中国区域陆面模式大气驱动数据同化及其在CLM中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展气候研究需要长时间序列的高质量的资料。我国已经具有众多台站和遥感观测数据,但是目前为止还没有建立我国自己的陆面资料同化系统,缺乏高质量的陆面同化分析数据集。另外,陆面模式作为科学地评估陆地表面变化及陆气相互作用的重要工具,它的发展及性能检验也有赖于可靠的资料,因此建立陆面资料同化系统并利用其为陆面模式提供满足模式要求的相对准确的大气强迫场已经成为亟待解决的问题。
     本论文的重点围绕充分利用观测资料为陆面模式建立相对准确的大气驱动场,并以此建立陆面资料同化系统展开研究,主要结论有:
     1.发展了一个三维变分(3DVar)同化系统,通过调整同化系统中背景误差协方差使之适用于陆面模式大气驱动场各个变量的同化,同时该同化系统也能适用于陆面模式中土壤温度、土壤湿度等预报量的同化;
     2.使用沙漠站观测资料和AMSR-E遥感土壤湿度数据,检验了陆面模式CLM在中国区域土壤温度和土壤湿度等地表变量的模拟能力,研究发现,CLM大体能够把握住中国地区复杂下垫面的水热特征的分布和变化趋势,取得较好的模拟效果;
     3.为了满足陆面模式需求,基于NCEP再分析资料,提出了一种计算任意时段平均太阳辐射的方案,整理生成了一套可用于模式检验和分析的反映日变化的全球太阳辐射资料集,并验证了资料的可用性。这套资料集补充了太阳辐射观测资料的不足,应用这套资料作为陆面模式CLM的大气驱动场,能够有效改进模式土壤温度的模拟;
     4.建立了一套同化多源观测信息的日变化降水率资料集。利用NCEP资料的日变化特征,将台站日降水量资料生成日变化的降水率数据,然后,利用3DVar同化系统同化中国区域的多源降水数据(包括国际交换站、Micaps台站和TRMM卫星观测日降水量),降水率同化后的数据序列作为大气驱动资料能够有效改进土壤湿度的模拟;
     5.以日变化的太阳辐射资料和同化观测信息的日变化降水率资料集为基础,比较分析了不同大气驱动场对于地表变量模拟的影响,同时产生一套土壤温度、土壤湿度数据集,分析土壤温度和土壤湿度等地表变量的分布及变化规律。
     通过本文工作,开发了陆面模式大气驱动场各变量的同化系统,建立了一套相对准确的日变化的陆面模式大气驱动场资料集,并应用CLM模式生成了一套土壤温度和土壤湿度数据集,为模式验证和模拟分析提供了基础,为气候变化研究提供了数据支持。
Climate studies need long serial of historic data sets of high quality. There aremany station and remote sensing observation data in China, but there are no perfectland data assimilation systems and no assimilated land ananlysis data of high qualityat present. Meanwhile, as an important tool to evaluate land surface change and theatmosphere-land interactions, the development and performances of land surfacemodel rely upon the quality of data, so it is urgent to develop land data assimilationsystem and use it to provide more accurate atmospheric forcing data for land surfacemodels.
     This study is carried out focusing on providing more accurate atmospheric forcingfor land surface models and developing a land data assimilation system. The mainconclusions can be summarized as follows: 1) A 3DVar assimilation system is developed for assimilating the atmosphericforcing variables respectively by setting background error covariance inassimilation system. This assimilation system can also be used to assimilatepredication variables in land surface models, such as soil temperature and soilmoisture etc.
     2) Common Land Model (CLM) is validated for land surface variables (includingsoil temperature and soil moisture) over China by using desert observation dataand AMSR-E remote sensed soil moisture data, the results show that CLM cangrasp the distribution and change trends about hydrothermal characteristics overthe complex underlying surface of China region, thus good simulationperformances are achieved.
     3) A method to compute mean solar radiation at surface in any time interval based onNCEP reanalysis is presented to meet the requirements of land surface model,then a set of diurnal variation of solar radiation data is established, which can beused as data basis for model validation and analysis. The usability of this data setis verified. This data set can compensate the shortage of solar radiationobservations. With this data set applicated as one of the CLM atmosphericforcings, the performance of CLM is markedly enhanced with respect to soiltemperature.
