.
    [82]Rohner Steffen, Bernet Steffen, Hiller Marc, et al. Modulation, losses, and semiconductor requirements of modular multilevel converters[J]. IEEE Transactions on Industrial Electronics. 2010,57(8):2633-2642.
    [83]刘栋,汤广福,贺之渊,等.基于面积等效法的模块化多电平换流器损耗分析[J].电网技术.2012,36(04):197-201.
    [84]Oates C., Davidson C. A comparison of two methods of estimating losses in the Modular Multi-Level Converter[C]. Proceedings of the 14th European Conference on Power Electronics and Applications(EPE). Birmingham, United Kingdom:2011.1-10.
    [85]Modeer T., Nee H. P., Norrga S. Loss comparison of different sub-module implementations for modular multilevel converters in HVDC applications[C]. Proceedings of the 14th European Conference on Power Electronics and Applications (EPE). Birmingham, United Kingdom:2011. 1-7.
    [86]刘钟淇,宋强,刘文华.采用MMC变流器的VSC-HVDC系统故障态研究[J].电力电子技术.2010,44(09):69-71.
    [87]Xiaofang Chen, Chengyong Zhao, Chungang Cao. Research on the fault characteristics of HVDC based on modular multilevel converter[C]. The 2011 IEEE Electrical Power and Energy Conference (EPEC). Winnipeg, Canada:2011.91-96.
    [88]赵成勇,陈晓芳,曹春刚,等.模块化多电平换流器HVDC直流侧故障控制保护策略[J].电力系统自动化.2011,35(23):82-87.
    [89]Xiaoqian Li, Qiang Song, Wenhua Liu, et al. Protection of Nonpermanent Faults on DC Overhead Lines in MMC-Based HVDC Systems[J]. IEEE Transactions on Power Delivery.2013, 28(1):483-490.
    [90]Gum Tae Son, Hee-Jin Lee, Tae Sik Nam, et al. Design and Control of a Modular Multilevel HVDC Converter With Redundant Power Modules for Noninterruptible Energy Transfer[J]. IEEE Transactions on Power Delivery.2012,27(3):1611-1619.
    [91]Siemaszko D., Antonopoulos A., lives K., et al. Evaluation of control and modulation methods for modular multilevel converters[C]. The 2010 International Power Electronics Conference (IPEC). Sapporo, Japan:2010.746-753.
    [92]Glinka M., Marquardt R. A new AC/AC-multilevel converter family applied to a single-phase converter[C]. The 5th International Conference on Power Electronics and Drive Systems (PEDS). Singapore:2003.16-23.
    [93]Wu Bin. High-Power Converters and AC Drives[M]. Hoboken, New Jersey, USA:Wiley InterScience.2006.
    [94]李建林.载波相移级联H桥型多电平变流器及其在有源电力滤波器中的应用研究.[博士学位论文]杭州:浙江大学,2005.
    [95]lives K., Antonopoulos A., Norrga Staffan, et al. Steady-State Analysis of Interaction Between Harmonic Components of Arm and Line Quantities of Modular Multilevel Converters[J]. IEEE Transactions on Power Electronics.2012,27(1):57-68.
    [96]Cigre Working Group B4.37. VSC Transmission[R]. Paris, France:Cigre Technical Brochure. 2004.
    [97]潘武略.新型直流输电系统损耗特性及降损措施研究.[博士学位论文]杭州:浙江大学,2008.
    [98]Lips H. Peter. Loss determination of HVDC thyristor valves[J]. IEEE Transactions on Power Delivery.1988,3(l):358-362.
    [99]Sheng Kuang, Williams B. W., Finney S. J. A review of IGBT models[J]. IEEE Transactions on Power Electronics.2000,15(6):1250-1266.
    [100]Wong Chuck. EMTP modeling of IGBT dynamic performance for power dissipation estimation[J]. IEEE Transactions on Industry Applications.1997,33(1):64-71.
    [101]Pereira M., Zenkner A., Claus M. Characteristics and benefits of modular multilevel converters for FACTS[C]. Cigre 2010 Session. Paris, France,2010.
    [102]Peftitsis Dimosthenis, Tolstoy Georg, Antonopoulos Antonios, et al. High-power modular multilevel converters with SiC JFETs[J]. IEEE Transactions on Power Electronics.2012, 27(1):28-36.
    [103]Allebrod S., Hamerski R., Marquardt R. New transformerless, scalable Modular Multilevel Converters for HVDC-transmission[C]. The 39th IEEE Power Electronics Specialists Conference(PESC). Island of Rhodes, Greece:2008.174-179.
    [104]潘武略,徐政,张静,等.电压源换流器型直流输电换流器损耗分析[J].中国电机工程学报.2008,28(21):7-14.
    [105]Hui Pang, Guangfu Tang, Zhiyuan He. Evaluation of losses in VSC-HVDC transmission system[C]. IEEE Power and Energy Society General Meeting. Pittsburgh, USA:2008.1-6.
    [106]Song Hong-Seok, Nam Kwanghee. Dual current control scheme for PWM converter under unbalanced input voltage conditions[J]. IEEE Transactions on Industrial Electronics.1999, 46(5):953-959.
    [107]陈海荣.交流系统故障时VSC-HVDC系统的控制与保护策略研究.[博士学位论文]杭州:浙江大学,2007.
    [108]Yazdani A., Iravani R. A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions[J]. IEEE Transactions on Power Delivery.2006, 21(3):1620-1629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700