     4) A precipitation rate data set of diurnal variation with multi-source precipitationdata assimilated is developed. The station observed daily precipitation data areused to generate precipitation rate of diurnal variation based on the diurnal variation of NCEP precipitation rate data, then, the 3DVar data assimilationsystem is used to assimilate precipitation data from different sources (includingInternational exchange station, Micaps and TRMM satellite-observed precipitation)and the newly-build assimilated precipitation rate data can effectively enhance theperformance of CLM with respect to soil moisture as one of the CLM atmosphericforcings.
     5) The atmospheric forcing data are established for CLM based on newly built solarradiation and assimilated precipitation rate data respectively. The influences withdifferent atmospheric forcing to the simulated land variables of land surfacemodel are disscused and analysized. Meanwhile, a set of soil temperature and soilmoisture data is established and the distribution and evolvement of land surfacevariables (including soil temperature and soil moisture) is analysized.
     In brief, this thesis develops a 3DVar assimilation system for atmospheric forcingvariables of land surface model and establishes a set of relative accurate atmosphericforcing data with diurnal variation that meets the requirements of land surface model.By applying these data into CLM, a set of soil temperature and soil moisture data isgenerated, providing the basis for model validation, simulation analysis and climatechange studies.
引文
[1] 高志强,刘纪远,基于陆面模式和遥感技术的地表温度比较,地理学报,2003,58(4):494-502
    [2] 何洪林,于贵瑞,刘新安等,中国陆地生态信息空间化技术研究(Ⅱ)——太阳辐射要素,自然资源学报,2004,19(5):679-687
    [3] 洪业汤,刘东生,姜洪波等,太阳辐射驱动气候变化的泥炭氧同位素证据,中国科学(D辑),1999,29(6):527-531
    [4] 胡丽琴,刘长盛,云层与气溶胶对大气吸收太阳辐射的影响,高原气象,2001,20(3):264-270
    [5] 黄伟,郭振海,宇如聪,CLM在淮河流域数值模拟试验,气象学报,2004,62(6),764-775
    [6] 李晓文,李维亮,周秀骥,中国近30年太阳辐射状况研究,应用气象学报,1998,9(1):24-31
    [7] 刘少锋,林朝晖,通用陆面模式CLM在东亚不同典型下垫面的验证试验,气候与环境研究,2005,10(3),684-699
    [8] 刘晓东,罗四维,钱永甫,青藏高原地表热状况对夏季大气环流影响的数值试验,高原气象,1989,8(3):205-216
    [9] 卢理,曾庆存,太阳辐射日变化对气候模拟的影响,大气科学,1987,11(4):351-358
    [10] 陆其峰,陆面下边界对区域气候模拟的影响(LAJ为例)及区域气候模式(CWRF+CLM)陆面遥感参数预处理研究,南京信息工程大学,博士论文,2006
    [11] 罗哲贤,植被覆盖对干旱气候影响的数值研究,地理研究,1985,4(2):1-8
    [12] 马雷鸣,端义宏,梁旭东等2005:TRMM海表降水率同化在热带气旋Danas(2001)数值模拟中的应用研究,海洋学报,27(6):16-25
    [13] 马有哲,刘小宁,许松,中国太阳辐射数据集及其质量检验分析,气象科技,1998(2):53-56
    [14] 马柱国,符淙斌,谢力等,土壤湿度和气候变化关系研究中的某些问题,地球科学进展,2001,16(4):563-568
    [15] 牛国跃,洪钟祥,孙淑芬,陆面过程研究的现状与发展趋势,地球科学进展,1997,12(2):20-25
    [16] 邵慧,钱永甫,王谦谦,太阳辐射日变化对R15L9气候模拟效果的影响,高原气象,1998,17(2):158-169
    [17] 孙丞虎,李维京,张祖强,何金海,淮河流域土壤湿度异常的时空分布特征及其与气候异常关系的初步研究,应用气象学报,2005,16(2):129-138
    [18] 孙岚,吴国雄,孙菽芬,陆面过程对气候影响的数值模拟:SSIB与IAP/LASGL9R15AGCM的耦合及其模式性能,气象学报,2000,58(2):179~193
    [19] 王宏,石广玉,T.Aoki等,2001年春季东亚-北太平洋地区沙尘气溶胶的辐射强迫,科学通报,2004,49(19):1993-2000
    [20] 王介民,陆面过程实验和地气相互作用——从HEIFI到IM-GRASS和GAME-Tibet/TIPEX,高原气象,1999,18(3):280-294
    [21] 王谦谦,钱永甫,太阳辐射日变化对夏季风模拟特征的影响,气象学报,1997,55(3):334-345
    [22] 翁笃鸣,中国辐射气候,北京:气象出版社,1997,pp363
    [23] 薛永康,曾凡荣,Schlosser A C等,一个植被模式的检验和它在陆气相互作用中的应用,大气科学,1998,22:575-586
    [24] 颜宏,初始方程p-σ混合坐标细网格嵌套模式的设计(二)数值模式中次网格物理过程参数化,高原气象,1987,6(2):64-138
    [25] 叶笃正,符淙斌,董文杰,2002:全球变化科学进展与未来趋势,地球科学进展,17(4),467-469
    [26] 叶笃正,张捷迁,青藏高原加热作用对夏季东亚大气环流影响的初步模拟,中国科学,1974(3):301-326
    [27] 于强,傅抱璞,彭乃志等,辐射日总量的最热坡度解析模式及其全球分布规律,地理学报,1994,49(6):526-532
    [28] 张家诚,林之光,中国气候(上),上海:上海科学技术出版社,1985,pp340
    [29] 张俊荣,王丽巍,张德海,植被和土壤的微波介电常数,遥感技术与应用,1995,10(3):40-50
    [30] 赵柏林,丁一汇,朱元竞等,淮河流域能量和水分循环研究(一),气象出版社,北京,1999
    [31] 中国气象局,气象辐射观测方法,北京:气象出版社,1996,pp165
    [32] 周明煜,徐祥德,卞林根等,青藏高原大气边界层观测分析与动力学研究,气象出版社,北京,2000
    [33] 左大康,王懿贤,陈建绥,中国地区太阳总辐射的空间分布特征,气象学报,1963,33(1):78-96
    [34] Adam Schlosser, et al. Simulations of aboreal grassland hydrology at Valdai, Russia: PILPS phase2(d). Mon Wea Rev, 2000(128):301~321
    [35] Andre J C, Goutorbe J P, Schmugge T, et al., HAPEX-MOBIL HY: Result s from a large-scale field experiment. In: Remote Sensing and Large-Scale Global Processes, Rango A, Ed. Wallingford, U K, International Association of Hydrological Sciences. 1989:13-20
    [36] Barnes, S., A techniques for maximizing details in numerical map analysis, J. Appl. Meteor. 1964(3): 395-409
    [37] Barnes, S., Oklahoma thunderstorms on 29-30 April 1970, Part Ⅰ: Morphology of a tornadic storm, Mon. Wea. Rev., 1978(106): 673-684
    [38] Barnett T P, Dumnil L, Schlese U, et al. The effect of Eurasian snow cover on global climate. Science, 1988, 239(4839): 504-507
    [39] Bengtsson L, M Ghil and E Kallen. Dynamic Meteorology: Data Assimilation Methods. 1981, Springer-Verlag, New York
    [40] Berg, A. A., J. S. Famiglietti, J. P. Walker, and P. R. Houser, Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. J Geophys. Res., 2003(108), 4490, doi:10.1029/2002JD003334
    [41] Bergthorsson, P., and B. Doos, Numerical weather map analysis, Tellus, 1955(7): 329-340
    [42] Bergthorsson, P., and B. Doos, S. Frykland, O. Hang, and R. Linquist,: Routine forecasting with the barotropics model, Tellus, 1955(7): 329-340
    [43] Betts, A. K., J. H. Ball, and P. Viterbo, Evaluation of the ERA-40 surface water budget and surface temperature for the Mackenzie River basin. J. Hydrometeor., 2003(4): 1194-1211
    [44] Betts, A. K., J. H. Ball, P. Viterbo, A. Dai, and J. A. Marengo, Hydrometeorology of the Amazon from ERA-40. J. Hydrometeor., 2005(6): 764-774
    [45] Bjerknes, V., and different collaborators. Dynamic meteorology and hydrography. Pt. II. Kinematics. Carnegie Inst. Washington, 1911, Pub. no. 88,175 pp
    [46] Bonan G B. A Land Surface Model (LSM Version1.0) for Ecological, Hydrological and Atmospheric Studies: Technical Description and User's Guide. NCAR Technical NoteTN-417+STR, Boulder(Colorado): NCAR, 1996, 150
    [47] Bouttier, F., and F. Rabier., The operational implementation of 4D-Var. ECMWF Newsletter No. 78, 1997: 2-5
    [48] Bowling, L. C, D. P. Lettenmaier, B. Nijssen, J. Polcher, R. D. Koster, and D. Lohmann, Simulation of high latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e) 3: Equivalent model representation and sensitivity experiment. J. Global Planet. Change, 2003(38): 55-71
    [49] Cess R D, Potter G L, Zhang M-H, et al. Interpretation of snow-climate feedback as produced by 17 general circulation models. Science, 1991,253(5022): 888-892
    [50] Charney, J. G., Dynamical forecasting by numerical process. Compendium of meteorology. American Meteorological society, Boston, MA., 1951
    [51] Charney J G, Quirk W J, Chow S H, etal. A comparative study of the effects of albedo change on drought in semi-arid regions. J Atmos Sci, 1977, 34(9): 1366-1385
    [52] Charney, J. G., R. Fjortoft, and J. von Neuman, Numerical integration of the barotropic vorticity equation. Tellus, 1950(2): 237-254
    [53] Chervin R M. Response of the NCAR general circulation model to changed land surface albedo[A]. Report of the JOC Study Conference on Climate Models: Performance, Intercomparision And Sensitivity Studies.GARP Publ Series, 1979, I (22): 563-581
    [54] Cohen J, Rind R. The effect of snow cover on the climate. J Climate, 1991, 4(7): 689-706
    [55] Colman R A. Snow and cloud feedbacks modeled by an atmospheric general Circulation model. Climate Dynamics, 1994, 9(4): 253-265
    [56] Cosh, M.H., T.J. Jackson, R. Bindlish, and J.H. Prueger. Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates. Remote Sensing of Environment, 2004, 92(2): 427-435
    [57] Cressman, G. P., An operational objective analysis system. Mon. Wea. Rev. 1959,87: 367-374
    [58] Dai, A., Global precipitation and thunderstorm frequencies.Part II: Diurnal variations. J. Climate, 2001, 14 : 1112-1128
    [59] Dai Yongjiu , Zeng Xubin , Dickinson R E , et al . Common Land Model (Technical Documentation and User's Guide). 2001, 69pp
    [60] Daley, R., Atmospheric data analysis. Cambridge University Press, Cambridge, 1991,457pp
    [61] de Rosnay, P. A GCM experiment on time sampling for remote sensing of near-surface soil moisture. Journal of Hydrometeorology, 2003, 4(2): 448-459
    [62] Dickinson R E, Henderson-Sellers A. Modelling tropical deforestation: A study of GCM land-surface parameterization. Quart J R Meteor Soc, 1988, 114(480): 439-462
    [63] Dickinson R E, Henderson-Sellers A and Kennedy P J. Biosphere-Atmosphere Transfer Scheme (BATS) Version le as Coupled to the NCAR Community Climate Model. NCAR/TN-387+STR, Boulder(Colorado), 1993.72
    [64] Dickinson R E, Henderson-Sellers A and Kennedy P J. Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCARTN-275+STR. Boulder(Colorado): NCAR, 1986.69
    [65] Dirmeyer, P. A., A. J. Dolman, and N. Sato, The Global Soil Wetness Project: A pilot project for global land surface modeling andvalidation. Bull. Amer. Meteor. Soc, 1999, 80:851-878
    [66] Dirmeyer, P. A., and L. Tan, 2001: A multi-decadal global land surface data set of state variables and fluxes. COLA Tech.Rep. 102, 43 pp. [Available from COLA, 4041 Powder MillRd., #302, Calverton, MD 20705.]
    [67] Douville H, Soyer J F, Mahfouf J F. Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Meteo-France GCM. Climate Dynamics, 1996, 12(7): 449-466
    [68] Epstein E S. Stochastic dynamic prediction. Tellus, 1969,21: 739-759
    [69] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 1994, 99(C5):10143-10612
    [70] Fan, Y., K. E. Mitchell, and D. Lohmann, A 51-year reanalysis of the U.S. land-surface hydrology. GEWEX News, No. 13, International GEWEX Project Office, Silver Spring, MD, 6-10, 2003
    [71] Fan, Y., and H. M. Van den Dool, Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res., 2004, 109, D10102, doi: 10.1029/2003 JD004345
    [72] Fan Y.,H. M. Van den Dool, D. Lohmann and K. Mitchell. 1948-98 U.S. Hydrological Reanalysis by the Noah Land Data Assimilation System . Journal of Climate: 2005, 19(7): 1214-1237., doi: 10.1175/JCLI3681.1
    [73]Fekete, B. M., C. J. Vorosmarty, and W. Grabs, High resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 2002,16, 1042, doi:10.1029/1999GB001254.
    [74] Fletcher R. and C. M. Reeves, Function minimization by conjugate-gradients. The Computer Journal, 1964(7): 149-153
    [75] Foukal, P., Solar Astrophysics, 2nd, Revised Edition. Wiley-VCH, 2004
    [76] Foukal P and J. Lean, An empirical model of total solar irradiance variation between 1874 and 1988. Science, 1990, 247: 556-559
    [77] Gandin, L. S., Objective analysis of meteorological fields, Gidrometerologicheskoe Izdatelstvo, Leninggrad. English translation by Israeli Program for Scientific Translations, Jerusalem, 1963
    [78] Ghil M and P Malanotte-Rizzoli, Data assimilation in meteorology and oceanography. Adv. Geophys., 1991, 33: 141-266
    [79] Ghil M, K Ide, A Bennett, P Courtier, etc., Data Assimilation in meteorology and oceanography. Meteor. Soc. Japan, Tokyo, Japan, 1997
    [80] Grunmann, Pablo J., Variational data assimilation of soil moisture information.2005, Dissertation of University of Maryland. ISBN: 0-542-18565-2
    [81] Henderson-Sellers A, Dickinson R E, Walson M F. Tropical deforestation: important processes for climate models. Climatic Change, 1988, 13(1): 43-69
    [82] Henderson, Sellers A Pitman A J, et al. The project for intercomparison of land surface parameterization scheme (PILPS): Phase 2 and 3. Bull Amer Meteor Soc, 1995, 76(4): 489-503
    [83] Hestenes M. R. and E. Stieffel, Methods of conjugate-gradients for solving linear systems. J. Res. Natl. Bur. Stand., 1952(48): 409-436
    [84] Huang, J., H. M. Van den Dool, and K. P. Georgakakos, Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts. J Climate, 1996(9): 1350-1362
    [85] IGBP. Global Change: Reducing Uncertainties. Pub. By Royal Swedish Academy, ISBN 9126302108620, 1992
    [86] IPCC Working Group I. Climate Change 2001 : Scientific Basis.2001
    [87] Jones, A.S., T, Vukicevic, and T.H. Vonder Haar. A microwave satellite observational operator for variational data assimilation of soil moisture. Journal of Hydrometeorology, 2004, 5(1): 2418-2430
    [88] Jones R H. Optimal estimation of initial conditions for numerical prediction. J. Atmos. Sci.. 1965, 22: 658-663
    [89] Kalman R E. A new approach to linear filtering and prediction problems. Transaction of the ASME, Journal of Basic Engineering, 1960, 82D: 34-45
    [90] Kalnay E , Kanamit su M , Kistler R , et al . The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc, 1996, 77: 437—471
    [91] Keith W. Oleson, Yongjiu Dai, Gordon Bonan, et. al., Technical description of the Community Land Model(CLM), NCAR Technical Note, NCAR/TN-461+STR, 2004
    [92] Laval K, Picon L. Effects of change of the surface albedo of the Sahel on climate. J Atmos Sci, 1986, 43(21): 2418-2429
    [93] Lenters, J. D., M. T. Coe, and J. A. Foley, Surface water balance of the continental United States, 1963-1995: Regional evaluation of a terrestrial biosphere model and the NCEP/NCAR reanalysis. J. Geophys. Res., 2000(105), 22 393-22 425
    [94] Lobl, E. Joint Advanced Microwave Scanning Radiometer (AMSR) Science Team meeting. Earth Observer, 2001,13(3): 3-9
    [95] Lorenc, A., Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc, 1986,112, 1177-1194
    [96] Manabe, S. Climate and the ocean circulation 1. the atmospheric circulation and the hydrology of the earth's surface. Mon. Weather. Rev., 1969, 97(11):739-774
    [97] Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 2002(15): 3237-3251
    [98] Maurer, E. P., G. M. O'Donnell, D. P. Lettenmaier, and J. O. Roads, Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model. J. Geophys. Res., 2001(106): 17 841-17 862
    [99] McCabe, M.F., E.F. Wood, and H. Gao. Initial soil moisture retrievals from AMSR-E: Multiscale comparison using in situ data and rainfall patterns over Iowa Geophysical Research Letters, 2005, 32(6): L06403
    [100] Mitchell, K. E., and Coauthors, The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 2004,109, D07S90, doi: 10.1029/2003JD003823
    [101] Ngo-Duc, T., J. Polcher, and K. Laval, A 53-year forcing data set for land surface models, J. Geophys. Res., 2005,110, D06116, doi:10.1029/2004JD005434
    [102] Nicholson E, Tucker C J., Desertification, drought, and surface vegetation: an example from the West African Sahel. Bull Amer Meteor Soc, 1998, 79(5): 815-819
    [103] Nijssen, B., G. M. O'Donnell, D. P. Lettenmaier, D. Lohmann, and E. F. Wood, Predicting the discharge of global rivers. J. Climate, 2001a,14: 3307-3323
    [104] Nijssen, B., R. Schnur, and D. P. Lettenmaier, Global retrospective estimation of soil moisture using the Variable Infiltration Capacity land surface model, 1980-1993. J. Climate, 2001b, 14: 1790-1808
    [105] Njoku, E.G., AMSR Land Surface Parameters: Surface Soil Moisture, Land Surface Temperature, Vegetation Water Content. Algorithm theoretical basis document, 1999
    [106] Njoku, E.G., T.L. Jackson, V. Lakshmi, T. Chan, and S.V. Nghiem. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 215-229
    [107] Panofsky, H., Objective weather-map analysis. J. Appl. Meteor., 1949, 6: 386-392
    [108] Petersen D P. On the concepts and implementation of sequential analysis for linear random fields. Tellus, 1968, 20: 673-686
    [109] Petersen D P. Transient suppression in optimal sequential analysis. J. Atmos. Sci., 1973, 12:437-440
    [110] Qian, T., A. Dai, Kevin E. T et. al., Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations. J. Hydrometeor., 2006, 5:953-975
    [111] Qu W, et al. Sensitivity of latent heat flux from PILPS land-surface schemes to perturbations of surface air temperature. J Atmos Sci, 1998, 55(11): 1909-1927
    [112] Rabier, F., Jarvinen, J., Klinker, E., Mahfouf, J. F. and Simmons, A. The ECMWF implementation of four-dimensional variational assimilation. I : Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc, 126, 1143-1170
    [113] Richardson, L. F., Weather prediction by numerical process. 1922, Cambridge University Press, Cambridge. Reprinted by Dover(1965, New York) with a new introduction by Sydney Chapman
    [114] Roads, J., and A. Berts, NCEP/NCAR and ECMWF reanalysis surface water and energy budgets for the Mississippi River basin. J. Hydrometeor., 2000, 1: 88-94
    [115] Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger,N. A. Speranskaya, S. Liu, and A. Namkhai, The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc, 2000, 81: 1281-1299
    [116] Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc, 2004, 85: 381-394
    [117] Rowntree P R, Bolton J A. Simulation of the atmospheric response to soil moisture anomalies over Europe. Quart J R Meteor Soc, 1983, 109(461): 501-526
    [118] Ruiz-Barradas, A., and S. Nigam, Warm-season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations: Intercomparisons for NAME. J. Climate, 2005, 18: 1808-1830
    [119] Sasaki, Y., Some basic formalisms in numerical variational analysis. Mon. Wea. Rev., 1970, 98: 875-883
    [120] Schmugge T, Hook S J, Coll C. Recovering surface temperature and emissivity from thermal infrared multispectral data. R S Environ, 1998, 65: 121-131
    [121] Sellers P J, Hall F G, Asrar G, et al., An overview of t he First International Satellite Land Surface Climatology Project ( ISLSCP) Field Experiment ( FIFE), J. Geophys. Res. 1992, 97: 18345-18371
    [122] Sellers P J, Mintz Y, Sud Y C, et al. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 1986, 43: 505-531
    [123] Sellers P J, Nobre C A, Fitjarrald D J, et al., LAMBADA-BATERISTA : A preliminary science plan for a large-scale biosphere-atmosphere field experiment in t he Amazon Basin. ISLSCP, IGPO Washington D. C, 1992
    [124] Shukla J, Mintz Y. Influence of land-surface evapotranspiration on the earth's climate. Science, 1982, 215(4539): 1498-1501
    [125] Shukla J, Nobre C, Sellers P J. Amazonian deforestation and climate change. Science, 1990,247(4948): 1322-1325
    [126] Shuttleworth W J, Dickinson R E. Comments on "modeling tropical deforestation: A study of GCM land-surface parameterizations" .Quart J R Meteor Soc. 1989, 115(489): 1177-1179
    [127] Sud Y C, Fenessy M. A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM. J Climatology, 1982, 2(2): 105-125
    [128] Talagrand O. Assimilation of observations, an introduction. Journal of the Meteorological Society of Japan.1997, 75(1):191-209
    [129] Thiebaux H J and M APedder, Spatial objective analysis, 1987, Academic Press. London
    [130] Van den Dool, H., J. Huang, and Y. Fan, Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981-2001. J. Geophys. Res., 2003, 108, 8617, doi:10.1029/2002JD003114
    [131] Vernekar A D, Zhou J, Shukla J. The effect of Eurasian snow cover on the Indian monsoon. J Climate, 1995, 8(2): 248-266
    [132] Walker J M, Rowntree P R. The effect of soil moisture on circulation and rainfall in a tropical model. Quart J R Meteor Soc, 1977, 103(435): 29-46
    [133] Walland K J, Simmonds I. Modeled atmospheric response to changes in Northern Hemisphere snow cover. Climate Dynamics, 1997, 13(1): 25-34
    [134] Wang Jiemin, Gao Youxi, Hu Yinqiao et al., An overview of the HEIFE experiments in the. People's of Republic of China: Exchange Processes at the Land Surface for a Range of Space and. Time Scales, 1993, IAHS Publ. 212, 397-403
    [135] Williams J. The influence of snow cover on the atmospheric circulation and its role in climatic change: An analysis based on results form the NCAR global circulation model. JAppl Meteor, 1975,14(2): 137-152
    [136] Xue Y, Sellers P J, Kinter J L, et. al., A simplified biosphere model for global studies. J. Climate, 1991,4: 345-364
    [137] Xue Y, Shukla J. The influence of land surface properties on Sahel climate. Part I: desertification. J Climate, 1993, 6(12): 2232-2245
    [138] Yang X, et al. Validation of IAP94 land surface model over the Hualhe River Basin with HUBEX field experiment data. 2001
    [139] Yasunari T, Kitoh A, Tokioka T. Local and remote responses to excessive snow cover mass over Eurasia appearing in the northern spring and summer climate-A study with the MRI GCM. J Meteor Soc Japan, 1991, 69(4): 473-487
    [140] Yeh T-C, Wetherald R, Manabe S. Model study of the short-term climatic and hydrologic effects of sudden snow cover removal. Mon Wea Rev, 1983, 111(5): 1013-1024
    [141] Zupanski M and E Kalnay. Principles of data assimilation. In Global Energy and Water Cycles, K A Browning and R J Gurney, editors, Cambridge University Press, Cambridge, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700